
GINO

user guide
version 6.0

BRADLY ASSOCIATES LTD

Manhattan House

140 High Street

Crowthorne

Berkshire RG45 7AY

England

Tel: +44 (1344) 779381

Fax: +44 (1344) 773168

support@gino-graphics.com

www.gino-graphics.com

2

Information in this manual is subject to change without notice.

While Bradly Associates Ltd. makes every endeavour to ensure the

accuracy of this document, it does not accept liability for any errors or

omissions, or for any consequences arising from the use of the program

or documentation.

GINO user guide version 6.0

© Copyright Bradly Associates Ltd. 2003

All rights reserved.

All trademarks where used are acknowledged.

Contents
INTRODUCTION 23

General Description · 23

Facilities · 24

Initializing GINO · 25

GINO States · 26

Use of External Files · 28

Diagnostic Facilities · 29
Output of Error and Warning Messages · 29

Error Limit · 30

Trapping of Errors and Warnings · 30

Enquiry of Errors and Warnings · 30

Routine Trace Facility· 31

Output File for Error and Tracer Messages · 31

DEBUG Utility · 31

Workspaces · 33
Management of Workspace Area · 33

Allocation of Workspace Area · 34

GINO Coordinate System · 36

GRAPHICS DEVICES 39

Graphics Devices Introduction · 39
Device Drivers · 39

Device Class · 40

2D and 3D Devices · 42

Device Nomination · 42
Device Defaults · 43

Device Attributes · 43

3

Device Qualification · 43
Device Output Filename · 44

Drawing Units · 44

Drawing Limits · 45

Colour Capabilities · 46

Device Initialization · 48

New Drawing· 48

Device Dependent Routines· 49
Emptying the Graphics Buffer · 49

Auxiliary Drawing Areas · 49

Batch Modifications to Display · 50

Alphanumeric Mode · 51

Window visibility · 51

Device Titles · 52

Device Release and Suspension · 52

Using Multiple Devices · 52
Mapping to the Second Device · 53

Saving and Restoring GINO State · 54

Duplicating Output · 55

IMPORTING AND EXPORTING 57

Importing and Exporting Introduction · 57

Overview · 57

Metafile Formats · 58
Summary · 61

Exporting Metafiles from GINO · 62

Metafiles into External Packages · 62

Importing Metafiles into GINO· 64
SAVDRA Metafile · 64

CGM Metafiles · 69

Image Metafiles · 73

4

2D DRAWING 77

2D Drawing Introduction· 77
Pen · 77

Axes· 78

2D Start and End Pen Position · 79

2D Naming Conventions · 79

Positioning · 80

Straight Lines · 80

Polylines · 82

Polyline Sets · 84
Polyline Set Definition · 84

Polyline Usage · 85

Circular Arcs · 86
Two-Dimensional Arcs · 86

Drawing Circles · 88

Hardware and Software Arcs · 89

Arc Control Routines · 89

Arc Settings · 91

Use of Arc Routines · 91

Parametric Curves· 93
Curve End Conditions · 94

Spline Curves · 98
Spline Curve End Conditions · 99

Spline Curve Tension Control · 100

Bezier Curves · 101
End Conditions · 102

Elevation and Reduction · 103

Point Storage · 103

2D Interpolation · 107

LINE ATTRIBUTES 111

Line Attributes Introduction · 111
Routines Described in this Chapter · 111

Current Line Definition and Enquiry · 112

Drawing Attribute Tables · 113

5

Individual Attributes · 114
Changing Individual Attributes of the Current Line · 114

Line Visibility · 116

Broken Line Type · 116

Line Colour · 117

Line Width · 119

Drawing Mode · 120

Line Ends · 120

Use of Current Attribute Enquiry Routines · 122

Attribute Tables· 124
Attribute Definition Tables · 124

Broken Line Types Table · 124

Continuous v Discontinuous · 128

Line Definition Table· 129

Changing the Current Line Attributes · 130

Retrieving and Storing Current Line Attributes · 131

CHARACTERS 135

Character Introduction · 135

Character Mode - Hardware v Software · 136

Output of Characters · 137
Single ASCII Characters · 137

Character Strings · 138

Output of Numbers · 138
Field Width· 139

Conversion of Numbers to Character Strings· 140

Character Fonts · 141
Font styles · 141

Font Fill Style · 144

Font Weight · 145

Fixed Pitch Control · 146

Software Font Representation · 146

Font Enquiry · 147

6

Character Attributes · 147
Default Character Settings · 147

Character Size· 147

Character Orientation · 149

Italic Characters · 150

Current Character Settings Enquiry· 151

Underlining of Characters · 152

Representation of Zero Character · 152

Line Attributes affecting Characters · 152

Character String Attributes· 153
Justification · 153

Text Blocks · 154

Exponents and Indices · 155

Escape Characters · 156

Changing the Escape Character · 158

Escape Character Enquiry · 158

Character Strings Adjusted to Fit a Specified Width · 158

Character Strings Drawn Along a Curve · 159

Returning Information about a String · 159

Country Specific Characters · 160

Symbols · 161
Positioning Symbols · 162

Multiple Symbols · 163

AREA FILLING 165

Area Filling Introduction · 165

Filling a Rectangle · 165

Filling Single Polygons · 167

Filling Polygon Sets · 169
Polygon Set Definition· 169

Polygon Usage · 170

Filling Modes · 171

Hatch Style Definition · 172
Example 1 · 178

Example 2 · 180

Hatch Style Enquiry · 182

7

Multiple Hatch Styles · 183
Box Hatch style · 183

Brick Hatch Style · 184

Honeycomb Hatch Style· 185

Trellis Hatch Style · 187

Complex Polygonal Definition, Drawing and Filling · 188

IMAGE HANDLING 189

Image Handling Introduction · 189
Pixel Coordinate System · 190

Reading and Writing Single Pixels · 191

Image Display · 191
Image Data · 192

Sub Images · 192

Pixel Packing · 194

Image Display Mode· 197

Pixel Coordinate Conversion· 198

Pixel Transformations · 198
Pixel Rotation and Scaling · 198

Pixel Replication· 201

Pixel Enquiry Routines · 202

Reading Pixel Data· 203

Copying Pixel Images · 203

COLOUR DEFINITION 205

Colour Definition Introduction · 205

Colour Table · 205
Display Types · 206

Colour Resolution · 207

Colour Coordinate Systems · 207
Conversion Between Coordinate Systems · 210

8

RGB Colour Coordinate System · 211
Using the RGB System · 212

HSV Colour Coordinate System · 212
Using the HSV System · 214

HLS Colour Coordinate System · 215
Using the HLS System · 216

Direct Colour Control · 217

MAPPING, WINDOWING AND MASKING 219

Mapping, Windowing and Masking Introduction · 219

Viewport Mapping · 219
Viewport Enquiry · 221

Clearing the Viewport · 221

Clipping · 222
Window Mode · 222

Rectangular Window · 223

Enquiring Window Limits · 224

Rectangular Masks· 224
Mask Enquiry · 225

2D TRANSFORMATIONS 227

2D Transformations Introduction· 227

Simple 2D Transformations · 227
2D Shifting · 227

2D Rotation · 228

2D Scaling · 229

Mirror Images · 230

2D Shearing · 231

Combining Transformations · 232
Using the Same Transformation Type · 232

Using Different Transformation Types · 233

9

2D Transformation Enquiry · 238
Current Drawing Position · 238

2D Untransforming · 238

Point Testing of Current 2D Transformation · 238

2D Transformation Control · 239

Transforming Characters and Symbols · 239

BASIC INTERACTION 241

Basic Interaction Introduction · 241

Cursor Input · 241

Defining Cursor Shapes · 242

Defining Cursor Action Types · 243

Application · 243

ADVANCED USE OF 2D POLYGONS 245

Advanced Use of 2D Polygons Introduction · 245

Allocating Workspace for the Storage of Polygons · 245

Polygon Definition · 247
Polygon Identity · 249

Clearing Polygon Workspace · 250

Status of Polygon Workspace · 250

Drawing Polygon Boundaries · 251

Polygon Filling Workspace Requirements · 252
Hardware Fill Workspace Requirements · 252

Software Fill Workspace Requirements· 253

Example Calculations of Workspace Requirements · 253

Polygon Selection · 254
Polygon Selection Enquiry · 257

10

Filling a Polygon · 257

Interaction with Polygons · 261

Polygon Windowing and Masking · 261
Polygons Suitable for Windowing and Masking · 261

Workspace Requirements for Windowing and Masking of Filled Areas · · · · · · · · · · · · · · · · · · · 262

Windowing Requirements · 262

Masking Requirements · 262

Requirements for Simultaneous Windowing and Masking · 263

Example - Calculation of Fill Workspace Requirements · 263

Polygonal Windowing · 264

Polygonal Masking · 265

Windowing and Masking Polygon List Enquiry · 266

Windowing and Masking Control · 267

3D GRAPHICS 269

3D Graphics Introduction· 269
Shaded Objects · 270

The Scene · 270

3D Device Drivers · 271

The 3D World· 272

3D Viewport Mapping · 273

3D Clipping · 275
Enquiring 3D Window Limits · 275

3D DRAWING 277

3D Drawing Introduction · 277
3D Axes · 278

3D Start and End Pen Position · 278

3D Naming Conventions · 278

3D Positioning · 279

3D Straight Lines · 280

3D Polylines · 280
Shaded Polylines · 281

11

3D Polyline Sets · 282
3D Polyline Set Definition · 282

3D Arcs · 284
Direction Vector · 288

3D Spline Curves· 288
3D Spline Curve Control · 289

3D Bezier Curves · 290
3D Elevation and Reduction · 290

3D Polygons · 290
Overlapping Polygons · 291

3D Point Storage · 293

3D Interpolation · 294

FACETS 295

Facets Introduction · 295

Facet Definition· 296
Facet Faces · 296

Normals · 297

Textured Facet· 299

Coloured Facet · 299

Facet Attributes · 301
Facet Fill Style· 301

Facet Offset · 302

3D OBJECTS 305

3D Objects Introduction · 305
Local Axes System · 306

Object Complexity · 306

Object Shading · 306

Object Texture Mapping · 306

Shaded Polyline · 307

12

3D Primitives · 307
Boxes · 307

Wedges · 309

Cylinders and Cones · 309

Spheres · 310

Volumes of Rotation · 311

Surface Primitives · 312
Spline surface · 313

Bezier surface · 317

Tabulated Bezier surface · 320

Swept Bezier surface · 320

Ruled Bezier surface · 321

Bezier sphere · 322

Bezier volume · 323

LIGHTING AND SHADING 325

Lighting and Shading Introduction · 325
Shading · 325

Culling · 326

Blending · 326

Winding Rule · 327

Shading Enquiry · 327

Depth Buffering· 327

Lighting · 329
Light Sources · 329

Light Switch · 332

Default Lights · 332

Light Source Enquiry · 333

Light Usage · 333

Fog · 337
Fog Enquiry · 338

MATERIAL PROPERTIES 339

Material Properties Introduction · 339

Material Property Definition · 339
Colour Matching · 340

Material Table · 340

Facet Material Properties · 342

13

Translucence · 342

Shadows · 342

TEXTURE MAPPING 345

Texture Mapping Introduction · 345

Texture Mapping Modes · 345

Texture Mapping Data · 346
Multiple Texture Maps · 348

Tiling Images · 349

Texture Mapping Coordinates · 349
Direct Assignment · 350

Automatic Generation · 351

Environment Mapping · 353

3D Objects· 353

Texture Mapping Attributes · 354
Blending Textures · 354

Repeating and Clamping Images · 354

Filtering Textures · 355

Texture Border Colour · 357

Texture Mapping Enquiry· 358

3D TRANSFORMATIONS 359

3D Transformations Introduction· 359
Current Transformation · 360

Simple 3D Transformations · 360
3D Shifting · 360

3D Rotation · 360

Permutating the Axes · 362

3D Scaling · 363

3D Shearing · 364

Combining 3D Transformations · 364
Using the Same 3D Transformation Type· 364

Combining 3-D Rotations · 365

Using Different 3D Transformation Types· 367

14

3D Transformation Enquiry · 368
Finding the Current Drawing Position· 368

3D Untransforming · 368

Point Testing of Current 3D Transformation · 369

TRANSFORMATION CONTROL 371

Transformation Control Introduction · 371

View Transform Mode · 371

Transformation State · 372
Reinitializing · 372

Transformations Matrix Control · 375
Push and Pop Transformation Matrix · 376

Saving and Restoring Transformation Matrix · 376

Getting and Setting Transformation Matrix · 377

Modify Transformation Matrix · 377

Transformation Matrix Building · 378
Example showing Building and Combining Transformation matrices · 379

Transformation Enquiry · 381

Transformation Mode · 382

VIEWING 385

Viewing Introduction · 385

Useful Concepts · 386

From View Plane to Paper · 387

The Basic Viewing Routines · 388

Perspective Views of a Volume · 388

Perspective View from a Point · 393

Parallel Projection · 396

15

Setting Viewing Transformations · 398
Use of Superseded Routine· 399

Modifying the Drawing · 400
Re-specifying the View · 400

Positioning the Image · 402

Orientation of the Image · 402

Moving Eye, View Plane or both · 404
Zooming · 404

Moving Eye and View Plane · 405

Moving the Eye Alone · 407

Changing the Line of Sight · 410

Projections onto an Oblique Plane· 415

Saving and Restoring View Parameters · 416

Modifying the View Matrix · 417

Listings of the Routines used in this Chapter · 417

PICTURE SEGMENTS 423

Picture Segments Introduction · 423
Software Display File Storage · 426

Segment Building · 426
Segment Anchor· 427

Picture Segment Body · 430

Segment Manipulation · 430
Picture Segment Transformations · 431

Segment Enquiry · 432

Segment Redrawing and Repairing · 433

Segment Structures · 434
Copying · 434

Hierarchical Segment Structures · 434

Use of Modelling Transformations within Segments · 435

Segment Groups · 437

Implicit Segment Groups · 439

16

Light Pen Simulation · 439

Dragging · 440

Software Display Files Across Devices · 440

Archiving and Restoring Software Display File · 442

ADVANCED INTERACTION 447

Advanced Interaction Introduction · 447
Programming in a windowing environment · 449

Event Types · 449

Requesting Event Types · 450

Deleting Event Types· 450

Getting Next Event · 451

Reading Event Data · 451

Keys · 452

Event Generating Implements · 454

Event Programming · 454

Queues · 456

Mouse Position · 456

Keyboard State · 457

SYSTEM UTILITIES 459

System Utilities Introduction · 459

File and Directory Handling · 460

Time and Date Utilities · 463

17

Other System Utilities · 463
Command-line arguments· 463

Enquire User Name · 464

Environment Variable Settings · 464

System Command Execution · 465

Task Priority · 466

Sound System Speaker · 466

Random Number Generation · 466

String Handling · 467

ROUTINE SPECIFICATIONS 469

MACHINE IMPLEMENTATIONS 735

GENERAL · 735

UNIX · 736

OpenVMS · 737

Microsoft Windows · 738

DEVICE DRIVERS 739

Device Drivers Introduction · 739

Configuration File · 741

Dummy Device · 741

SCREENS AND WORKSTATIONS · 742
Output Filenames and Unit Numbers (Fortran only) · 742

Screen Driver Configuration Settings · 743

GLX OpenGL Extension to X · 743

Regis Series Devices · 752

VGA and SVGA PC Screens (LF90 only) · 755

Windows (Microsoft) System· 759
Using Windows Driver in Windows Programming Environment · 769

18

Windows OpenGL (Microsoft) System· 778
Using Windows OpenGL Driver in Windows Programming Environment · · · · · · · · · · · · · · · · · · 788

X Windows System· 790

PRINTERS AND PLOTTERS · 797
Output Filename and Unit Numbers (Fortran only) · 797

Printer and Plotter Configuration Settings · 798

Intermediate Vector File · 799

8-bit data· 799

Calcomp 907 Series Plotters· 799

Hewlett-Packard Series Plotters (HPGL) · 802

Hewlett-Packard Series Plotters (HPGL-2) · 806

Hewlett-Packard Laserjet Series Printers (HPLJ) · 809

Hewlett-Packard Paintjet and Deskjet Printers (HPPJ) · 810

DEC LA100 andLN03 Series Printers · 812

Postscript Series Printers · 813

METAFILES · 818
Output Filename and Unit Numbers for Metafiles(Fortran only) · 818

File Format · 819

Metafile Configuration Settings · 819

Computer Graphics Metafile (CGM) · 819

Drawing Exchange Format (DXF) Metafile · 824

Image File Formats (BMP, XWD, SUNRAS)· 825

JPEG File Interchange Format (JPG) · 827

PNG Portable Network Graphics (PNG) · 829

SAVDRA and SAVPIC Metafile · 830

Windows Metafile (WMF) · 833

19

FONT TABLES 835

Font Tables Introduction · 835

The Font Tables · 836

DEFAULTS 859

Defaults Introduction · 859

ERROR AND WARNING MESSAGES 867

Error and Warning Introduction · 867

GINO Errors and Warnings · 867

CGM Errors· 881

System Input and Output Errors · 888

Configuration File Errors · 889

GINO STRUCTURES 891

Structures Introduction · 891

CROSS REFERENCES 901

Cross References Introduction· 901

F77-F90 Cross-Reference · 901

F90-F77 Cross-Reference · 913

DEPRECATED ROUTINES 927

Deprecated Routines Introduction · 927

20

TECHNICAL INFORMATION 931

Homogeneous Coordinate Transformations · 931

2-D Transformations · 931
Null transformation · 931

Shifting· 932

Rotating · 932

Permutating · 932

Scaling · 932

Shearing · 932

2-D Matrices · 932

3-D Homogeneous Transformations · 933

Combining Multiple Transformations· 934

2-D Summary· 935

Extending 2-D Operations · 935

Perspective Transformations· 937

21

Chapter 1
INTRODUCTION

General Description

GINO stands for Graphical INput/Output. It is a graphics package that takes the

form of a library of 2D and 3D drawing and administrative routines and is

designed to offer implementation and device independent graphics facilities on a

wide range of machine platforms. GINO provides a common graphics interface to

all the widely available graphics hardware through its many device drivers, to

such an extent that in many cases changing one line of a GINO application is all

that is needed to enable the application to operate on a different graphics device.

GINO provides a base level of graphics functionality and associated with GINO

are a number of additional graphics libraries with specialist functionality in the

areas of graph drawing (GINOGRAF), surface and contour drawing

(GINOSURF) and the design of graphical user interfaces (GINOMENU). This

document details the use of the facilities available within GINO, and a full

specification of each routine available.

23

The association between the user application, GINO and its associated libraries is

shown in the diagram below:

GINO has been written to be able to control a wide range of graphics devices

from a single off-line pen plotter to a sophisticated 24 bit, 3D multi-window

networked display through a common routine interface.

This enables large and complex graphical applications to be written in a device

independent manner, so that the only step required when switching to another

graphics device (possibly in a completely different environment) is to notify

GINO of the new device name.

Facilities

GINO provides facilities for producing graphical output that can range from

two-dimensional graphs to complex three-dimensional interactive systems with

shaded models. Facilities are provided for:

24

Facilities INTRODUCTION

User Application

Operating System Libraries

Associate
GINO Library 1

Associate
GINO Library 2

GINO Library

User Application and GINO Libraries

• Nomination and device specific options

• Basic drawing (2D and 3D) both to position and to draw straight lines,

circular arcs, curve drawing, and multiple drawing routines

• Character output: software fonts, hardware font access, 1000+ symbols,

attribute control (angle, justification, italic, fill style, underline, weight, etc)

• Attribute control: colour definition models, visibility, line and fill styles

• Area fill with default or user-defined hatch styles, and solid fill styles

• Transforming and viewing objects, polygonal windowing and masking

• Picture segments: hierarchical structure and manipulation

• Cursor or mouse interaction and event handling

• CGM and proprietary metafiles

• Pixel rectangle read, write, and transformation control

• Surface Primitives and 3D objects

• Lighting, Shading and Texture mapping

Initializing GINO

The first call in a graphics application using the GINO library should always be

to initialize the library. This is performed by the routine:

gOpenGino()

This may occur anywhere in a user program but should precede all calls to other

GINO routines. If the call to gOpenGino() is omitted, what happens depends

largely on the computer system running the program but in most

implementations, the initialization will occur when the first GINO routine is

called, however GINO error 5 may be output, ‘GINO not initialized’.

The routine gOpenGino() should not be called after any other GINO routines

with the exception of gCloseGino(). When gOpenGino() is called, GINO is

re-initialized and all data previously defined is discarded.

25

INTRODUCTION Initializing GINO

When GINO is initialized, one of the first steps carried out by the library is to

check for the existence of a legal Configuration File and if this file does not exist

or does not have the correct licence information encoded within it, GINO will

immediately stop with an appropriate error message. In order to provided a

cleaner check on the existence of the Configuration file, an alternative

initialization routine is provided, returning a status flag through its single

argument. The routine is gEnqConfigStatus():

status=gEnqConfigStatus([cfgdir])

where status returns a value of 0 if a legal Configuration File has been located

and 1 otherwise. This can be useful in providing a user controlled abort

mechanism if the Configuration File does not exist. The optional argument cfgdir

can be used to set the location of the GINO configuration file if it is known to be

in a non-standard location. The function gEnqConfigStatus() must only be used

in place of a call to gOpenGino as it will re-initialize GINO if called anywhere

else.

Closing Down GINO

At the end of an application, GINO should be properly closed down through the

routine gCloseGino(). This contains an implicit call to gCloseDevice() to close

down the currently opened device.

gCloseGino()

The routines gOpenGino() and gCloseGino() should be used to open and close

the GINO part of a user program.

GINO States

When GINO is first initialized, it enters a state where a small number of

operations can take place. These include setting error and tracer operation,

initializing gDebug() and nominating a graphics device. GINO can exist in fact in

one of five states as shown in the diagram below. An application can enquire

which state GINO is in through the routine gEnqGinoState():

gEnqGinoState(gstate)

where gstate returns the state of GINO and all its associated libraries. The

structure member .gino contains the GINO state, in the range 1 to 5, and other

members of the structure indicate whether associated libraries are active or not.

26

GINO States INTRODUCTION

GINO will automatically move from one state to another through the calling of

certain routines, (eg. gCloseSeg() will move GINO from state 5 to state 4), while

some routines are only permitted while GINO is in a particular state (eg. Device

Qualifying routines are only permitted while GINO is in state 2). In some cases

GINO may move through a number of states by a single GINO routine (eg. a call

to gDrawLineTo2D() after device nomination will move GINO from state 2 to 5,

and a call to gCloseDevice() will move GINO to state 1 which ever state it was in

at the time).

27

INTRODUCTION GINO States

State 1

GINO Initialized

State 2

Device Nominated

State 3

Device initialized

State 4

Picture Started

State 5

Drawing

Open SegmentClose Segment

Nominate Device

Open GINOClose GINO

Close Device

GINO States

Use of External Files

Several GINO routines need to reference external files in order to either direct

graphics commands to a file, reading or writing metafiles or directing diagnostics

information. For historical reasons many of these routines require an identifier of

an already opened file.

Two routines are provided to open and close such files in a language independent

way:

file=gFopen(name,mode)

gFclose()

In the C interface, the function gFopen() returns a pointer to a special file

structure called ‘GFILE’, which is required by all the file handling routines in

GINO. The routine has the same arguments as the standard C routine fopen. The

file can be closed with the routine gFclose(). If a NULL pointer is used, standard

input or standard output is used as appropriate to the GINO routine.

When using the Fortran 90 interface, the function gFopen() returns an integer file

unit number of a file opened by the GINO library. This prevents the possible

problem of a file being opened by a GINO application (using the OPEN

statement) being unknown to the GINO library which can occur if the GINO

library is being used as a DLL.

The following example shows how to direct error/tracer output and PostScript

output to two named files within a GINO program:

C code

#include <gino-c.h>
GFILE *erfile
main()
{

gOpenGino();
/* open file for error and tracer output */

erfile = gFopen(“error.out”,"w");
gSetErrorFile(erfile);

/* nominate postscript driver */
gEps(1,0.0,0.0,297.0,210.0,297.0,210.0);

/* direct formatted output to file */
gSetDeviceFilename(“triangle.eps”,-1);

/* draw triangle */
triangle(20.0,20.0,25.0);

/* close device and file */
gCloseDevice();
gFclose(erfile);

}

28

Use of External Files INTRODUCTION

F90 Code

use gino_f90
integer erunit

call gOpenGino
! open file for error and tracer output

erunit=gFopen(’error.out’,GWRITE)
call gSetErrorFile(erunit)

! nominate postscript driver
call gEps(1,0.0,0.0,297.0,210.0,297.0,210.0)

! direct formatted output to file
call gSetDeviceFilename(‘triangle.eps’,-1)

! draw triangle
call triangle(20.0,20.0,25.0)

! close device and file
call gCloseDevice
call gFclose(erunit)
stop
end

Diagnostic Facilities

Output of Error and Warning Messages

GINO generates errors and warnings when it detects that something is wrong. A

fault is classed as an error if GINO is unable to perform some task or has to take

drastic action to remedy the situation, e.g. GINO error 1 - an attempt to output

something when no device is nominated, so GINO nominates DUMMY as the

default device-driver.

Warnings are displayed after less serious faults. GINO is able to carry on by

assuming a straightforward default and the warning is generated simply to inform

the user that this has happened, e.g.

GINO warning 46 - Negative colour index
Detected in call to gSetLineColour (LINCOL)

is generated when the colour index is set less than zero in a call to

gSetLineColour(), so GINO uses the absolute value. The message will specify the

GINO library within which the error was detected, the error/warning number,

some text to describe the fault, and an indication of the GINO routine that

detected the fault. The routine name listed is the F90 long name with the F77

short name in brackets. A complete list of GINO error and warning messages is

given in Appendix E.

29

INTRODUCTION Diagnostic Facilities

While error and warning messages are useful to indicate a possible problem in an

application, there may be reasons to switch off warnings and/or error messages

throughout, or at a particular place within an application. This can be achieved

through the following routine:

gSetErrorMode(switch)

where its argument sets the desired output state of either GON (the default) or

GOFF.

Error Limit

GINO keeps a count of errors and keeps a log of errors and warnings. When this

count exceeds a specified limit, GINO stops the program. The limit is set to 10

and the count is set to zero when GINO is initialized. A call to the following

routine allows the user to change the limit:

gSetMaxErrorLimit(n)

The limit can be disabled by setting n to -1. The count is reset to zero each time

gSetMaxErrorLimit() is called.

Trapping of Errors and Warnings

There is a straightforward way to trap the occurrence of any errors or warnings.

A call to gSetErrorTrap() enables or disables the trapping mechanism:

gSetErrorTrap(switch)

gEnqNumberOfErrors() may then be called to return the number of errors and

warnings counted since enabling error trapping:

gEnqNumberOfErrors(n)

gEnqNumberOfErrors() returns n = -1, if trapping is disabled. More information

about the errors and warnings that were trapped can be obtained by calling

gEnqLastErrors() (see below).

Enquiry of Errors and Warnings

GINO can store up to 12 error and warning numbers. If more than 12 have been

generated, GINO discards the oldest numbers. A call to gEnqLastErrors() will

return up to n numbers along with the total count of errors only:

gEnqLastErrors(list, n, count)

30

Diagnostic Facilities INTRODUCTION

The numbers are returned in integer array list, with the first element containing

the most recent one. Error numbers are positive and warning numbers are

negative. Any element of list that does not return a valid number is set to zero.

Routine Trace Facility

The routine trace facility outputs a message to identify each call made to a GINO

routine. It is switched on by calling the routine:

gSetTracerMode(switch)

with a non-zero argument. The argument allows different trace reporting, listing

the routine names of GINO and GINO’s application packages . The routine trace

facility is very useful for determining the exact sequence of calls to GINO

routines, or to any routines in the GINO application packages.

Output File for Error and Tracer Messages

By default, all error and trace messages are output on the systems default

standard output unit or standard error output unit for UNIX installations. Users

can direct error and tracer messages to a different external file using the routine:

gSetErrorFile(file)

where file is a pointer to a file opened through the gFopen() routine or a Fortran

90 file unit number.

DEBUG Utility

GINO provides a debug facility designed to assist the user in tracing bugs in

programs. It does not replace the actual device driver (MWIN, EPS, etc.) but sits

between the front-end and the device driver keeping track of the graphical

input/output generated by the user program. Nor does gDebug() affect the user

program in any way, it simply mirrors the calls to GINO routines in the user’s

program and outputs these to an external file.

gDebug(file, level)

where file is a pointer to a file opened through the gFopen() routine or a Fortran

file unit number and level controls the amount of information to output, i.e. the

level of trace.

31

INTRODUCTION Diagnostic Facilities

Debug output may be switched on and off during a program execution in order to

generate output at the desired section of code using:

gSetDebugSwitch(switch)

where switch = GOFF to switch Debug output off and GON (the default state) to

switch Debug output on.

The routine gDebug() must be called just before any device driver nomination

routine since a call to gCloseDevice() terminates the action of gDebug(). Note

that gDebug() itself also makes an implicit call to gCloseDevice().

This is demonstrated in the following example program:

C code

#include <gino-c.h>
int main()
{

GFILE *file;
GLIMIT rect={10.0.20.0,10.0,20.0};

file=gFopen(“debug”,"w");
gOpenGino();
gDebug(file,GEXTRA);
gMwin();
gMoveTo2D(0.0,0.0);
gDrawLineTo2D(50.0,50.0);
gSetLineColour(GRED);
gSetFillMode(GSOFT);
gFillRect(GCURRENT,GSOLID,&rect);
gCloseGino();
gFclose(file);

}

F90 Code

program debug
use gino_f90
integer :: file
type (GLIMIT) :: rect = GLIMIT(10.0,20.0,10.0,20.0)

file=gFopen(’debug’,GWRITE)
call gOpenGino
call gDebug(file,GEXTRA)
call gMwin
call gMoveTo2D(0.0,0.0)
call gDrawLineTo2D(50.0,50.0)
call gSetLineColour(GRED)
call gSetFillMode(GSOFT)
call gFillRect(GCURRENT,GSOLID,rect)
call gCloseGino
call gFclose(file)

stop
end

32

Diagnostic Facilities INTRODUCTION

Note that the output produced from the DEBUG utility lists routine names as per

the F77 short-name convention. Use the F77-F90 cross reference table in

Appendix G for converting to the appropriate long names.

Workspaces

At various times GINO needs to store information in memory. Normally these are

of a known size and can therefore be declared internally as arrays.

However, there are facilities in GINO which possibly require large amounts of

memory depending on the complexity of the users application. In such cases it is

not sensible for GINO to pre-assign space as it is impossible to predict the

requirement. These areas include polygon storage, area filling, internal point

storage and the software display file.

GINO therefore provides a mechanism for the user to allocate a single block of

memory for such purposes of a size defined by the user as required by the

application. In fact such an area MUST be allocated by the user if these facilities

are being used by an application program. GINO then provides a handler to

manage this area, allocating a smaller amount of memory as and when required.

However, it should be noted that the mechanism for allocating this workspace

differs in each of the C/C++ and Fortran 90 versions of GINO as described

below.

Management of Workspace Area

While the same routine gSetWorkspaceLimit() is used to allocate the size of the

workspace area in both the C/C++ and Fortran 90 versions of the GINO library,

the location of the storage area and the number of arguments to this routine differ.

gSetWorkspaceLimit(n1[,n2])

In the C/C++ library the workspace area is allocated via the standard library

routine malloc when gSetWorkspaceLimit() is called. The routine therefore only

requires a single argument giving the total memory requirement for the

workspace area:

gSetWorkspaceLimit(n1);

where n1 is the required size of the total workspace area.

33

INTRODUCTION Workspaces

In the Fortran 90 library the workspace area is allocated in an allocatable real

array. For historical reasons, two arguments are required, but only the second is

used:

call gSetWorkspaceLimit(n1, n2)

where n1 is ignored and n2 is the number of real words required in the

workspace area.

It is important to free (deallocate) this memory at the end of an application but

this is automatically achieved through the GINO routine gCloseGino().

Allocation of Workspace Area

For example:

C code

#include <gino-c.h>
main ()
{
/* Initialize GINO */

gOpenGino();
.
.

/* Define workspace area */
gSetWorkspaceLimit(6000);
.
.

/* Free allocated workspace */
gCloseGino();

}

F90 code

program work
use gino_f90

! Initialize GINO
call gOpenGino
.
.

! Define workspace area
call gSetWorkspaceLimit(1,6000)
.
.

! Free allocated workspace
call gCloseGino

stop

would define a workspace area of 6000 words.

34

Workspaces INTRODUCTION

As only a single block of memory can be allocated for the workspace area, its

total estimated size must be calculated before allocating the space. This can be

achieved through studying the following sections.

The space within gSetWorkspaceLimit() is used for a number of different

purposes and is allocated in continuous blocks as required and for as long as

required. Three routines are provided to the user for specific allocation of space

for polygon storage (gDefinePolygonWorkspace()), for internal point storage

(gDefinePointWorkspace()) and for the software display file

(gDefineSegWorkspace()) if this is required in memory. Other areas are allocated

and returned internally by GINO for temporary workspace for area filling.

The workspace handler does its addressing and word counting in real words. The

workspace area must be large enough for all the concurrent workspace needs of a

given program. For example, an application where polygons will be stored, a

software display file used and area filled, might have a workspace area which

would appear as shown below.

The total size of the workspace area depends upon the individual workspace

needs found by consulting the sections given in the table below.

Space Reference Section

Polygon Workspace ADVANCED USE OF POLYGONS

Polygon List ADVANCED USE OF POLYGONS

Polygonal Area Filling ADVANCED USE OF POLYGONS

Software/Hardware Area Fill ADVANCED USE OF POLYGONS

Polygonal Windowing / Masking ADVANCED USE OF POLYGONS

Segment Workspace SEGMENTS

35

INTRODUCTION Workspaces

Polygon

Workspace

Software

Display

File

Temporary

Workspace

for Hardware

or Software

Area Fill

Total Workspace

Example Organisation of the Workspace Area

Internal Point Storage Workspace 2D and 3D DRAWING

Areas allocated within gSetWorkspaceLimit() may be returned to the workspace

by calling the appropriate routine gDefinePolygonWorkspace() or

gDefineSegWorkspace() with an argument of 0.

The workspace area may be enlarged during an application program by calling

gSetWorkspaceLimit() with a larger size. (i.e. no information is ever moved

within the workspace). The workspace area cannot be reduced except by freeing

the total area (in which case all information stored within it is lost) and allocating

a smaller area.

Any workspace that has been allocated will be freed when GINO is closed

through gCloseGino().

Enquiring about the Workspace Area

The routine gEnqWorkspaceLimit() may be called to enquire about the

workspace area:

gEnqWorkspaceLimit(n [,n2])

Where n (and n2 in Fortran 90) returns the size of the workspace area as defined

by the last call to gSetWorkspaceLimit(). If gSetWorkspaceLimit() has not been

called, this routine returns zero in its arguments(s).

GINO Coordinate System

When a graphics device is first nominated, GINO defines a default paper

coordinate system which consists of the default drawing area measured in

millimetres with its origin at the bottom left corner of the drawing area. At this

point, the user may alter the paper (or drawing) units and drawing limits before

drawing commences (see page 39). The transformation between paper

coordinates and device coordinates is defined within the current device driver and

cannot be changed by the GINO programmer.

Once a device has been initialized, the user may define a viewport, which will set

up a mapping between picture coordinates and the devices’ paper coordinates

(see page 219). All drawing operations will then operate in picture coordinates.

The mapping may define any range of picture coordinates which are to be

displayed over a portion of the drawing area defined in paper coordinates. All

windows and masks are defined in picture coordinates. The viewport mapping

may be redefined at any point within an application. At this point the user is still

operating in a 2D coordinate system (although a notional Z coordinate can exist,

but is effectively ignored) but the origin may exist on or off the drawing area.

In order to operate in a fully 3D coordinate system, a modelling and/or viewing

transformation may be defined, setting up a new space (or world) coordinate

system (see page 359). All output primitive coordinates are then mapped to

picture coordinates (2D) through the current modelling and viewing

transformation matrices and then clipped to the current window, mask or

viewport boundary before being transformed again according to the current

viewport mapping.

Picture segment transformations, where appropriate take place between clipping

and viewport transformation (see page 423).

The pixel input and output routines (see page 189) operate in device coordinates

and are therefore completely independent of the GINO pipeline.

37

INTRODUCTION GINO Coordinate System

The figure below shows the GINO pipeline in a diagrammatic form.

38

GINO Coordinate System INTRODUCTION

GINO Pipeline

Chapter 2
GRAPHICS DEVICES

Graphics Devices Introduction

Before any input or output to a graphics device can take place the required

graphics device must be initialized. This chapter describes the means by which

this step is achieved and the various states in which a device can exist.

Device Drivers

GINO controls each graphics device by means of a common software interface

between the GINO library and a piece of software called a Device Driver.

Information is passed to and from the driver, which in turn carries out all

requested operations that it is able to achieve. Operations that the driver is unable

to perform are, in the majority of cases, carried out by the GINO library itself

through some form of emulation using a lower level graphics function. For

example, if a plotter driver is unable to hatch fill a complex polygon, GINO will

generate the required hatch lines and ask the driver to simply draw the lines in

2D. Equally if a 2D screen driver is asked to draw an object in 3D, GINO will

perform the transformations and pass the appropriate 2D coordinates to the

driver.

Each device driver is written as a separate piece of code which is either supplied

as a separate library from the GINO library itself or may be included within the

GINO library. They are also generally written to drive a number of devices

within a particular family of hardware devices (eg HPGL or POSTSCRIPT).

39

While a large range of devices can be controlled with GINO, only one device can

be addressed at any one time and may only do so once the selected device is

nominated. The operation of calling the device nomination routine establishes a

link between the GINO library and the required device driver through a routine

address plugging mechanism as shown below.

Device Class

There are four classes of output device that GINO is able to drive, each offering a

different level of sophistication and range of facilities:

Notional

One notional device driver is provided in the GINO library.

The DUMMY device driver provides the facility to run a GINO program without

generating any graphical output. It is useful for testing programs, for example,

when a graphics device is not available or when the non-graphical part of a

program is being developed.

40

Graphics Devices Introduction GRAPHICS DEVICES

User Program

GINO

Link Address

Device Driver

Communication Process

Device Processor
Device

System Interface

Device Driver Interface

User Interface

Device Driver Interface

Screens/Workstations

Screen and workstation device drivers provide the most sophisticated level of

facilities, all of which have input and output capabilities. Such devices include:

• OpenGL

• Windows API

• X-Windows

Plotters/Printers

Printer/Plotter device drivers only provide for output facilities which can be

directed to an on-line device or to a file for spooling later. Such device families

include:

• HPGL

• HPGL/2

• HPLJ

• HPPJ

• PostScript

Metafiles

Metafile device drivers also provide output only facilities but are stored in a

device independent format. Metafiles are further sub-divided into vector and

bitmap classes. Output from metafile formats can be read into many Word

Processing, DTP and Image Processing packages and many can also be read back

into GINO (see page). Metafile formats that can be produced by GINO include:

• BMP (Bitmap)

• CGM (Vector)

• DXF (Vector)

• JPEG (Bitmap)

• PNG (Vector)

• SAVDRA (Vector) [GINO proprietary]

• WMF (Vector)

41

GRAPHICS DEVICES Graphics Devices Introduction

2D and 3D Devices

GINO device drivers are further categorized into either 2D or 3D, depending on

their capability to be able to handle 3D facilities directly or not.

At present the vast majority of device drivers are 2D drivers, which means that

they operate in device coordinates. In many cases these are known as pixels

(addressable screen units), but they may be any other units as appropriate to the

device or device interface software. All 3D work (transformations, viewing etc.)

is therefore emulated by the GINO library and passed to the device in its local

coordinate system.

A 3D device is able to handle 3D coordinates directly (as well as lighting and

shading facilities) using their own firmware/hardware to correctly place objects

on the screen. In such cases the GINO routines used to define the required

mapping and transformation state, pass information directly to the device driver

bypassing much of GINO’s internal processing. A 3D device is also able to

handle 2D coordinates and pixel information by by-passing the modelling and

viewing stages, in the same manner that GINO does.

Device Nomination

The nomination of a graphics device is carried out by calling a device nomination

routine. Within each device driver library there are usually a number of

nomination routines (often known by the name of the device being nominated -

eg HP7475 within the HPGL family). A list of nomination routines is given in

Appendix B at the beginning of each device driver family.

Examples of nomination calls are:

gXwin();
gHplj3();

call gXwin
call gHplj3

which select the X Windows driver and the HPLaserJet III printer respectively.

It is essential that the correct nomination routine is called from within a family

device driver as each physical hardware device will require slightly different

control (ie. calling gHp7550() will not work correctly on an HP7475 etc.).

Some nomination routines require arguments which control various aspects of the

device which are outside the usual GINO control (resolution, position etc.).

42

Device Nomination GRAPHICS DEVICES

A device must be nominated before any input or output is carried out, otherwise

GINO error 1 will be output and no drawing takes place. With the absence of a

device nomination, a notional device called gDummy() is used by GINO.

Throughout this document, many example programs have ‘xxxxx()’ in place of

the device nomination routine. This should be replaced by a suitable nomination

routine as documented in Appendix B.

Device Defaults

Once a device has been nominated, GINO initializes two sets of attributes to their

default values. One set consists of GINO’s input and output attributes, such as

linestyle, hatch table, font style etc. and the second set consists of device specific

attributes, such as default paper size, drawing line thickness, character size etc.

Both sets are documented in Appendix D, with the device specific attributes

marked [DD]. A table at the start of each Appendix B document gives these

settings associated with the device driver or nomination routine as appropriate.

All of these settings can be enquired through the appropriate enquiry routine.

Device Attributes

Every device has a range of settings for many attributes or specific capabilities in

its feasible operation. These include maximum paper limits or number of colours

or whether it can do hardware thick lines, or polygon filling or dialogue area

control etc. It is often useful to be able to enquire these device capabilities within

an application so that different operations can be performed as appropriate. This

is achieved through the routine gEnqDeviceState():

gEnqDeviceState(devstate)

This routine returns the complete device state in a structure of type

GDEVSTATE. Details of the information returned by this routine can be found in

the Reference Section. The routine may be called at any time within a GINO

application to enquire device capabilities as some of the settings may be changed

through device qualification or other GINO routine calls.

Device Qualification

Immediately after device nomination, but before any drawing has started, the

currently selected device is in a special state whereby certain device defaults can

be changed. The settings are those that relate to the actual initialization of the

device, such as the opening of the window or defining of file output formats and

therefore cannot be changed after drawing has commenced. They include:

43

GRAPHICS DEVICES Device Qualification

Destination of graphical output gSetDeviceFilename()

Setting drawing units gDefinePictureUnits()

Setting drawing limits gSetDrawingLimits()

Setting device colour capabilities gSetColourInfo()

This set of routines are known as device qualification routines and in all cases

(except gSetDrawingLimits()) cannot be called once drawing has started. A

GINO error 9 will be generated if these routines are called at any other time.

Device Output Filename

In many cases, graphical output is sent from the program to a file which has a

default file name or unit number associated with it. The file name may be

changed within a program by using:

gSetDeviceFilename(filename, ntype)

where filename is a system dependent filename or pathname to which the device

output will be directed using an internally generated file unit. The argument

ntype provides additional information but which is machine dependent. Users are

referred to the Reference Manual for more information on the specific use of

these variables.

Drawing Units

When a device is nominated, the device driver defines a default physical drawing

area as appropriate to the nomination routine and GINO sets up a default

coordinate system with the drawing units set to millimetres. This means that the

default drawing limits represent an area measured in millimetres with its origin in

the bottom left corner of the paper, screen or window. This is known as the

default paper coordinate system.

Specification of Physical Units

It is possible, at the device qualification state, to select different drawing units by

using the routine:

gDefinePictureUnits(umils)

44

Device Qualification GRAPHICS DEVICES

Its argument, umils, specifies the number of millimetres in the new drawing

units. For example:

• To change units to metres - set umils to 1000.0.

• To change units to inches - set umils to 25.4.

The new drawing units, and its associated paper coordinate system, then remain

current for all drawing operations until a viewport is defined or a modelling

transformation takes place, after which a new picture or space coordinate system

is defined. The current paper units are always used, however, for the defining of

drawing limits (see below) and viewport mappings. As with other device

qualification routines, gDefinePictureUnits() may not be called after drawing has

commenced.

Different drawing units, may be selected for different graphics devices within the

same application, but the routine gSetViewport2D() is the preferred method of

defining the required mapping between the user coordinate system and the device

(see page 219).

Drawing Limits

Where the device has the possibility of variable window sizes or multiple paper

sizes, it is possible to alter these limits at the device qualification state, before

drawing commences. The routine to alter the drawing limits is:

gSetDrawingLimits(dim, type)

where dim is a structure with two elements (xpap and ypap) which define the

dimensions of the required drawing area and type defines a paper or drawing

type as relevant to the currently nominated device. The actual drawing limits can

never be greater than the maximum limits for the device.

The specification for each device driver in Appendix B gives details of the

default and maximum drawing limits for each nomination routine as well as

details of drawing/paper types that are available. It is possible at any stage in a

program, to request the current and maximum drawing attributes through the

following routines:

gEnqDrawingLimits(dim, type)

45

GRAPHICS DEVICES Device Qualification

and

gEnqMaxDrawingLimits(dim)

The default drawing orientation on printers and plotters is usually landscape

however this can be changed to portrait using the routines gEnqDrawingLimits()

and gSetDrawingLimits() setting the vertical dimension greater than the

horizontal:

C code

GDIM land_dim,port_dim;
gHpjlr();
gEnqDrawingLimits(land_dim,&type);
port_dim.xpap=land_dim.ypap;
port_dim.ypap=land_dim.xpap;
gSetDrawingLimits(port_dim,type);

F90 code

type (GDIM) land_dim,port_dim
call gHpjlr
call gEnqDrawingLimits(land_dim,itype)
port_dim%xpap=land_dim%ypap
port_dim%ypap=land_dim%xpap
call gSetDrawingLimits(port_dim,itype)

Obviously, immediately after device nomination, gEnqDrawingLimits() will

return the default drawing limits, whereas after a call to gSetDrawingLimits(),

gEnqDrawingLimits() will return the new current drawing limits and

drawing/paper type.

Unlike the other device qualification routines, gSetDrawingLimits() can be called

at any point within a GINO program. However, it will only take effect after the

next call to clear the drawing area at which point the new drawing area will take

on the size requested by gSetDrawingLimits() (see below).

Colour Capabilities

GINO is able to output to a wide range of plotters, printers and screen devices.

Colour variations can only be achieved within the limitations of the device and to

examine a device’s capability, use the following routine:

gEnqColourInfo(ndc, ndt)

will return the number of independently selectable colours/greyscales (ndc), and

the display type (ndt) of the currently nominated device.

46

Device Qualification GRAPHICS DEVICES

If it is a monochrome device, ndc and ndt will return zero. Positive values of ndt

indicate a colour display and negative values of ndc indicate a greyscale display.

For a fixed colour/greyscale display (ndt = � 1), ndc returns the number of

colours that can be selected with gSetLineColour(), but these cannot be changed

with gDefineRGB() etc.

For a static colour/greyscale display (ndt = � 2) or a dynamic colour/greyscale

display (ndt = � 3), the device has its own colour look-up table with ndc entries.

Colours are selected by index with gSetLineColour(), the entries of which can be

modified by index with gDefineRGB() etc. When defining colours, the result

may not be exactly what the user requested but it will be the closest

approximation possible given the limitations of the device. Because of the nature

of the colour look-up table on a dynamic colour/greyscale display, when a change

is made to a particular colour definition it will result in a change to all output

drawn previously (and still displayed) in that colour. This gives the facility for

instant colour switching.

Some devices will operate in direct colour (24 bit) mode (ndt = � 4), although

this is never the default mode of operation for GINO devices if more than one

mode is available. Under these circumstances there is no hardware colour

look-up table and colour is defined using specified red-green-blue components..

However, an application may continue to use colour indices as GINO maintains

its own colour look-up table which can be modified through gDefineRGB() etc.

(see page 205). Specific red-green-blue colour settings may also be defined using

the gTrueCol() function in conjunction with gSetLineColour() (see page 217). An

application can determine whether a device can operate in true colour mode by

enquiring the highest colour mode type through a call to gEnqDeviceState().

Note that all colour enquiries will return 24bit RGB triplets when operating in

direct colour mode.

GINO provides a facility to change the default device colour capabilities through

the routine gSetColourInfo():

gSetColourInfo(ndc, ndt)

This routine allows an application to increase or decrease the number of available

colour indices (ndc) within the devices maximum capabilities and/or increase or

decrease the colour mode (ndt) again within the devices maximum capabilities.

The limits being found through the routine gEnqDeviceState(). For example, an

application may limit the number of colour table entries required, leaving more

system resources for other applications, or it may set the device into true colour

mode (ndt=4) for full 24bit colour work.

GRAPHICS DEVICES Device Qualification

47

Device Initialization

Once the device qualification steps have been performed (if necessary), the next

input or output operation requested by the GINO application will initiate an

initialization of the graphics device that has been nominated. This will involve

the opening the output stream to which the device is connected or opening the

output file to which the graphics commands are being sent and sending the

necessary commands to initialize the graphics device and set it to a known

initialized state. (Enquiry routines do not force device initialization).

It is not until this point that any communication takes place with the device or

file, or the graphics screen or window is activated. After the initialization of the

graphics device has taken place, the actual input or output operation is then

carried out, followed by the rest of the graphics operations of the application. The

current graphics device remains active until a request is made to close or suspend

it.

New Drawing

During the activation of a graphics device, output may be divided into a number

of ‘drawings’. Each one can be seen as a set of output primitives separated by a

request to start a new drawing. The routine to start a new drawing is:

gNewDrawing()

The effect of this routine depends on the type of device being used. On graphical

displays the screen is erased while on plotters or printers, fresh paper is loaded or

wound on.

The request to start a new picture is not actually carried out at the exact time the

routine is called within an application. In fact, on printing devices, if no drawing

has taken place prior to the call, no action is taken at all by this routine. The

delay also allows an application to redefine the drawing limits for the new picture

using the routine gSetDrawingLimits(). However, on window devices the action

at gNewDrawing() also takes into account any changes made by the user of the

application in resizing the active window. Thus, if the application user has

resized the window, this takes priority over a programming call to

gSetDrawingLimits(). It is therefore essential to always enquire the actual

drawing limits after a call to gNewDrawing() using the routine

gEnqDrawingLimits() when using a window device.

48

Device Initialization GRAPHICS DEVICES

In addition to possibly redefining the drawing limits, the routine gNewDrawing()

also resets the current drawing position to 0.0,0.0,0.0. All other drawing

attributes and states are maintained.

Device Dependent Routines

In addition to the standard device independent input and output facilities of

GINO, there are a number of device specific facilities available to the user of

GINO, such as batch modifications or access to auxiliary drawing areas. These

are provided through standard library routines, but the routines may have

different effects on different devices. Routines that are not applicable to the

currently selected device have no effect (e.g. the selection of alpha-numeric mode

is ignored on window devices).

Emptying the Graphics Buffer

GINO buffers the graphical information before transmission to the output device.

This has the effect that some output may not appear at the same time as the

generating routine is called. It may be desirable to force the emptying of this

buffer prior to some numerical processing to ensure the graphics display is

completely up to date. The routine gFlushGraphics() can be used for this purpose.

gFlushGraphics()

Auxiliary Drawing Areas

Where a device has the facility of multiple drawing areas in the form of memory

planes or display windows as in a windowing system, GINO provides device

independent routines for the opening, closing and selection of these as part of a

multi-windowing application. In most windowing systems, auxiliary drawing

areas are grouped in pairs as each visible drawing area or window usually has an

associated invisible memory copy or backing store of the same size. This area is

used to update the visible part of the drawing area or window if any portion

becomes exposed as a result of the re-sizing or re-positioning of other windows.

Therefore, a windowing device driver such as X Windows or Microsoft Windows

will automatically create two drawing areas which are identified as area zero (the

display) and one (the backing store).

Additional drawing areas may be opened using the following routine:

gOpenAuxDrawingArea(idn, title, xp, yp, width, height)

and depending on the value of the identifier idn, are deemed visible or invisible.

49

GRAPHICS DEVICES Device Dependent Routines

All new even numbered areas (2+) are deemed visible and will automatically

generate an invisible area of the same size with an identifier of idn+1. These will

operate in the same manner as the default drawing areas 0 and 1. All new odd

numbered areas (3+) are deemed invisible and will not have an associated visible

area. The title and origin arguments are only used for even numbered (visible)

drawing areas. You cannot open an invisible area if a visible one of identifier

(idn-1) already exists or vice-versa.

Auxiliary drawing areas may be closed and therefore removed using:

gCloseAuxDrawingArea(idn)

The closure of a visible drawing area (even numbered) will automatically remove

its associated backing store (idn+1).

The default drawing area for all devices is identifier 1, but GINO’s output may be

directed to any opened drawing areas through the routine:

gSelectDrawingArea(idn)

As with the default drawing area, it is recommended that all drawing is directed

to the backing store (invisible part) of a visible drawing area. This will ensure the

visible part of the display is kept up-to-date by the Window Manager. It is

possible, however, to direct output to the visible part only, which may offer faster

display speeds but suffer display loss if a portion of the drawing area becomes

covered and then exposed. The selection of the invisible part (backing store) only

is offered through the routines gStartBatchUpdate()/gEndBatchUpdate().

Where output is directed to an invisible drawing area (ie. with no visible part),

this can only become visible by copying rectangular regions from this area to

another drawing area using the routine gCopyPixelArea() (see page 189). This

facility may be useful for animation sequences where picture segments are stored

on an invisible drawing area, to be copied at speed to a visible drawing area.

Batch Modifications to Display

The routines gStartBatchUpdate() and gEndBatchUpdate() may be used on some

devices to begin and end a batch of modifications to the display surface or

hardware display file. Users should refer to Appendix B to see whether or not

these routines can be used on a particular device.

gStartBatchUpdate()

gEndBatchUpdate()

50

Device Dependent Routines GRAPHICS DEVICES

When gStartBatchUpdate() is called no further drawing primitives are sent to the

display surface, but are batched up in the display file or backing store. When

gEndBatchUpdate() is called the display surface is updated with the contents of

the display file or backing store. gStartBatchUpdate() contains an implicit call to

gEndBatchUpdate().

The process of storing and releasing drawing primitives from a backing store is

called double buffering. On certain devices the time to update the drawing

surface using gEndBatchUpdate() is noticeably shorter than the time it takes for

all the drawing primitives to be processed individually. The double buffering can,

therefore, improve real-time display.

Alphanumeric Mode

Many graphics devices have separate windows or planes for graphics and alpha

modes where GINO graphics is directed to the graphics area and standard C/C++

or Fortran I/O and GINO error and tracer messages are directed to the alpha area

or text window. While standard I/O is not recommended for a complete working

application, the user should switch to alphanumeric mode before using such

facilities. The routine to switch to alphanumeric mode is:

gSetAlphaMode()

GINO will switch to graphics automatically when required.

Window visibility

The visibility of the dialogue and graphics areas can be changed with the

routines:

gSetDialogueVis(diavis)

gSetGraphicsVis(gravis)

where diavis or gravis may be set to either GINVISIBLE or GVISIBLE. The

visibility state of a dialogue or graphics area may be used on some systems to

place the appropriate window to the front (GVISIBLE) or back(GINVISIBLE) of

the stack of visible windows.

51

GRAPHICS DEVICES Device Dependent Routines

Device Titles

The routine gSetDeviceTitle() provides a means to define a device title or banner

as appropriate to the currently nominated device.

gSetDeviceTitle(title)

This routine can for example be used to set a window title or banner.

Device Release and Suspension

When graphical output to a device is complete it should be terminated by

releasing the device. This is done by calling the routine:

gCloseDevice()

If a new device is nominated, any previously nominated device is first released.

A program should include at least one call to gCloseDevice() since its omission

may leave the device in an undesirable state. After a device has been released,

further pictures cannot be defined until another device is nominated.

Graphics output to a device can be suspended by the routine:

gSuspendDevice()

This allows an alternative device to be nominated without completely closing or

resetting the original device. If such a device is then re-nominated, the device

driver may omit part of the initialization phase (eg resetting hardware colour

tables etc) allowing output to continue to the same display area without affecting

visualization (see page 52).

Using Multiple Devices

Whilst it is not possible to draw to more than one device simultaneously, it is

often the case that an application will require to put graphical output onto more

than one device in a sequence. The most usual example of this is when a copy of

the graphics is required on a printer, plotter or metafile.

The process of exporting graphical output onto a secondary device involves the

following steps:

1) Nominate screen device

2) Draw objects

52

Device Release and Suspension GRAPHICS DEVICES

3) Close or suspend screen device

4) Nominate plotter, printer, metafile device

5) Set up appropriate mapping/scaling

6) Redraw required objects

7) Close printer, plotter, metafile device

8) Re-nominate screen device (if required)

Where a simple copy of the graphics is required on a printer, plotter or metafile,

it would be usual to close the screen device (using gCloseDevice()), nominate the

required hard copy device and then close this device at the end of the application

(again using gCloseDevice()).

In a more sophisticated application, the process of drawing to the screen,

selecting a print option and going back to the screen may be carried out a number

of times. In this case it would be usual to suspend the screen device (using

gSuspendDevice()) before nominating the plotter, closing the plotter device on

each cycle and closing the screen device at the end of the application.

Mapping to the Second Device

An important consideration when outputting to more than one device is the

mapping of your graphics to fit what may be different sized drawing areas on the

plotter, printer or metafile. This is especially true if the printer output may be

directed to A4 and/or A3 paper on different occasions. The situation may be

further complicated if the orientation of the plotter device does not match that of

the screen.

There are a number of different methods to cater for this situation:

1) Modify the drawing units (gDefinePictureUnits())

2) Set up an appropriate viewport (gSetViewport2D())

3) Manually scale/rotate the output using GINO transformations

(gScale2D()/gRotate2D())

Each method has its advantages and disadvantages.

53

GRAPHICS DEVICES Using Multiple Devices

Saving and Restoring GINO State

It should be noted that the process of nominating a new device has the effect of

resetting all current GINO and device attributes to their default settings.

Therefore if an application has set up various broken line and/or hatch styles etc.,

these are all lost when the new device is nominated. For the simple application

these can perhaps be re-defined for the secondary device, and again when

re-nominating the screen device. However, GINO, provides a means to save and

restore all these attributes through the following routines:

gSaveGinoState()

gRestoreGinoState(map)

When gSaveGinoState() is called, all the current attributes, and output tables are

saved in a temporary scratch file to be restored when gRestoreGinoState() is

called. The argument map in gRestoreGinoState() determines whether the saved

device limits are mapped to the current device limits. Multiple calls to

gSaveGinoState() will store the attributes on a stack to be restored in the reverse

order in which they were saved.

The following example shows the use of these routines and also shows the steps

required to output to a plotter, printer or metafile device.

C code

#include gino-c.h>

gOpenGino();
Screen();

/* Define line styles, hatch tables etc. */
gDefineLineStyle(...

/* Save gino state twice */
gSaveGinoState();
gSaveGinoState();

/* Output graphics */
Output();

/* Suspend screen device */
gSuspendDevice();

/* Nominate plotter */
Plotter();

/* Restore GINO state (mapped to plotter limits) */
gRestoreGinoState(GMAPPED);

/* Output graphics */
Output();

/* Re-nominate screen */
Screen();

/* Restore gino state */
gRestoreGinoState(GABSOLUTE);

/*

54

Using Multiple Devices GRAPHICS DEVICES

F90 Code

use gino_f90

call gOpenGino
call Screen

! Define line styles, hatch tables etc.
call gDefineLineStyle(...

! Save gino state twice
call gSaveGinoState
call gSaveGinoState

! Output graphics
call Output

! Suspend screen device
call gSuspendDevice

! Nominate plotter
call Plotter

! Restore GINO state (mapped to plotter limits)
call gRestoreGinoState(GMAPPED)

! Output graphics
call Output

! Re-nominate screen
call Screen

! Restore gino state
call gRestoreGinoState(GABSOLUTE)

!

Note that gSaveGinoState() is called twice before nominating the plotter, in order

to save two copies of the current GINO state. The first restoration (carried out

after the plotter is nominated), specifies that the saved drawing limits are to be

mapped to the new plotter limits. This sets up an appropriate viewport which

ensures that the output on the plotter contains all the output on the screen. The

second restoration is carried out once the screen device is re-nominated to ensure

it is restored to the same state as before the plotter nomination.

Duplicating Output

There are no automatic procedures in GINO to duplicate the output generated on

a screen device to be sent to the desired printer/plotter. This is because it is

necessary, by some means or other, to re-issue the drawing commands on the

selected output device, and for the reasons stated above these may not be the

same dimension or orientation as that on the screen. It may also be desirable to

highlight parts of a drawing differently on monochrome output than on a colour

screen.

It is therefore the responsibility of the application writer to re-draw (with or

without modification) the required output onto the printer/plotter using GINO

drawing routines.

55

GRAPHICS DEVICES Using Multiple Devices

The simplest method of easing this task is to put all the drawing commands into a

separate routine, so that it may be called when the screen or plotter device is

nominated (as shown in the example above).

A more sophisticated method is to store the output into one or more picture

segments which can then be redrawn on the new device. This facility is described

later in the document (see page 423).

56

Using Multiple Devices GRAPHICS DEVICES

Chapter 3
IMPORTING AND EXPORTING

Importing and Exporting Introduction

An extension to the process of simply generating graphics using the GINO

library, is the issue of generating the right graphics for importing into Word

Processing, DTP or image processing packages and importing graphics into

GINO applications.

The wide range of metafile formats that are available often makes the selection of

the appropriate one even more difficult. This section outlines the different

formats that GINO can handle, their advantages and disadvantages, hopefully

making the choice easier.

This section also covers the necessary steps that need to be taken to duplicate

graphics that has been displayed on some interactive device or screen, out to an

appropriate metafile or printer device.

Overview

The process of importing and exporting graphics is achieved through metafiles.

These are files that store graphical information in a published format that are

generated and/or interpreted by graphics software such as Word Processing,

Image Processing packages or WEB browsers. The GINO library can generate a

number of different metafile formats and can interpret a smaller set. GINO does

not claim to handle large numbers of metafile formats as there are a number of

widely available packages that can read, convert and export a wide range of

formats that GINO users can use.

57

Metafiles are divided into two classes, those that store the graphical information

as a bitmap (i.e. A finite number of ‘pixels’ of information representing a

rectangular drawing area), or as a vector format (containing the lines and

characters etc. that make up the picture). Bitmap formats are often compressed to

save space but vector formats are usually the more complex and can store

additional information including data and images.

In addition to the external metafile formats that GINO can handle, GINO has its

own proprietary format called SAVDRA which is included in the summary

below.

Metafile Formats

There are many advantages and disadvantages for using a particular type of file

format when exporting GINO output to a word-processor or DTP package.

Choosing one format over another may result in smaller file sizes, better

capabilities such as a greater number of colours or fonts, or provide the ability to

‘edit’ the graphics once it has been imported.

BMP

BMP files are image files and are therefore more suited to image handling

packages. GINO only handles the uncompressed BMP format resulting in fairly

large files on creation, but GINO does generate and interpret both colour indexed

and true colour formats of BMP file. The size of the imported image is

determined by the call to gSetDrawingLimits(), so ensure that

gSetDrawingLimits() is called matching the size of the GINO picture. Keeping

gSetDrawingLimits() to the correct size, also keeps the file size to the minimum

possible.

Note that BMP files are created using the gImage() driver as detailed in

Appendix B, however shaded 3D images using OpenGL are exported to BMP via

the gWogl() driver.

CGM

The CGM standard provides for three encodings - character, binary and clear

text, the first two of which can be generated and interpreted within GINO.

Users of CGM are referred to the functional specification and encodings of the

standard as published by BSI or ISO. Four documents are available:

Functional Specification BSI 6945(1) ISO 8632-1

Character Encoding BSI 6945(2) ISO 8632-2

58

Metafile Formats IMPORTING AND EXPORTING

Binary Encoding BSI 6945(3) ISO 8632-3

Clear Text Encoding BSI 6945(4) ISO 8632-4

CGM metafiles are acceptable to many other software systems and so pictures

may be transferred between different vendors’ packages, but as there are many

different encodings not many systems generate or interpret all of them. The

Binary encoding is more efficient for time and file space requirements on all

systems that use it.

CGM files are vector-format files. Up to 255 colours are supported but only one

font is available.

File size is quite small and most packages can only read Binary Integer format

(gCgmbi()). The size of the picture is automatically detected by the importing

program, so gSetDrawingLimits() accuracy is not important.

DXF

DXF files are vector files originally developed for AutoCAD. File sizes are very

big and the format does not include many hardware features. DXF files include

an image size header calculated from the default paper size or a call to

gSetDrawingLimits(). Ensure that this matches the size of the GINO picture as

this is used to scale the image in the importing program.

EPS (Encapsulated Postscript)

EPS files generated from GINO are vector-format files. GINO does not include

an image header in the file but most packages do not now require one. (If one is

required, the image will not appear on the screen and the graphics will only print

on a Postscript-compatible printer. The recommended EPS routine to use is

gEpsexp() which provides a default orientation of portrait. (The other Postscript

nomination routines assume a default of landscape).

The GINO Postscript file contains the size of the image in a BoundingBox

comment and this is used in the importing program to display the correct size of

image. By default, the BoundingBox value is calculated automatically by the

GINO driver and is placed at the end of the file. Some filters however, require the

BoundingBox value to be at the start of the file and this can be achieved by

setting the iprop(3) parameter in gEpsexp() accordingly (See Page 816).

Postscript’s advantage is its universal acceptance and the availability of many

fonts, giving the most professional appearance in most cases.

59

IMPORTING AND EXPORTING Metafile Formats

ICO

Windows Icon files are a particular type of image file that is usually restricted to

16x16 or 32x32 pixels. GINO can import these files but not create them.

JPEG

JPEG is a standardized compression method for full-colour and grey-scale

images. JPEG is intended for compressing “real-world” scenes. Line drawing,

cartoons and other ‘non-realistic’ images are not its strong point. JPEG is lossy,

meaning that the output image is not exactly identical to the input image. The

amount of lossyness can be controlled by a quality setting, with low quality

giving very high levels of compression. JPEG files are accepted by all common

Web browsers.

PNG

PNG (Portable Network Graphics) is an extensible file format for the lossless,

portable, well-compressed storage of raster images. PNG provides a patent-free

replacement for GIF and can also replace many common uses of TIFF.

Indexed-colour, grayscale, and truecolor images are supported, plus an optional

alpha channel.

PNG is designed to work well in online viewing applications, such as the World

Wide Web, so it is fully streamable with a progressive display option. PNG is

robust, providing both full file integrity checking and fast, simple detection of

common transmission errors.

SAVDRA

SAVDRA is GINO’s proprietary metafile format and is designed to match the

functionality of GINO catering for all the features of the package. The format

consists of fixed length records of ASCII printable characters permitting easy file

transfer from one GINO system to another.

Two different forms of SAVDRA metafile exist, one for storing complete

drawings (gSavdra()) and one for storing graphical elements or components in

the form of a library (gSavpic()).

In general, gSavdra() is used for storing complete drawings that might be

subsequently exported to a number of different hard copy devices. Alternatively,

it can be used to enable drawings to be produced a number of times on different

devices. In addition, it may be used to generate a drawing on one machine and to

produce a graphic output on another.

60

Metafile Formats IMPORTING AND EXPORTING

The alternative form, gSavpic() is designed to store picture segments for

subsequent use as library objects (see page 423). In this form, global information

such as line and hatch styles are not stored in the file and the segments consist of

graphical primitives that can be adapted to the application that uses them.

WMF

WMF files are vector files and are amongst the smallest. Some fonts are available

but appearance may be a problem if fonts are substituted by the import program.

The size of the imported image is determined by the parameters in the

nomination routine therefore ensure that these match the size of the GINO

graphics as close as possible.

XWD

These are image dumps used on Unix systems supporting X windows. Normally

the files are created using the Unix command xwd and read in using the

corresponding command xwud (X Windows UnDump). GINO’s XWD metafiles

can be read into third party applications or displayed on the X terminal or screen.

Summary

Below is a summary of image file types:

Metafile Class GINO Export/Import

BMP Bitmap Export & Import

CGM Vector Export & Import

DXF Vector Export

EPS Vector Export

ICO Bitmap Import

JPEG Bitmap Export & Import

PNG Bitmap Export & Import

SAVDRA Vector Export & Import

WMF Vector Export

XWD Bitmap Export & Import

61

IMPORTING AND EXPORTING Metafile Formats

Exporting Metafiles from GINO

Metafiles are created in GINO in the same way that graphics is drawn to any

graphics device. In other words, the appropriate metafile driver is nominated

through the device nomination routine, an external file name is assigned, the

drawing is done and the device is closed (see page 39).

For example, to create a BMP file the following code would be used:

gBmp();
gSetDeviceFilename

(”example.bmp”,0);
/*

Do Drawing
*/
gCloseDevice();

call gBmp
call gSetDeviceFilename &

(’example.bmp’,0)
!
! Do Drawing
!
call gCloseDevice

If a file name is not assigned, a default name of BMP.OUT is created, where the

prefix of the file name is the same as the nomination routine name. It is better

practice to assign a name with the appropriate suffix (e.g. example.bmp) as most

window systems will give the resulting file an appropriate icon and enable the

file to be viewed by any installed metafile viewing packages.

Details on the specifications of the GINO drivers for all the metafile formats can

be found in Appendix B.

Metafiles into External Packages

The following table indicates which packages can read metafiles generated from

GINO and gives hints on either how to read the file in, what to expect visually

and what can be done to the picture once read in. The packages that support

editing of the graphics handle editing in different ways; either the picture may

need to be read in as a drawing, the picture may need ‘ungrouping’ after being

read in or the picture may simply require double-clicking to go into edit mode.

Consult the package documentation for more details on this.

The table also lists the recommended GINO nomination routine together with a

rough guide on file size comparisons. The example filesizes were all generated

from exactly the same GINOGRAF program containing a mixture of polygon

fills, hardware text, software text, lines and arcs.

62

Exporting Metafiles from GINO IMPORTING AND EXPORTING

BMP CGM DXF EPS WMF JPG PNG

Recommended routine: gBmp() gCgmbi() gDxf() gEpsexp(...) gWmfp(...) gJpeg() gPng()

Example filesize: 692K 40K 745K 36K 30K 61K 14K

Package

Adobe PageMaker V5.0 � No � �[1,6] � � �

Adobe Photoshop V5.0 � No No � No � �

Borland Delphi v6.0 � No No No � � No

CorelDraw V9.0 � �[10] � �[2] � � �

Corel Ventura V8.0 � �[10] � �[2] � � �

Corel WordPerfect V9.0 � � � � �[7] � �

Lotus Freelance v9.6 � �[3] � No � � No

Lotus WordPro v9.6 � No No �[1,6] � � �

Lotus 1-2-3 v9.6 � �[10] No No � � No

Microsoft Word V6.0 � �[5][10] No �[1,6] � No No

Microsoft Word 2000 � �[5][9] No �[1,6] � � �

Microsoft Excel 2000 � �[5][9] No �[1,6] � � �

Microsoft Internet
Explorer 6.0

No No No No � � �

Microsoft Powerpoint
2000 � �[5,9] No �[1,6] � � �

Netscape Navigator
V3.03 (OpenVMS)

No No No No No � No

Netscape Communicator
V4.5 (UNIX)

No No No No No � �

Netscape Communicator
V6.2 (Windows)

No No No No No � �

Paint Shop Pro V6.0 � �[4][10] � � � � �

Quark Xpress V4.0 � No No �[1,6] � � No

Visual Basic V6.0 � No No No � � No

Visual Studio .NET 2002 � No No No � � �

[1] Picture doesn’t show up on screen but will print to a Postscript printer

[2] Loads using the interpreted EPS filter only

[3] Multi-polygons are not drawn (This shows up with polygonally filled characters as well)

[4] Colours may be displayed wrongly due to a limited fixed palette

[5] The image does not appear if a gNewDrawing() is at the beginning of the GINO program

[6] Use iprop(3) in gEpsexp() to move the Bounding Box comment from the bottom to the top

[7] Hardware fonts may not show correctly

[8] Must check box “Make Postscript Object” or “Create a Postscript Object” when importing

[9] Cell arrays (pixel data) only displayed if the cell has < 2048 pixels and when interpreting char. encoded files (gCgmchi)

[10] Cell array and pixel images are not displayed

63

Chapter 3:IMPORTING AND EXPORTING Metafiles into External Packages

Importing Metafiles into GINO

GINO can handle the import of several types of metafile; its own proprietary

SAVDRA metafile, CGM character and binary encodings and a number of image

metafile formats.

In all enquiries and interpretations of SAVDRA and CGM metafiles, the

appropriate routines require a file unit or pointer which identifies the external file

itself. This is obtained through use of the gFopen() function which opens the

desired metafile (see page 28).

For example, where an enquiry is to be made on the SAVDRA metafile,

‘picture.sav’, the following code is required to open the file:

GFILE *file;

file=gFopen(“picture.sav”,"r");

integer file

file=gFopen(’picture.sav’,GREAD)

SAVDRA Metafile

As described in the above section, the SAVDRA metafile can be used to store

complete drawings (using gSavdra()) or a library of picture elements (using

gSavpic()).

Being proprietary to the GINO library a number of facilities are available in the

GINO library to enquire information about a SAVDRA file and to interpret its

contents.

SAVDRA Enquiries

In order to find the drawing limits of an existing SAVDRA metafile, the routine

gEnqSavdraDimension() is provided:

gEnqSavdraDimension(file, type, dim)

where file is a pointer to a GINO file unit opened by gFopen() (see above) from

which the file is read, type returns the type of metafile (1=SAVDRA, 2=SAVPIC)

and dim contains the limits of the positive quadrant of that file.

64

Importing Metafiles into GINO IMPORTING AND EXPORTING

In order to enquire information about segments within a SAVDRA metafile, two

routines are provided:

gEnqSavdraSegList(file, list, n, icount)

gEnqSavdraSegAttribs(file, nseg, att)

where file is the opened file unit. The routine gEnqSavdraSegList() returns a list

of segment numbers that are contained in the metafile and the routine

gEnqSavdraSegAttribs() returns the segment attributes of an individual segment

nseg in the metafile. The information is returned in a structure of type GPICATT

which includes whether the segment exists, its anchor position and other

attributes.

In all cases, the file is then rewound ready for interpretation as required.

SAVDRA Interpretation

SAVDRA code is interpreted using the routine:

gGetDrawing(file, nseg, mode, paper)

where file is a pointer to a GINO file opened by gFopen() or a Fortran 90 file unit

(see page 28) from which the code is to be read and nseg specifies the picture to

be drawn. If nseg is -1, all the pictures in the file will be drawn. The values of

mode and paper enable the code to be interpreted in different ways to satisfy the

individual requirements.

For the ‘quick look’ facility, generally mode would be GMAPPED and paper

=GPROGRAM. The output would then be drawn to utilize as much of the

drawing area as possible. For the final production of the output, mode would be

GABSOLUTE and paper=GPROGRAM.

Similarly for exactly reproducing drawings on a number of devices and/or

machines, the combination of mode = GABSOLUTE and paper = GMETAFILE

would be used. If the code were to be used as part of a layer drawing and

combined with output from other programs mode = GTRANSFORMED and

paper = GPROGRAM would probably be used.

Modes GABSOLUTE, GMAPPED and GTRANSFORMED reproduce only

those parts of the drawing that were drawn on the positive quadrant of the

SAVDRA device. Mode GWHOLE reproduces the entire SAVDRA drawing (-ve

and +ve quadrants) uniformly scaled to fit within the current clipping limits.

65

IMPORTING AND EXPORTING Importing Metafiles into GINO

Consider for example the following program for producing a file containing the

code for defining a 10mm square on a drawing area of 200mm x 200mm.

static GDIM paper =
{200.0,200.0};

gSavdra();
gSetDrawingLimits(&paper,0);
gOpenSeg(4);
gMoveTo2D(0.0,0.0);
gDrawLineTo2D(10.0,0.0);
gDrawLineTo2D(10.0,10.0);
gDrawLineTo2D(0.0,10.0);
gDrawLineTo2D(0.0,0.0);
gCloseDevice();

type (GDIM) :: paper = &
GDIM{200.0,200.0}

call gSavdra
call gSetDrawingLimits(paper,0)
call gOpenSeg(4)
call gMoveTo2D(0.0,0.0)
call gDrawLineTo2D(10.0,0.0)
call gDrawLineTo2D(10.0,10.0)
call gDrawLineTo2D(0.0,10.0)
call gDrawLineTo2D(0.0,0.0)
call gCloseDevice

For a ‘quick look’ on a PC Windows screen, the following program with

mode=GMAPPED could be used:

GFILE *file;

file=gFopen(“box.sav”,"r");
gMwin(Inst,hPrevInst);
gGetDrawing(file,4,GMAPPED,

GPROGRAM);
gCloseDevice();

integer :: file = 11

file=gFopen(’box.sav’,GREAD)
call gMwin
call gGetDrawing(file,4,GMAPPED,&

GPROGRAM)
call gCloseDevice

A scaling factor would be produced to ensure that the 200mm x 200mm drawing

area would fit onto the PC Window, whose size would vary according to the

resolution and monitor size. In other words the 10mm square would no longer be

10mm.

To reproduce the drawing on a plotter the following program with mode =

GABSOLUTE could be used:

GFILE *file;

file=gFopen(“box.sav”,"r");
gHp7475();
gGetDrawing(file,4,GABSOLUTE,

GMETAFILE);
gCloseDevice();

integer file

file=gFopen(’box.sav’,GREAD)
gHp7475
call gGetDrawing(file,4, &

GABSOLUTE,GMETAFILE)
call gCloseDevice

This requests a drawing area of 200mm x 200mm and draws a 10mm square; in

other words it is exactly as specified in the generating program.

66

Importing Metafiles into GINO IMPORTING AND EXPORTING

SAVPIC Interpretation

SAVPIC code is interpreted using the routine:

gGetPicture(file, nseg)

Since it is assumed that gGetPicture() will be used to recall picture segments as if

they were library objects, it is necessary for the routine to ensure that any

drawing qualifiers (e.g. line styles) set within an object do not affect the calling

program; thus gGetPicture() stores these on entry and then resets them on exit.

Consider, for instance, the following program to generate a metafile containing

definitions of two character strings.

gSavpic();
gSetDeviceFilename

(”string.sav”,0)
gOpenSeg(1);
gDisplayStr(“AB”);
gSetCharSize(5.0,5.0);
gDisplayStr(“CD”);
gCloseDevice();

call gSavpic
call SetDeviceFilename &

(’string.sav’,0)
call gOpenSeg(1)
call gDisplayStr(‘AB’)
call gSetCharSize(5.0,5.0)
call gDisplayStr(‘CD’)
call gCloseDevice

The following interpreting program, displayed on a X Windows display should

produce the results indicated:

Setting a large character size would generate the characters shown below:

GFILE *file;

file=gFopen(”string.sav”,”r”);
gXwin();
gSetCharSize(10.0,10.0);
gGetPicture(file,1);
gDisplayStr(”XY”);

integer file

file=gFopen(’string.sav’,GREAD)
call gXwin
call gSetCharSize(10.0,10.0)
call gGetPicture(file,1)
call gDisplayStr(’XY’)

Setting a small character size would generate the characters shown below:

67

IMPORTING AND EXPORTING Importing Metafiles into GINO

GFILE *file;

file=gFopen(”string.sav”,”r”);
gXwin();
gSetCharSize(2.5,2.5);
gGetPicture(file,1);
gDisplayStr(”XY”);

integer file

file=gFopen(’string.sav’,GREAD)
call gXwin
call gSetCharSize(2.5,2.5)
call gGetPicture(file,1)
call gDisplayStr(’XY’)

Note the characters ‘CD’ have their definition saved within the picture segment

and so remain the same in both cases.

When interpreting picture segments, gGetPicture() will always restore them in

the same units as when they were created, i.e. equivalent to mode =

GTRANSFORMED and paper = GPROGRAM in gGetDrawing(). However,

their form when displayed can be changed by using any of the GINO

transformation routines prior to calling gGetPicture().

Mixing SAVDRA Generators and Interpreters

In general the interpreting routine gGetDrawing() will always be used for code

that is generated using gSavdra() and routine gGetPicture() will be used for code

that is generated using gSavpic(). However, it is possible for code that is

generated using gSavdra() to be interpreted using the routine gGetPicture().

(Note: it is not possible to use gGetDrawing() for interpreting gSavpic() code). In

this case, the segment headers present in the gSavdra() code will not be decoded

by gGetPicture(), only the vector part of the segment will be interpreted. This

may mean that the resulting graphic output will not be the same as if the code has

been interpreted using gGetDrawing().

Workspace requirements for Drawing Interpretation

Both the gSavdra() and gSavpic() metafile generators can store complex

polygons within the file. Therefore, when interpreting any gSavdra() metafile that

may contain polygons, it is necessary to declare workspace for their retrieval (see

page 33). This includes polygons created with gStartPolygon() as well as

metafiles that contain gFillPolygonTo2D(), gFillPolygonBy2D() and gFillRect()

polygons since these are converted to complex polygons upon storage in the

metafile generators.

68

Importing Metafiles into GINO IMPORTING AND EXPORTING

CGM Metafiles

A CGM metafile consists of the following structure:

Each element having a unique identifier followed by a variable number of

parameters (possibly none).

Pictures are separated within a CGM file by using the GINO routine

gNewDrawing().

CGM Interpretation

CGM metafiles can be interpreted in one of two ways, either as a whole or

element by element. The first method corresponds closely to the gGetDrawing()

facility in the previous section where the whole file is read in and interpreted

onto the current output device (which may be another metafile). The alternative

method gives the user the opportunity to examine the file element by element and

interpret or skip over it as required.

To interpret a complete metafile the following routine is used:

gCGMInterpreter(code, file, nseg, mode, errlev)

where code specifies the encoding (GCGMCHAR=character,

GCGMBINARY=binary), file is a pointer to a GINO file unit opened by

gFopen() from which the file will be read, (nseg is reserved for future use), mode

specifies the interpretation mode and errlev sets the error checking level (See

‘Error Handling within CGM’).

69

IMPORTING AND EXPORTING Importing Metafiles into GINO

Metafile

Descriptor

Elements

Picture

Descriptor

Elements

Picture 1 Picture 2
BEGIN

PICTURE
BODY

Picture Body

Graphical Primitive Elements

Attribute Elements

Control Elements

END

PICTURE

END

METAFILE

BEGIN

PICTURE
BEGIN

METAFILE

For abstract scaled metafiles (ie. those in which the pictures have no scaling

information), the picture will be scaled to fit the current GINO window

irrespective of the interpretation mode. For metric scaled metafiles (the type

which GINO will always create), interpretation mode GABSOLUTE will draw

the encoded pictures to the same physical size that they were generated. Mode

GMAPPED will scale the pictures to fit the current GINO window as for abstract

metafiles. Mode GTRANSFORMED will restore the metafile to the same size

that it was generated, but subject to the current GINO transformation.

To interpret a character encoded CGM file onto an X Windows device the

following program could be used:

#include <gino-c.h>
main()
{

GFILE *file;

gXwin();
file=gFopen(“file.cgm”,"r");
gCGMInterpreter(GCGMCHAR,file,

GALL,GMAPPED,GFULL);
gCloseDevice();

}

program cgm
use gino_f90

integer :: file

call gXwin
file=gFopen(’file.cgm’,GREAD)
call gCGMInterpreter(GCGMCHAR, &

file,GALL,GMAPPED,GFULL)
call gCloseDevice
stop

In order to examine a CGM metafile element by element, five routines are

provided:

to open the file:

gOpenCGMFile(code, file, mode, errlev)

to get next element:

gGetCGMElement(element)

to skip over this element:

gSkipCGMElement(element)

to interpret this element:

gInterpretCGMElement(element)

to close the file:

gCloseCGMFile()

70

Importing Metafiles into GINO IMPORTING AND EXPORTING

To interpret a binary encoded CGM file onto an X Windows device but skipping

over all cell array primitives the following program could be used:

C code

#include <gino-c.h>
main()
{

GFILE *file;
int element;
gXwin();
file=gFopen(“file.cgm”,"r");
gOpenCGMFile(GCGMBINARY,file,GMAPPED,GFULL);
gGetCGMElement(&element);

/* Check for end of metafile */
while (element != 133) {

/* Check for cell array primitive */
if (element != 40)

gInterpretCGMElement(element);
else

/* Skip over cell array */
gSkipCGMElement(element);

gGetCGMElement(element);
}
gCloseCGMFile();
gCloseDevice();

}

F90 code

program cgm
use gino_f90

integer file
integer element
call gXwin
file=gFopen(’file.cgm’,GREAD)
call gOpenCGMFile(GCGMBINARY,file,GMAPPED,GFULL)
call gGetCGMElement(element)

! Check for end of metafile
do while (element .ne. 133)

! Check for cell array primitive
if (element .ne. 40) then

call gInterpretCGMElement(element)
else

! Skip over cell array
call gSkipCGMElement(element)

end if
call gGetCGMElement(element)

end do
call gCloseCGMFile
call gCloseDevice
stop

CGM Elements

The full list of legal CGM element identifiers together with notes on their use by

the GINO generator and interpreter is found in Appendix B.

71

IMPORTING AND EXPORTING Importing Metafiles into GINO

Polygon Handling within CGM

All of CGM’s filled graphical primitives are handled by GINO using its polygon

definition and filling routines (see page 245). The CGM interpreter has a built in

polygon workspace of 2000 words but this may be increased by calling

gSetWorkspaceLimit() and gDefinePolygonWorkspace() prior to calling

gCGMInterpreter() or gGetCGMElement() (see page 33).

e.g:

gSetWorkspaceLimit(20000);
gDefinePolygonWorkspace(10000);

call gSetWorkspaceLimit(1,20000)
call gDefinePolygonWorkspace &

(10000)

Note: Where polygon workspace is declared, users should be aware that polygon

identifiers 33000 upwards are used by CGM. The polygon workspace will also be

cleared after every polygon area unless the user has declared polygons (i.e. used

the GINO routine gSetPolygonIdent()) before CGM fills the first polygon. If the

user has been using polygon identifiers before requiring filled polygons but still

requires CGM to clear the polygon workspace after every polygon, the user

should call gSetPolygonIdent(0). This ensures that less polygon workspace is

required as only one polygon area is stored at a time.

Error Handling within CGM

All errors encountered by the CGM interpreter are handled in the same way as

other GINO errors except that they have been given a distinct range and are

therefore identified by the prefix ‘GINOCGM error/warning’. A full explanation

of CGM errors is given in Appendix E, but they are grouped in the following

sets:

Errors 1 to 19 Element found when interpreter in incorrect state

Errors 20 to 99 Unknown or illegal element found

Warnings 100 to 129 Invalid index

Warnings 130 to 150 Invalid colour definition

Warnings 200 to 250 Value has lost precision (ie. is outside range specified by

relevant precision)

Warnings 300 to 399 Invalid attribute

Warnings 400 to 499 Invalid descriptor or control element

Errors 700 to 800 Data handling error (I/O error, buffer error)

72

Importing Metafiles into GINO IMPORTING AND EXPORTING

For errors 1 to 19 the ‘state’ of the metafile refers to the stage of metafile

interpretation which may be one of the following:

State 1 KMFCL Metafile closed

State 2 KMFDS Metafile description

State 3 KPIDS Picture description

State 4 KPIOP Picture Open

State 5 KPICL Picture Closed

State 6 KPATX Partial Text

The error level setting used in both gCGMInterpreter() and gOpenCGMFile() can

be one of three values:

Errlev=0 No error checking

Errlev=1 Fast error checking - skip rest of element after first error

Errlev=2 Full error checking - continue processing element after error

CGM Limitations

The following limitations are imposed on the interpretation of CGM files:

The maximum number of points in a point list is 1024.

The maximum length of a character string is 256 characters.

The maximum number of colours interpreted is 2048 (this also applies to the

number of elements in a cell array primitive).

The maximum internal buffer size (for binary elements) is 4096 bytes.

All precisions are catered for except 64-bit precision within binary encodings.

Image Metafiles

The third type of metafile that can be imported into GINO is the image or bitmap

type. These are read in from the required metafile, into an integer array rather

than placing the image straight on the current output device. In this way they can

be manipulated and or processed by the application, and the (resulting) image can

be displayed using the full control of the GINO image handling routines (see

page 189).

73

IMPORTING AND EXPORTING Importing Metafiles into GINO

Two routines are provided to interpret image metafiles, one to enquire the type

and attributes and one to actually read the metafile into the integer work array. At

present these facilities handle Windows BMP files, Windows ICO files, X

Windows Dump files, JPEG and Portable Network Graphics (PNG) files.

The routine gEnqImageFile() can be used to enquire the type and attributes of an

external image file by examining the file header only.

gEnqImageFile(file, type, xgrid, ygrid, nbpp, ncols)

where type is the metafile type, xgrid and ygrid give the image dimensions and

nbpp and ncols return colour information. Once this information has been

gathered (if it is not already known), the actual image can be read using the

following routine:

gGetImageFile(type, file, coldef, offset, collim, xgrid, ygrid, npix, pixbuf)

This routine will read in the contents of an external image file into the integer

array pixbuf ready for display by the routine gDrawPixelArea(). The

interpretation of the colour table held in the image file (if one is present) is

governed by the three colour definition arguments coldef, offset, collim. These

allow an application to ignore the image file colour table altogether, load it into a

specified colour range or map it to the existing GINO colour table.

The following program reads an image saved from Paintshop Pro. The image is

800 x 600 pixels and was saved with 256 colours. The GINO program first needs

to declare space of 800x600=48000 integer words in an array, then reads the

image with the routine gGetImageFile(). coldef is set to 1 so that GINO will

define all the colours that are being used by the image.

The routine gDrawPixelArea() is then used to actually draw the image (in this

case to an MWIN window). It uses the xgrid,ygrid values returned by

gGetImageFile() and if the full image is required, sets isx,isy to 1,1. The image is

positioned according to the first two values ix,iy which refer to the screen pixel

position starting from the top left corner of the screen. This example draws the

image starting at position 1,1.

C code

int pixbuf[48000],xgrid,ygrid;
:
gMwin();
gGetImageFile(1,’EGNS.BMP’,1,0,0,&xgrid,&ygrid,

48000,pixbuf)
gDrawPixelArea(1,1,xgrid,ygrid,1,1,xgrid,ygrid,pixbuf)
:

74

Importing Metafiles into GINO IMPORTING AND EXPORTING

F90 code

integer pixbuf(48000),xgrid,ygrid
:
call gMwin
call gGetImageFile(1,’EGNS.BMP’,1,0,0,xgrid,ygrid, &

48000,pixbuf)
call gDrawPixelArea(1,1,xgrid,ygrid,1,1,xgrid,ygrid,pixbuf)
:

These routines handle 1, 4, 8, and 24 bit colour images.

75

IMPORTING AND EXPORTING Importing Metafiles into GINO

Chapter 4
2D DRAWING

2D Drawing Introduction

GINO provides 2D line drawing facilities for:

• Positioning

• Single straight lines

• Polylines

• Polyline sets

• Circular arcs

• Parametric curves

• B-spline curves

Pen

Historically, computer graphics initiated in the days of pen plotters and whilst

today the drawing method can be a series of pixels on a raster screen, a plotter

pen or a light beam etc. depending on the output device, the term “pen” will be

used throughout.

77

Axes

The 2D coordinate system used is right-handed as shown below, with the X-axis

horizontal, the Y-axis vertical.

Two-dimensional drawing can be anywhere within X,Y space, with the initial

origin being the bottom left-hand corner of the drawing area. Three-dimensional

drawing is covered separately, later in this document (see page 277).

78

2D Drawing Introduction 2D DRAWING

The Right Handed Coordinate System

2D Start and End Pen Position

All drawing starts from the position at which the pen was left by the previous

drawing instruction - this is termed the start pen position. Initially, the position of

the pen is at (X,Y) = (0.0,0.0). The arguments for all 2D drawing routines define

the point at which the pen will be left after executing the routine. This is termed

the “end pen position”. The end position of one routine becomes the start position

for the next. The arguments can specify the absolute coordinates of the end pen

position, or the end pen position relative to the start position.

2D Naming Conventions

The naming convention for the 2D drawing routines is as follows:

(a) The initial part indicates the routine:

gMove* - positioning

gDrawLine* - drawing straight lines

gDrawArc* - drawing circular arcs

gDrawPolyline* - drawing a series of straight lines

gDrawPolylineSet* - drawing a set of polylines

gDrawAkima* - drawing a curve using an averaging method due to Akima

gDrawCurve* - drawing a piecewise parametric cubic curve

gDrawSpline* - drawing a cubic spline curve

79

2D DRAWING 2D Drawing Introduction

Pen Position

(a) The latter part indicates the type of coordinates:

To - absolute

By - relative

(c) The last part indicates dimension:

**2D - two dimensions

**3D - three dimensions (see page 277)

Positioning

The routines for “straight line movement” are:

gMoveTo2D(x, y)

gMoveBy2D(dx, dy)

Examples:

• To position the pen at point (1.5,2.5) the following statement could be used:

gMoveTo2D(1.5,2.5); call gMoveTo2D(1.5,2.5)

• To increment the start pen position by xa in the X-direction and ya in the

Y-direction the following statement could be used:

gMoveBy2D(xa,ya); call gMoveBy2D(xa,ya)

Straight Lines

The routines for drawing straight lines are:

gDrawLineTo2D(x, y)

gDrawLineBy2D(dx, dy)

80

Positioning 2D DRAWING

For example - to draw a straight line from the point (50.0,20.0) to the point

(60.0,80.0) the following statements can be used:

gMoveTo2D(50.0,20.0);
gDrawLineTo2D(60.0,80.0);

call gMoveTo2D(50.0,20.0)
call gDrawLineTo2D(60.0,80.0)

Alternatively, the following statements can be used:

gMoveTo2D(50.0,20.0);
gDrawLineBy2D(10.0,60.0);

call gMoveTo2D(50.0,20.0)
call gDrawLineBy2D(10.0,60.0)

The following sequence of statements would draw a square of side S, positioned

with the bottom left-hand corner at point (X,Y):

/* Position */
gMoveTo2D(x, y);

/* Draw bottom line */
gDrawLineBy2D(s,0.0);

/* Draw right vertical */
gDrawLineBy2D(0.0,s);

/* Draw top line */
gDrawLineBy2D(-s,0.0);

/* Draw left vertical */
gDrawLineBy2D(0.0,-s);

! Position
call gMoveTo2D(x, y)

! Draw bottom line
call gDrawLineBy2D(s,0.0)

! Draw right vertical
call gDrawLineBy2D(0.0,s)

! Draw top line
call gDrawLineBy2D(-s,0.0)

! Draw left vertical
call gDrawLineBy2D(0.0,-s)

81

2D DRAWING Straight Lines

Straight Line Drawing

Polylines

The routines for drawing multiple straight lines are:

gDrawPolylineTo2D(npts, points2)

gDrawPolylineBy2D(npts, points2)

where points2 is an array of structures of type GPOINT containing two real

elements (points2.x and points2.y).

For example - to draw the six lines shown in the figure below, an array points of

type GPOINT is initialized with six coordinate pairs as appropriate to the

language:

C code

static GPOINT pt[6] = {2.0,1.0, 6.0,1.0, 8.0,3.0,
0.0,3.0, 4.0,7.0, 4.0,3.0};

.

/* Move to start */
gMoveTo2D(0.0,3.0);

/* Draw figure */
gDrawPolylineTo2D(6,pt);

82

Polylines 2D DRAWING

Straight Line Drawing

F90 code

type (GPOINT), dimension(6) :: pt = (/ &
GPOINT{2.0,1.0), GPOINT(6.0,1.0), GPOINT(8.0,3.0), &
GPOINT(0.0,3.0), GPOINT(4.0,7.0), GPOINT(4.0,3.0} /)
.

! Move to start
call gMoveTo2D(0.0,3.0)

! Draw figure
call gDrawPolylineTo2D(6,pt)

The same figure could have been produced using the routine

gDrawPolylineBy2D() as follows:

C code

static GPOINT pt[6] = {2.0,-2.0, 4.0,0.0, 2.0,2.0,
-8.0,0.0, 4.0,4.0, 0.0,-4.0};

.

/* Move to start */
gMoveTo2D(0.0,3.0);

/* Draw figure */
gDrawPolylineBy2D(6,pt);

F90 code

type (GPOINT), dimension(6) :: pt = (/ &
GPOINT{2.0,-2.0), GPOINT(4.0,0.0), GPOINT(2.0,2.0), &
GPOINT(-8.0,0.0), GPOINT(4.0,4.0), GPOINT(0.0,-4.0} /)
.

! Move to start
call gMoveTo2D(0.0,3.0)

! Draw figure
call gDrawPolylineBy2D(6,pt)

83

2D DRAWING Polylines

Multiple Line Drawn by

gDrawPolylineTo2D()

Polyline Sets

Polyline Set Definition

A polyline set consists of an array of polylines each of which consists of an

integer number of vertices and a pointer to an array of 2D vertices.

Each polyline is complete within itself and does not make use of the current pen

position. For this reason polygon sets can only use absolute coordinates.

An example of a 2-D polyline set consisting of a trapezium and two triangles is

represented by the following coordinates and shown in the diagram below:

1 2 3 4 5 6 7 8 9 10 11 12 13

x: 40. 160. 340. 460. 40.0 120. 245. 245. 120. 250. 440. 250. 250.

y: 140. 40. 40. 140. 140. 145. 270. 145. 145. 145. 145. 335. 145.

<------------------------------------> <---------------------------> <--------------------------->

Polyline sizes

5 4 4

84

Polyline Sets 2D DRAWING

Polyline Set

Polyline Usage

Two dimensional polyline sets are drawn using the following routine.

gDrawPolylineSet2D(npol, polylines2)

where npol is the number of polylines contained in the GPOLYGON array

polylines2.

The example polyline sets described previously can be implemented as follows.

C code

static GPOLYGON poly[3] = {5, 0, 4, 0, 4, 0};
static GPOINT points[13] = {

40.0,140.0, 160.0,40.0, 340.0,40.0,
460.0,140.0, 40.0,140.0,
120.0,145.0, 245.0,270.0, 245.0,145.0, 120.0,145.0
250.0,145.0, 440.0,145.0, 250.0,335.0, 250.0,145.0};

main()
{

poly[0].verts=&points[0];
poly[1].verts=&points[5];
poly[2].verts=&points[9];

gDrawPolylineSet2D(3,poly);
}

F90 code

type (GPOLYGON) :: poly(3)
type (GPOINT) :: points(13) = (/ &

GPOINT(40.0,140.0), GPOINT(160.0,40.0), &
GPOINT(340.0,40.0), GPOINT(460.0,140.0), &
GPOINT(40.0,140.0), &
GPOINT(120.0,145.0), GPOINT(245.0,270.0), &
GPOINT(245.0,145.0), GPOINT(120.0,145.0), &
GPOINT(250.0,145.0), GPOINT(440.0,145.0), &
GPOINT(250.0,335.0), GPOINT(250.0,145.0) /)

poly(1)%nvert=5
poly(1)%verts=>points(1:5)
poly(2)%nvert=4
poly(2)%verts=>points(6:9)
poly(3)%nvert=4
poly(3)%verts=>points(10:13)
.
gDrawPolylineSet2D(3,poly)

85

2D DRAWING Polyline Sets

Circular Arcs

The routines for drawing circular arcs are:

gDrawArcTo2D(xc, yc, xe, ye, sense)

gDrawArcBy2D(dxc, dyc, dxe, dye, sense)

All arcs are drawn from the start pen position. The radius of an arc is the distance

from the start point to the centre. The end pen position or any point on the

straight line from the centre through the end point of the arc may be specified.

The end pen position will then be calculated.

Two-Dimensional Arcs

Specifying the start pen position, end pen position and centre enables two

possible arcs to be drawn - the start and end points can be joined by either a

clockwise or an anticlockwise movement. The direction is indicated by sense.

If the value of sense is GCLOCKWISE, then a clockwise arc is drawn, and if it is

GANTICLOCKWISE, an anticlockwise arc is drawn.

Examples:

• To draw an arc centre (100.0,100.0) and end point (50.0,100.0):

86

Circular Arcs 2D DRAWING

Clockwise/Anticlockwise

gMoveTo2D(70.0,60.0);
gDrawArcTo2D(100.0,100.0,

50.0,100.0,GCLOCKWISE);

call gMoveTo2D(70.0,60.0)
call gDrawArcTo2D(100.0,100.0, &

50.0,100.0,GCLOCKWISE)

• To draw a semicircle radius r:

gDrawArcBy2D(r,0.0,
r+r,0.0,GCLOCKWISE);

call gDrawArcBy2D(r,0.0, &
r+r,0.0,GCLOCKWISE)

87

2D DRAWING Circular Arcs

Semicircular Arc

Minor Chord

Drawing Circles

Circles can be drawn using the arc routines by specifying the end point of the arc

as being the start pen position. The value of sense is immaterial.

Examples:

• To draw a circle from the point (100.0,0.0) with centre (100.0,50.0):

gMoveTo2D(100.0,0.0);
gDrawArcTo2D(100.0,50.0,

100.0,0.0,GANTICLOCKWISE);

call gMoveTo2D(100.0,0.0)
call gDrawArcTo2D(100.0,50.0, &

100.0,0.0,GANTICLOCKWISE)

• To draw a circle centre (x,y) radius r:

/* Move to base of circle */
gMoveTo2D(x,y-r);

/* Draw circle */
gDrawArcBy2D(0.0,r,

0.0,0.0,GANTICLOCKWISE);

! Move to base of circle
call gMoveTo2D(x,y-r)

! Draw circle
call gDrawArcBy2D(0.0,r, &

0.0,0.0,GANTICLOCKWISE)

88

Circular Arcs 2D DRAWING

Circular Arc

Hardware and Software Arcs

When using devices capable of drawing hardware arcs, software arcs may be

selected by using the routine:

gSetArcMode(swi)

The argument switches hardware arcs on (swi = GHARD) and off (swi =

GSOFT). Hardware arcs can be windowed and transformed and are subject to the

current line mode, but remain unaffected by the control routines

gSetArcIncrement() and gSetArcTolerance().

Software arcs should be selected for these routines to have effect.

Arc Control Routines

GINO arcs are drawn as a series of straight line chords. Enough chords are drawn

to produce relatively smooth arcs. The number of line segments per arc can be

controlled using one of the routines:

gSetArcIncrement(n)

gSetArcTolerance(tol)

Controlling the Number of Chords

The argument to routine gSetArcIncrement() specifies the number of straight line

segments (or chords) per full circle for all subsequent ARC routines.

Examples:

• To specify that subsequent arcs are to be part of an eight sided polygon:

gSetArcIncrement(8); call gSetArcIncrement(8)

In this case, for example, subsequent semicircles would consist of four chords.

• To draw a hexagon centre (x,y) and with radius r:

gMoveTo2D(x-r, y);
gSetArcIncrement(6);
gDrawArcBy2D(r,0.0,0.0,0.0,

GANTICLOCKWISE);

call gMoveTo2D(x-r, y)
call gSetArcIncrement(6)
call gDrawArcBy2D(r,0.0, &

0.0,0.0,GANTICLOCKWISE)

89

2D DRAWING Circular Arcs

Note that calling gSetArcIncrement() will disable hardware generated arcs.

Controlling Tolerance

The tolerance is the maximum distance allowed between the approximating chord

and the true arc.

The default distance is dependent on the output device. This can be changed by

the use of gSetArcTolerance() to produce rougher or smoother arcs. The

smoothness of the arc is ultimately dependent on the accuracy of the device. For

example, to alter the tolerance to produce rough arcs, (i.e. set tolerance to 1mm)

use:

90

Circular Arcs 2D DRAWING

Arc Tolerance

Arc Increments

gSetArcTolerance(1.0); call gSetArcTolerance(1.0)

Notes:

(a) The default settings of tolerance and number of chords can be reset by calling

gSetArcTolerance() or gSetArcIncrement() with zero arguments.

(b) The end position will always be on the circumference of the true arc.

(c) The most recently called of gSetArcTolerance() and gSetArcIncrement()

dictates the appearance of the chords.

(d) If the user specifies a finer tolerance than is permitted by the resolution of the

device, then gSetArcTolerance() reverts to half the minimum step size, that is to

say the smoothest arc possible on that device.

Arc Settings

The current settings of the arc control parameters may be obtained using the

routine:

gEnqArcState(swi, nincs, tol)

This returns the state of the hardware/software switch, the number of chords per

full circle, and the tolerance. nincs is returned zero if gSetArcTolerance() was

called more recently than gSetArcIncrement().

Use of Arc Routines

To draw an object a number of times, use a routine. By the use of routine

arguments, the position, size and orientation of the object may be varied either

locally from within the routine, or from the calling program.

For example, to draw a dumb-bell at position (100.0,100.0) width = 100.0, radius

= 10.0, and length = 50.0:

dumb(100.,100.,10.,10.,50.); call dumb(100.,100.,10.,10.,50.)

To draw a dumb-bell at position (100.0,130.0) of half the size:

dumb(100.,130.,5.,5.,25.); call dumb(100.,130.,5.,5.,25.)

91

2D DRAWING Circular Arcs

The following routine would draw the dumb-bell shown below:

C code

void dumb(float xc, float yc, float width, float radius,
float length)

{
/* Move to absolute origin of object */

gMoveTo2D(xc, yc);
/* Move to start of drawing */

gMoveBy2D(-length/2.0,width/2.0);
/* Left-hand end */

gDrawArcBy2D(-radius,-width/2.0,0.0,-width,1);
/* Bottom horizontal */

gDrawLineBy2D(length,0.0);
/* Right-hand end */

gDrawArcBy2D(radius,-width/2.0,0.0,-width,1);
/* Top horizontal */

gDrawLineBy2D(-length,0.0);
}

F90 code

subroutine dumb(xc, yc, width, radius, length)
use gino_f90
real xc, yc, width, radius, length
! Move to absolute origin of object

call gMoveTo2D(xc, yc)
! Move to start of drawing

call gMoveBy2D(-length/2.0,width/2.0)
! Left-hand end

call gDrawArcBy2D(-radius,-width/2.0,0.0,-width,1)
! Bottom horizontal

call gDrawLineBy2D(length,0.0)
! Right-hand end

call gDrawArcBy2D(radius,-width/2.0,0.0,-width,1)
! Top horizontal

call gDrawLineBy2D(-length,0.0)
return

92

Circular Arcs 2D DRAWING

Note the use of relative moves and lines within the routine.

Parametric Curves

A smooth curve can be drawn through a set of points using one of the routines:

gDrawAkimaTo2D(npts, points, beg, fin)

gDrawAkimaBy2D(npts, points, beg, fin)

gDrawCurveTo2D(npts, points, beg, fin)

gDrawCurveBy2D(npts, points, beg, fin)

Both sets of routines generate a piecewise parametric cubic curve drawn through

each pair of points supplied either as absolute or relative coordinates. The first

pair (gDrawAkimaTo2D()/ gDrawAkimaBy2D()) use an averaging method due to

Akima, which produces a tighter curve, but can be less accurate for

(single-valued) functional data. The second pair (gDrawCurveTo2D()/

gDrawCurveBy2D()) produce a looser curve, but is useful for contour drawing.

Both sets are very accurate at drawing an approximation to a circle. A

comparison of both methods can be seen in a later figure.

93

2D DRAWING Parametric Curves

Use of Arc Routines

Curve End Conditions

By default, the end conditions of a curve are somewhat ill-defined as the

undefined slopes may need to be set by additional data. If end point conditions

are to be specified then beg and/or fin should be set to GXPOINT or GANGLE,

and the end point information given through the routine gSetCurveAttribs2D():

gSetCurveAttribs2D(cbeg, sbeg, cfin, sfin, xbeg, ybeg, xfin, yfin)

Similarly, the end conditions following the drawing of a curve may be enquired

by using the routine gEnqCurveAttribs2D(), which has the same arguments as

gSetCurveAttribs2D(). The values returned in gEnqCurveAttribs2D() will be

either those supplied by a previous call to gSetCurveAttribs2D() or those set by

the curve drawing routines if no call to gSetCurveAttribs2D() has been made.

Both start and finish angles are made with the positive x-axis, see below.

The curve is drawn using straight line segments in the same way as software arcs

are generated. As with arcs, the smoothness of the curve can be varied using

GSetArcIncrement()/ gSetArcTolerance(). Due to the nature of the different

algorithms GSetArcIncrement() controls the number of increments on the Akima

curves and gSetArcTolerance() controls the tolerance of the standard curve.

In all the following examples of curve drawings, the same set of data points is

used, and is set up as follows:

static GPOINT pt[6] =
{3.0,3.0, 3.0,6.0,
6.0,6.0, 4.5,4.5,
7.0,2.0, 12.0,4.0};

type (GPOINT) :: pt(6) = (/&
GPOINT{3.,3.),GPOINT{3.,6.), &
GPOINT{6.,6.),GPOINT{4.5,4.5), &
GPOINT{7.,2.),GPOINT{12.,4.} /)

94

Parametric Curves 2D DRAWING

Curve Drawing

The data points are shown on the curves as asterisks. This is done by using the

following call in each case:

gDrawPolymarkerTo2D(6,pt,8); call gDrawPolymarkerTo2D(6,pt,8)

Specifying No End Conditions

gDrawAkimaTo2D(6,pt,
GNONE,GNONE);

gDrawCurveTo2D(6,pt,
GNONE,GNONE);

call gDrawAkimaTo2D(6,pt, &
GNONE,GNONE)

call gDrawCurveTo2D(6,pt, &
GNONE,GNONE)

Specifying Beginning Conditions as COS and SIN

alpha = 45.0 *3.142/180.0;
cosbeg = cos(alpha);
sinbeg = sin(alpha);
gSetCurveAttribs(cosbeg,sinbeg,

0.0,0.0,0.0,0.0,0.0,0.0);
gDrawCurveTo2D(6,pt,

GANGLE,GNONE);

alpha = 45.0 *3.142/180.0
cosbeg = cos(alpha)
sinbeg = sin(alpha)
call gSetCurveAttribs(cosbeg, &

sinbeg,0.0,0.0,0.0,0.0,0.0,0.0)
call gDrawCurveTo2D(6,pt, &

GANGLE,GNONE)

95

2D DRAWING Parametric Curves

Akima and Curve (dashed) Comparison

Specifying End Conditions for Curve Finish Using an Extra Point

xf = 9.0;
yf = 7.0;
gSetCurveAttribs(0.0,0.0,

0.0,0.0,0.0,0.0,xf,yf);
gDrawCurveTo2D(6,pt,

GNONE,GXPOINT);

xf = 9.0
yf = 7.0
call gSetCurveAttribs(0.0,0.0, &

0.0,0.0,0.0,0.0,xf,yf)
call gDrawCurveTo2D(6,pt, &

GNONE,GXPOINT)

96

Parametric Curves 2D DRAWING

Extra point at end of curve

Curve with angular start conditions

Specifying Both End Conditions

/* ANGLE = 180 degrees */
alpha = 3.142;
cosfin = cos(alpha);
sinfin = sin(alpha);
xb = 3.0;
yb = 4.0;
gSetCurveAttribs(0.0,0.0,

cosfin,sinfin,xb,yb,0.0,0.0);
gDrawCurveTo2D(6,pt,

GXPOINT,GANGLE);

! ANGLE = 180 degrees
alpha = 3.142
cosfin = cos(alpha)
sinfin = sin(alpha)
xb = 3.0
yb = 4.0
call gSetCurveAttribs(0.0,0.0, &

cosfin,sinfin,xb,yb,0.0,0.0)
call gDrawCurveTo2D(6,pt, &

GXPOINT,GANGLE)

97

2D DRAWING Parametric Curves

Example with both ends specified

Highlighting the Effects of Different Values of IBEG and IFIN

Note that gDrawCurveBy2D() uses the values in the points array as relative

points, so data points in the previous example would become:

static GPOINT pt[6] = {
0.0,0.0, 0.0,3.0,
3.0,0.0, -1.5,-1.5,
2.5,-2.5, 5.0,2.0};

type (GPOINT) :: pt(6) = (/&
GPOINT(0.,0.),GPOINT(0., 3.),&
GPOINT{3.,0.),GPOINT(-1.5,-1.5),&
GPOINT(2.5,-2.5),GPOINT(5.,2.} /)

Note also that gDrawCurveTo2D() does an absolute move to the first X,Y

coordinate pair, whereas gDrawCurveBy2D() uses the current position as the first

X,Y coordinate pair.

Spline Curves

In addition to the piecewise cubic curve drawing routines, GINO provides two

routines to draw a smooth curve through a series of points using cubic splines:

gDrawSplineTo2D(npts, points2, beg, fin)

gDrawSplineBy2D(npts, points2, beg, fin)

98

Spline Curves 2D DRAWING

Curve with no and both ends specified superimposed

In comparison to the piecewise cubic curve routines, the spline curves are

generally tighter than the gDrawCurveTo2D()/gDrawCurveBy2D() set and are

more accurate at fitting functional data than the gDrawAkimaTo2D()/

gDrawAkimaBy2D() set. For example, using the same six points set up in the

previous example, gDrawCurveTo2D() (in dotted line) and gDrawSplineTo2D()

(in solid line) give the following output with no end conditions set:

The routine gSetArcIncrement() controls the number of increments between each

supplied data point.

Spline Curve End Conditions

End conditions can also be set for spline curves in the same way as for piecewise

cubic curves, but it is usually necessary to set angular end conditions using scaled

derivatives instead of simply sines and cosines.

For monotonically increasing data in either X or Y or Z, these can easily be

calculated, or it is sufficient to set the X slope to 1.0 and the Y slope to y’(x) and

the drawing routines will compute the correct value. For parametric data,

estimates for the actual gradient (x’(t), y’(t)) are really required. End conditions

can alternatively be set using an extra point in 2 or 3 dimensions in the same

manner as the previous curve routines.

99

2D DRAWING Spline Curves

Comparison of spline with curve output

The routines gSetCurveAttribs2D()/gEnqCurveAttribs2D() are used to set and

enquire the end conditions for 2D spline curves, and an additional pair of routines

are used for the 3D equivalent function. Thus:

gSetCurveAttribs2D(dxbeg,dybeg,dxfin,dyfin,xbeg,ybeg,xfin,yfin)

gEnqCurveAttribs2D(dxbeg,dybeg,dxfin,dyfin,xbeg,ybeg,xfin,yfin)

Spline Curve Tension Control

An alternative approach to smoothing is to use a spline in tension. The routines

gSetSplineTension() and gEnqSplineTension() are used to set and enquire the

current spline tension value which has a default of 0.0.

gSetSplineTension(ten)

gEnqSplineTension(ten)

As the value of ten increases, the curve moves closer to a polyline representing

the supplied data points, with ultimate loss of smoothness. Values in the range 0

to 10 give reasonable results and it is also possible to use negative values down

to -2 to give a more rounded shape to the curve. The curves in the diagram below

show the effect of applying tension to a circle generated from 3 data points.

100

Spline Curves 2D DRAWING

Spline Curve Tension

Bezier Curves

The Bezier curve routines offer a very different kind of curve control where the

data supplied represents control points rather than points on the curve itself.

This can be illustrated by looking at a simple Bezier curve of degree four (cubic).

As can be seen in the figure below, for each of the three Bezier curves, the points

2 & 3 deviate the line between the end points 1 and 4. Looking at the vectors

between these points, the greater the magnitude, the bigger the deviation whilst

their direction determines the tangent of the curve at the end points. Therefore,

with the three cases below, as all the vectors between the end points and their

adjacent control points are the same, the tangents at points A1, B1 and C1 are the

same as are the tangents at the points A4, B4 and C4. This feature of Bezier

curves is important when considering the joining of two such curves (see below).

Two routines are provided to generate this type of curve in 2D:

gDrawBezierTo2D(npts, points2)

gDrawBezierBy2D(npts, points2)

As with the previous curve drawing routines, points2 is an array of type

GPOINT and npts are the number of control points stored in the array.

101

2D DRAWING Bezier Curves

Supplying a set of 6 control points (displayed as asterisks) the following curve

will be drawn. Note that the curve always starts at the first control point and ends

at the last control point, but in all probability will not pass through any other

supplied control point.

End Conditions

There is no direct control over end conditions with Bezier curves, but the fact

that the position of the control point adjacent to the first (or last) data point

determines the tangent of the curve at that point (see above), curves can be

smoothly joined by taking account of this feature.

Therefore to join two Bezier curves, the joining point must obviously be at the

same coordinate position, and the distance and angle between the adjacent

control points must also be the same, such that these two control points lie in a

straight line. Thus in the figure below, points A4 and B1 must be the same and

points A3 and B2 must form a line that intersects A4 and B1. This will give a

seamless join and forms a piecewise Bezier curve.

102

Bezier Curves 2D DRAWING

Bezier Curve (with Spline comparison)

Joining two Bezier Curves

Elevation and Reduction

Bezier curve drawing routines are most useful for interactive curve design where

the control points can be manipulated to produce the desired shape of curve.

Tighter curves can be produced where a greater number of control points are

clustered. To assist in the design of appropriate curves, two auxiliary routines are

also provided to increase and/or reduce the number of control points in a Bezier

curve definition.

gElevateBezier2D(npts, points2)

gReduceBezier2D(npts, points2)

Both routines only operate on absolute coordinates and the first of them takes a

set of control points as input and returns a new set with one more control point

than was input, but which represents the same curve. Users must ensure that the

points array is large enough to hold the additional point on return.

The second routine takes a set of control points and returns a new set with one

less control point. Users should be aware that reducing the number of control

points does not guarantee that the shape of the curve is maintained, but it will

always be a close approximation.

Point Storage

With the drawing of arcs and curves, GINO generates many internal points in

addition to those directly specified by the calling routine. There are cases where

an application needs to know the location of these points in order to define a

polygon boundary or carry out other graphical or mathematical manipulation on

them.

GINO provides facilities for both these options by storing all the points between

which vectors are drawn (whether it be for straight lines or the small vectors that

make up arcs and curves) in an internal storage buffer. Depending on the desired

use of the internal points, up to two separate buffer areas can be defined, one for

polygon definition and one for simple point storage. In both cases the buffers are

contained in the global GINO workspace area which should be defined at the

start of an application through the routine gSetWorkspaceLimit() (see page 33).

103

2D DRAWING Point Storage

Once the global workspace has been defined, the two possible storage areas are

defined using one or both of the following routines:

gDefinePolygonWorkspace(nw)

gDefinePointWorkspace(nw)

where nw is the number of real words required for the appropriate buffer.

The routine gDefinePolygonWorkspace() is used to define polygon workspace

and the subsequent storage of points for the definition of polygons is fully

described later in this document (see page 245).

The routine gDefinePointWorkspace() defines a buffer for the simple storage of

points that can be returned to the application. Each point occupies 4 words of

storage, so allocating a workspace of 120 words will allow for the storage of 30

points. Note that the actual number of points generated by an arc or curve will

depend on tolerance or tension of the particular arc or curve.

Point storage is started, restarted or paused using the routine:

gSetPointMode(switch)

and enquired using:

gEnqPointMode(switch)

where switch can be GOFF, GSPACE, GPICTURE or GRESTART. When the

point storage mode is set to GSPACE or GPICTURE, points are stored as either

untransformed (i.e. as supplied by the user) or transformed (i.e. as they appear on

the drawing area with respect to the current viewport) coordinates respectively.

Storage is switched off using the GOFF setting and restarted (in the current

mode) when GSPACE or GPICTURE is used again.

If the point storage mode is changed from GSPACE to GPICTURE or vice-versa

or GCLEAR is used in gSetPointMode(), all previously stored points are thrown

away.

The stored points are returned to the user through the function:

nret=gReturnInternalPoints2D(nn, points2, np, polylines2, npts, npol)

104

Point Storage 2D DRAWING

where points2 is an array of type GPOINT and polylines2 is an array of type

GPOLYGON. The arguments nn and np should be set to the size of these arrays.

The arguments npts and npol return the number of points and polylines that

actually exist in the internal workspace which may be more than those returned if

the supplied arrays are not sufficiently large enough. The function itself returns

the actual number of complete polylines that have been placed in the user

supplied arrays.

In order to enquire how much data has been stored, gReturnInternalPoints2D()

can be called with nn and np set to 1, in which case the total space for all the

points and polylines can be allocated using the values of npts and npol. The

function can then be called a second time to return all the stored data.

The routine returns the stored points both as a set of vertices in the points2 array

and a set of polylines in the polylines2 array. This in fact represents the same

data but in two different formats with the latter being a more accurate definition

of the information stored. Note that the GPOLYGON structure contains pointers

into the GPOINT array and that any 3rd dimension (Z coordinate) is ignored in

the call to gReturnInternalPoints2D().

The following example shows a usage of the gReturnInternalPoints2D() routine:

C Code

#include <gino-c.h>
#define NN 300
#define NP 4
GPOINT pts[NN];
GPOLYGON pol[NP];

#if defined(MWIN) || defined(WOGL)
int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)

#else
int main ()
#endif
{

int nret,npts,npol;

gOpenGino();
gMwin(hInstance,hPrevInstance);

/* Define global and point workspace */
gSetWorkspaceLimit(2000);
gDefinePointWorkspace(1000);

/* Set point storage mode */
gSetPointMode(GSPACE);

/* Draw some graphics */
gMoveTo2D(10.0,10.0);
gDrawLineBy2D(5.0,5.0);
gDrawLineBy2D(-5.0,5.0);
gDrawArcBy2D(0.0,-5.0,0.0,-10.0,GANTICLOCKWISE);
gMoveTo2D(0.0,10.0);
gMoveTo2D(30.0,10.0);
gDrawLineBy2D(5.0,5.0);

105

2D DRAWING Point Storage

gDrawLineBy2D(-5.0,5.0);
gDrawArcBy2D(0.0,-5.0,0.0,-10.0,GANTICLOCKWISE);
gMoveTo2D(40.0,10.0);
gMoveTo2D(50.0,10.0);
gDrawLineBy2D(5.0,5.0);
gDrawLineBy2D(-5.0,5.0);
gDrawArcBy2D(0.0,-5.0,0.0,-10.0,GANTICLOCKWISE);

/* Switch point storage off */
gSetPointMode(GOFF);

/* Return internal storage */
nret=gReturnInternalPoints2D(NN,pts,NP,pol,&npts,&npol);

/* Fill polygon set */
gFillPolygonSet2D(6,1,GAREA,nret,pol);
gSuspendDevice();
gCloseGino();

}

F90 Code

use gino_f90
parameter (nn=300, np=4)
type (GPOINT) :: pts(nn)
type (GPOLYGON) :: pol(np)

call gOpenGino
call xxxxx

! Define global and point workspace
call gSetWorkspaceLimit(1,2000)
call gDefinePointWorkspace(1000)

! Set point storage mode
call gSetPointMode(GSPACE)

! Draw some graphics
call gMoveTo2D(10.0,10.0)
call gDrawLineBy2D(5.0,5.0)
call gDrawLineBy2D(-5.0,5.0)
call gDrawArcBy2D(0.0,-5.0,0.0,-10.0,GANTICLOCKWISE)
call gMoveTo2D(0.0,10.0)
call gMoveTo2D(30.0,10.0)
call gDrawLineBy2D(5.0,5.0)
call gDrawLineBy2D(-5.0,5.0)
call gDrawArcBy2D(0.0,-5.0,0.0,-10.0,GANTICLOCKWISE)
call gMoveTo2D(40.0,10.0)
call gMoveTo2D(50.0,10.0)
call gDrawLineBy2D(5.0,5.0)
call gDrawLineBy2D(-5.0,5.0)
call gDrawArcBy2D(0.0,-5.0,0.0,-10.0,GANTICLOCKWISE)

! Switch point storage off
call gSetPointMode(GOFF)

! Return internal storage
nret=gReturnInternalPoints2D(nn,pts,np,pol,npts,npol)

! Fill polygon set
call gFillPolygonSet2D(6,1,GAREA,nret,pol)
call gSuspendDevice
call gCloseGino
stop
end

106

Point Storage 2D DRAWING

The outline of each object is drawn with lines and arcs, then the points of each

polygon is retrieved with gReturnInternalPoints2D() and the polygon set is filled

with gFillPolygonSet2D().

2D Interpolation

GINO provides a facility to interpolate user suppled data or from previously

drawn curves, lines or arcs using the above point storage mechanism. Passing a

single data value with a set of 2D data points, the function gInterpolateData2D()

can return all the intersections of the two using linear interpolation.

The function has the following form:

nint=gInterpolateData2D(nopt, ptint, npts, points2, nptout, ptout1)

where nopt can be GXDATA or GYDATA indicating the interpretation of the

argument ptint, the value to be interpreted. The argument npts specifies the

number of 2D data points supplied in the array points2 (which is of type

GPOINT) and nptout is the size of the output array ptout1.

The function returns the number of intersection points returned in the array

ptout1. Where nopt=GXDATA this array will contain Y values and where

nopt=GYDATA this array will contain X values. There may be zero, one or more

than one depending on the form of the data, but it will never exceed nptout even

though there may be more intersections possible from the supplied data.

The following example shows the interpolation of a 2D curve:

107

2D DRAWING 2D Interpolation

Point Storage

C Code

#include <gino-c.h>
#define NP 9
#define NVERT 1000
#define NPOLY 2
#define NPTOUT 4
GPOLYGON poly[NPOLY];
GPOINT points[NVERT];
GPOINT data[NP] = { 20.0, 20.0, 35.0,110.0, 50.0,115.0,

65.0,110.0, 80.0, 30.0, 95.0, 25.0,
110.0, 25.0, 140.0, 40.0, 170.0,120.0 };

float xmin = 10.0;
float xmax = 180.0;
float ptout[NPTOUT];

#if defined(MWIN) || defined(WOGL)
int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)

#else
int main ()
#endif
{

float ptint;
int npt,npol,n,ninter,ntemp;

/* Initialise GINO and point storage */

gOpenGino();
xxxxx();
gSetWorkspaceLimit(2000);
gDefinePointWorkspace(1000);

/* Draw curve and store points internally */

gMoveTo2D(data[0].x,data[0].y);
gSetLineColour(GRED);
gSetPointMode(GSPACE);
gDrawAkimaTo2D(NP,data,GNONE,GNONE);
gSetPointMode(GOFF);

/* Retrieve stored curve points */

n=gReturnInternalPoints2D(NVERT,points,NPOLY,poly,&npt,&npol);

/* Calculate intersections through interpolation */

ptint=45.0;
ninter=gInterpolateData2D(GYDATA,ptint,npt,points,NPTOUT,ptout);

/* Show intersection points on the curve */

gSetLineColour(GGREEN);
gMoveTo2D(xmin,ptint);
gDrawLineTo2D(xmax,ptint);
for (ntemp=0;ntemp<ninter;ntemp++) {

gMoveTo2D(ptout[ntemp],ptint);
gDrawMarker(GSTAR);

}

gSuspendDevice();
gCloseGino();

}

108

2D Interpolation 2D DRAWING

F90 Code

use gino_f90
parameter (NP=9,NVERT=1000,NPOLY=2,NPTOUT=4)
type (GPOLYGON) poly(NPOLY)
type (GPOINT) points(NVERT)
type (GPOINT) :: data(NP) = (/ &

GPOINT(20.0, 20.0), GPOINT(35.0,110.0), GPOINT(50.0,115.0), &
GPOINT(65.0,110.0), GPOINT(80.0, 30.0), GPOINT(95.0, 25.0), &
GPOINT(110.0, 25.0), GPOINT(140.0, 40.0), GPOINT(170.0,120.0) /)

real :: xmin = 10.0
real :: xmax = 180.0
real ptout(NPTOUT)
!
! Initialise GINO and point storage
!

call gOpenGino
call xxxxx
call gSetWorkspaceLimit(1,2000)
call gDefinePointWorkspace(1000)

!
! Draw curve and store points internally
!

call gMoveTo2D(data(1)%x,data(1)%y)
call gSetLineColour(GRED)
call gSetPointMode(GSPACE)
call gDrawAkimaTo2D(NP,data,GNONE,GNONE)
call gSetPointMode(GOFF)

!
! Retrieve stored curve points
!

n=gReturnInternalPoints2D(NVERT,points,NPOLY,poly,npt,npol)
!
! Calculate intersections through interpolation
!

ptint=45.0
ninter=gInterpolateData2D(GYDATA,ptint,npt,points,NPTOUT,ptout)

!
! Show intersection points on the curve
!

call gSetLineColour(GGREEN)
call gMoveTo2D(xmin,ptint)
call gDrawLineTo2D(xmax,ptint)
do ntemp = 1, ninter

call gMoveTo2D(ptout(ntemp),ptint)
call gDrawMarker(GSTAR)

end do
!

call gSuspendDevice
call gCloseGino

stop
end

109

2D DRAWING 2D Interpolation

110

2D Interpolation 2D DRAWING

Data Interpolation

Chapter 5
LINE ATTRIBUTES

Line Attributes Introduction

The appearance or style of a line is described in GINO by six attributes:

• Visibility

• Broken line type

• Colour

• Width

• Pen type

• Line end type

Together they define what is termed a line style. Lines are drawn subject to the

current line style, which may be varied by any of a number of GINO routines.

Line styles may be stored in a table for use later.

Routines Described in this Chapter

The routines described in this section are:

(a) For control of individual attributes of the current line

Line visibility gSetLineVis() gEnqLineVis()

Broken line type gSetBrokenLine() gEnqBrokenLine()

Colour gSetLineColour() gEnqLineColour()

Thick line generation gSetLineWidthMode() gEnqLineWidthMode()

Line width gSetLineWidth() gEnqLineWidth()

111

Line width scale factor gSetLineWidthScaling() gEnqLineWidthScaling()

Pen type gSetPenType() gEnqPenType()

Line end type gSetLineEnd() gEnqLineEnd()

Pen attributes gEnqSelectedPen()

Broken line mode gSetBrokenLineMode()

(b) Specification of attributes in the definition tables

Broken line type table gDefineBrokenLineStyle() gEnqBrokenLineStyle()

Line definition table gDefineLineStyle() gEnqLineStyle()

Line style selection gSetLineStyle()

Save current line style gSaveLineStyle()

For colour table definition see page 205.

Current Line Definition and Enquiry

The relationship of the current line attributes and the individual routines

controlling them are as follows:

GINO uses the absolute value of the parameter given to define a current attribute,

but GINO will issue a warning message if this value is negative. If a value falls

outside its valid range or the request cannot be met, a default value will be

provided.

112

Line Attributes Introduction LINE ATTRIBUTES

Current Line Attributes

vis

brk

col

width

type

end

gSetLineVis()

gSetBrokenLine

gSetLineColour

gSetLineWidth

gSetPenType

gSetLineEnd

()

()

()

()

()

gEnqLineVis()

g BrokenLine

g LineColour

g LineWidth

g PenType

g LineEnd

Enq ()

Enq ()

Enq ()

Enq ()

Enq ()

Attribute Definition Attribute Enquiry

In the case of line colour, width and type, the enquiry routines which complement

each of the single attribute specifying routines return the attribute values

specified by the user. These may not be the same as those actually implemented

by an output device. The actual values of the hardware implementation are

returned by gEnqSelectedPen().

gEnqSelectedPen(col, width, type)

Note that in the case of direct colour devices, the return value of col will contain

a 24bit RGB triplet irrespective of whether the line colour was selected using a

colour identifier, a colour table index or a 24bit RGB triplet.

Drawing Attribute Tables

Tables are used to store specifications for colour values, broken line types and

line styles. Definitions selected from these tables change the current line

attributes.

The tables relate to the current line attributes in the following way:

The colour and broken line type tables contain definitions of their respective

attributes. These definitions are implemented when selected by gSetLineColour()

or gSetBrokenLine(), or when a complete line style is selected from the table of

line definitions.

The line definitions table is different from the other two in that each entry defines

a complete set of line attributes. This definition includes the identifiers which

point to entries in the colour and broken line type tables.

113

LINE ATTRIBUTES Line Attributes Introduction

Current Line

Attributes

Broken Line

Type Table

Colour

Table

Line Styles

Table

gDefineRGB()*

gEnqRGB()*

gDefineBrokenLineStyle()

gEnqBrokenLineStyle()

gDefineLineStyle()

gEnqLineStyle()

gSetLineStyle()gSaveLineStyle()

*GINO also suppports the HLS and HSV colour co-ordinate systems

Attribute definitions for colour and broken line type may be made and stored in

their respective tables without affecting the current line. The exception is when

the table entry to be changed was the one used to implement the current attribute

value. In this case a change to the entry causes a change to the attribute. This

effect happens only with the colour and broken line type tables.

Whenever a device is nominated these tables are initialized to a set of default

values.

Individual Attributes

Changing Individual Attributes of the Current Line

Each current line attribute may be changed independently of the others. In the

following example, the attributes are modified one by one and after each

modification a line is drawn.

Drawing starts in the centre and the resulting output is shown below.

C code

/* draw a line with the default attributes */
gMoveTo2D(50.0,130.0);
gDrawLineBy2D(0.0,-50.0);

/* specify a line of 10mm wide with round ends*/
gSetLineWidth(10.0);
gSetLineEnd(GROUND);
gDrawLineBy2D(90.0,0.0);

/* change line ends to no ends */
gSetLineEnd(GNONE);
gDrawLineBy2D(0.0,90.0);

/* change pen type */
gSetPenType(3);
gDrawLineBy2D(-120.0,0.0);

/* change line width */
gSetLineWidth(0.5);
gDrawLineBy2D(0.0,-120.0);

/* change broken line type */
gSetBrokenLine(GSHORTCHAINED);
gDrawLineBy2D(150.0,0.0);

/* switch visibility off */
gSetLineVis(GOFF);
gDrawLineBy2D(0.0,150.0);

/* switch visibility on */
gSetLineVis(GON);
gSetBrokenLine(GSOLID);
gDrawLineBy2D(-150.0,0.0);

114

Individual Attributes LINE ATTRIBUTES

F90 code

! draw a line with the default attributes
call gMoveTo2D(50.0,130.0)
call gDrawLineBy2D(0.0,-50.0)

! specify a line of 10mm wide with round ends
call gSetLineWidth(10.0)
call gSetLineEnd(GROUND)
call gDrawLineBy2D(90.0,0.0)

! change line ends to no ends
call gSetLineEnd(GNONE)
call gDrawLineBy2D(0.0,90.0)

! change pen type
call gSetPenType(3)
call gDrawLineBy2D(-120.0,0.0)

! change line width
call gSetLineWidth(0.5)
call gDrawLineBy2D(0.0,-120.0)

! change broken line type
call gSetBrokenLine(GSHORTCHAINED)
call gDrawLineBy2D(150.0,0.0)

! switch visibility off
call gSetLineVis(GOFF)
call gDrawLineBy2D(0.0,150.0)

! switch visibility on
call gSetLineVis(GON)
call gSetBrokenLine(GSOLID)
call gDrawLineBy2D(-150.0,0.0)

The first gDrawLineBy2D() of this example draws a line with default attributes.

The default attributes depend on the output device but they generally produce a

line which is visible and solid. Colour, width and pen type defaults depend on the

output device. For a colour raster device the line would typically be white on a

black background and one scan line wide. The default line end type is no ends

(line ends are shapes added to each end of the line).

115

LINE ATTRIBUTES Individual Attributes

Modification of line attributes

Each single-attribute controlling routine has a corresponding enquiry routine

which returns the current value of the attribute as it was specified by the user.

Attributes which have not been changed since GINO was called return their

default values.

In the following pages each attribute is considered individually.

Line Visibility

gSetLineVis(vis)

gEnqLineVis(vis)

The current line may be drawn visible (default) or invisible. The routine

gSetLineVis() switches between these two states. For example:

gSetLineVis(GOFF); call gSetLineVis(GOFF)

switches line visibility off. Lines drawn subsequently will not appear on the

output device.

The statement:

gSetLineVis(GON); call gSetLineVis(GON)

will restore line visibility. The routine gSetLineVis() has no effect on any of the

invisible drawing routines (e.g.gMoveBy2D(), gMoveTo3D()); that is visibility

cannot be switched on for them.

The routine gEnqLineVis() returns the current state of line visibility.

Broken Line Type

gSetBrokenLine(brk)

gEnqBrokenLine(brk)

gSetBrokenLineMode(swi)

The broken pattern of the current line can be varied. The default pattern is a solid

line. Routine gSetBrokenLine() is used to select a line type definition from a

table of broken line types.

116

Individual Attributes LINE ATTRIBUTES

For example, the statement:

gSetBrokenLine(GLONGDASHED); call gSetBrokenLine(GLONGDASHED)

makes broken line type ‘longdashed’ the current line type.

The setting of gSetBrokenLineMode() determines whether the line type selection

is implemented from the software table (see gDefineBrokenLineStyle()) or from

an output device’s hardware table (assuming it has one).

The default setting of gSetBrokenLineMode() (i.e. swi=GHARD or 0) gives

hardware-implemented broken line types. The broken line types implemented

from hardware tables are device dependent. When swi is set to GSOFT or 1,

broken line types will be implemented from the software table. Up to 256

definitions (brk = 1 to 256) may be stored in this table.

If a device is incapable of generating its own broken lines, GINO will use

software.

The result of calling gSetBrokenLine(), with brk greater than 256, depends

entirely on the output device. If the hardware supports more than 256 definitions

one of these may be selected. Otherwise line type defaults to a solid line. The

identifier, brk, of the currently selected broken line type may be found by a call:

gEnqBrokenLine(brk); call gEnqBrokenLine(brk)

Line Colour

The current line colour may be set or enquired using the following routines:

gSetLineColour(col)

gEnqLineColour(col)

where col is a colour identifier. This may be a pen number, colour number or

index into a colour table depending on the current device (see page 46). In all

cases however, when a device is first initialised the following set of colours are

made available if possible:

Colour Identifier (col): Colour Constant: Colour:

0 GBACKGROUND Background (device dependent)

117

LINE ATTRIBUTES Individual Attributes

1 GBLACK Black

2 GRED Red

3 GORANGE Orange

4 GYELLOW Yellow

5 GGREEN Green

6 GCYAN Cyan

7 GBLUE Blue

8 GMAGENTA Magenta

9 GBROWN Brown

10 GWHITE White

Thus, the statement:

gSetLineColour(3); call gSetLineColour(3)

would select orange as the colour for the current line. Alternatively, the

predefined constant GORANGE can be used to select colour 3. Colour identifier

0 or GBACKGROUND selects the background colour, assuming the device

recognizes such a thing. This may be used as an erase facility by selecting the

background colour gSetLineColour(0), and then drawing over a previously drawn

line.

The actual colour displayed depends on the output device. Some devices (e.g.

Plotters and monochrome displays) may support fewer colours than the standard

GINO set in which case the selection of a colour identifier that is not available

will default to some default colour (usually black). The range of colour

identifiers and colour capabilities of the currently nominated device can be

enquired by using the routine gEnqColourInfo() (see page 46).

On most devices the colour identifier is actually an index into a colour table

which has been initialized to the above settings. Again, depending on the colour

capabilities of the current device, these entries may be changed at any time

within an application or new entries set to the range of colours required (see page

205).

On direct colour devices, the current line drawing colour may also be set in terms

of a 24bit RGB triplet using the gTrueCol() function (see page 217).

The routine gEnqLineColour() returns the last requested colour identifier.

118

Individual Attributes LINE ATTRIBUTES

Line Width

By default, thick lines are generated using a mixture of hardware and software

facilities depending on the capabilities of the device and the type of thick line

being generated. In this mode, thick, broken lines with non-standard line ends are

generated by software emulation to ensure the correct output. However, the user

may opt to force either hardware of software generation to improve performance

or to ensure complete accuracy, using the routine:

gSetLineWidthMode(swi)

where swi can be GHARDWARE, GMIXWARE (the default) or GSOFTWARE.

Selecting hardware generation where no such capability exists will result in

single stroke lines for all thicknesses of line. The software emulation method is

determined by the device driver writer and is set according to the characteristics

of the device; ie. for pen plotters, parallel lines will be used to build up the thick

line, for raster devices, multiple horizontal/vertical lines are used or polygon fill

may be selected where available. The user can enquire the current line width

mode and the software emulation method through the routines

gEnqLineWidthMode() and gEnqDeviceState() respectively.

gEnqLineWidthMode(sw)

The routines to actually set or enquire the current line thickness are:

gSetLineWidth(width)

gEnqLineWidth(width)

The line thickness, width, is in current drawing units and is not subject to any

modelling or viewing transformation. The routine gEnqLineWidth() returns the

currently selected line width which may not match the actual hardware line width

appearing on the device due to hardware rounding or limitations. To determine

the actual width of lines appearing on the device use gEnqSelectedPen().

As specified above, the line width is defined in current drawing units and not

subject to any modelling or viewing transformations. It is possible to set an

independent line width scaling factor through the routine:

gSetLineWidthScaling(s)

This provides the user with a method to scale the line width by a consistent

scaling factor which can match the GINO scaling transformation for picture

coordinates.

119

LINE ATTRIBUTES Individual Attributes

The current value of the scale factor can be inquired by the routine:

gEnqLineWidthScaling(s)

Drawing Mode

gSetPenType(type)

gEnqPenType(type)

gSetPenType() can be used to select a different drawing mode (see Appendix B

for available drawing modes for each particular device):

Pen Identifier (type): Constant: Pen Type:

0 GDEFAULT Undefined

6 GERASER Eraser

7 GNOT NOT mode }

8 GAND AND mode }Binary raster writing

9 GOR OR mode }modes for screen devices

10 GXOR XOR mode }

>10 Device dependent

The routine gEnqPenType() enquires the current drawing mode. This may be

used to determine the mode selected by the output device, or for routine

interrogation of the current mode selected by the user.

If the device does not recognize the drawing mode selected, and is therefore

unable to implement it, the actual drawing mode made available will not be the

same as that requested. What is actually used may be identified by calling

gEnqSelectedPen().

Line Ends

gSetLineEnd(end)

gEnqLineEnd(end)

120

Individual Attributes LINE ATTRIBUTES

The appearance of the ends of a line may be changed by the routine

gSetLineEnd(). Line ends are shapes which are added onto the ends of a line.

This is particularly useful when used in conjunction with thick lines as line ends

help to give smooth and tidy joins between lines (see below). GINO offers three

types of line end:

• No ends end=GNONE (0)

• Square ends end=GSQUARE (1)

• Round ends end=GROUND (2)

For example:

C code

gSetLineWidth(10.0);
x=60.0;
y=150.0;
for (i=0; i<3; i++)
{
/* set line end type */

gSetLineEnd(i);
/* draw */

gMoveTo2D(x,y);
gDrawLineBy2D(-40.0,0.0);
gDrawLineBy2D(0.0,-70.0);
gDrawLineBy2D(40.0,-60.0);
x += 60.0;

}

121

LINE ATTRIBUTES Individual Attributes

Line end types

F90 code

call gSetLineWidth(10.0)
x=60.0
y=150.0
do i=0,2

! set line end type
call gSetLineEnd(i)

! draw
call gMoveTo2D(x,y)
call gDrawLineBy2D(-40.0,0.0)
call gDrawLineBy2D(0.0,-70.0)
call gDrawLineBy2D(40.0,-60.0)
x=x+60.0

end do

With no ends, line length is exactly as specified in the line drawing routines.

However, square ends and round ends are added to the line. The amount added is

calculated from the line width. For a square end this is a rectangle of WIDTH/2

by WIDTH, and for round ends it is a semicircle of radius WIDTH/2 as shown

below.

The effect of end greater than 2 depends on the output device. If the device does

not support other end types, the line defaults to no ends.

The routine gEnqLineEnd() returns the current line end setting.

Use of Current Attribute Enquiry Routines

In addition to routine interrogation to see which values are selected for the

current line attribute, the enquiry routines may be usefully employed in other

ways.

Example 1 - a current line attribute may be saved and subsequently restored:

122

Individual Attributes LINE ATTRIBUTES

Line end construction

C code

/* Enquire, saving current line width as a variable */
gEnqLineWidth(&saved_width);

/* Set new current line width */
gSetLineWidth(1.0);

/* Draw line of the new width */
gDrawLineTo2D(20.00,20.00);

/* Restore saved line width */

F90 code

! Enquire, saving current line width as a variable
call gEnqLineWidth(saved_width)

! Set new current line width
call gSetLineWidth(1.0)

! Draw line of the new width
call gDrawLineTo2D(20.00,20.00)

! Restore saved line width
call gSetLineWidth(saved_width)

Example 2 - finding the default value of an attribute. Note that the enquiry should

be made after device nomination and before any attempt to redefine the current

attributes:

C code

/* nominate device */
gHp7475();

/* enquire default (undefined) pen type */
gEnqPenType(&type);

F90 code

! nominate device
call gHp7475

! enquire default (undefined) pen type
call gEnqPenType(type)

These techniques are generally applicable to the single attribute routines.

123

LINE ATTRIBUTES Individual Attributes

Attribute Tables

Attribute Definition Tables

GINO uses three attribute definition tables. These contain definitions of colour

value, broken line settings, and complete line attribute sets. The tables are

initialized whenever device nomination occurs (see page 39). The contents of the

tables may be redefined, with values chosen by the user, by means of table

definition routines.

Colour definition and the colour table are dealt with later in this document (see

page 205).

Broken Line Types Table

Up to 256 different broken line definitions can be stored in the broken line type

table using the following two routines to define and enquire their settings:

gDefineBrokenLineStyle(brk, rep)

gEnqBrokenLineStyle(brk, rep)

where brk is the table entry and rep is a structure of type GBRKSTY which

contains the broken line definition. The definitions stored in this table are

implemented as the current broken line attribute when selected by calls to

gSetBrokenLine() or, indirectly, to gSetLineStyle().

124

Attribute Tables LINE ATTRIBUTES

When a device is nominated the table entries (brk =1 to 16) are initialized with

16 different broken line types as follows:

These are repeated through the 256 entries in the complete table. Any attempt to

use broken line styles outside the range 1 to 256 will result in solid lines being

drawn.

The routine gDefineBrokenLineStyle() enables the user to redefine the line types

stored in the table.

For example, the statements:

static GBRKSTY rep =
{GDISCONTCHAIN,20.0,10.0,4.0};

gDefineBrokenLineStyle(7,&rep);

type (GBRKSTY) :: rep=GBRKSTY(&
GDISCONTCHAIN,20.0,10.0,4.0)

call
gDefineBrokenLineStyle(7,rep)

would define, and store in table entry 7, a line, which when selected, would cause

the current line to look like the following after calling this command:

gSetBrokenLine(7); call gSetBrokenLine(7)

125

LINE ATTRIBUTES Attribute Tables

Resulting in the following;

The arguments for the routine gDefineBrokenLineStyle() have the following

meanings:

brk is the broken line type identifier and is used by gEnqBrokenLine(),

gSetBrokenLine() and gDefineLineStyle(). It identifies entries in the table.

The structure GBRKSTY has four elements: rep.mode, rep.repeat, rep.dash

and rep.dot, where rep.mode describes the sort of broken style in this way:

= GSOLID defines a solid line

= GDISCONTDASH defines a dashed, discontinuously drawn line

= GCONTDASH defines a dashed, continuously drawn line

= GDISCONTCHAIN defines a chained, discontinuously drawn line

= GCONTCHAIN defines a chained, continuously drawn line

Discontinuously drawn lines are treated independently of each other so that any

pattern (defined by rep.repeat, rep.dash and rep.dot) is centred along the line;

the beginning and end dashes being made the same length. If the length of the

line to be drawn is less than the repeat length, the pattern is scaled down to give

one complete repeat sequence. In continuous mode the pattern simply carries on

from one line to the next from wherever it has got to. Discontinuous mode gives

clearly defined corners. Discontinuous mode scales down the pattern for small

line segments (as are drawn for arcs) and therefore continuous mode can give a

better result on curved lines. This effect can vary depending on the hardware

capabilities of the device. Illegal values of rep.mode result in GINO issuing a

warning message and a solid line being defined. rep.repeat specifies the pattern

repeat length. rep.dash and rep.dot specify the lengths of the drawn elements

which constitute the pattern.

126

Attribute Tables LINE ATTRIBUTES

rep.dash is the length of the first drawn element. rep.dot is the length of the

second drawn element of a chained line. Space elements are made equal to

(repeat-dash-dot)/2. If rep.mode specifies a dashed line mode, any value given

for rep.dot will be ignored.

When a chained line is specified, rep.dash +rep.dot must not exceed repeat. If

they do, GINO outputs a warning message and defaults to a solid line.

In the following example, a dashed line is defined and stored in table entry 8.

This definition is then selected for the current line:

127

LINE ATTRIBUTES Attribute Tables

Chained, continuous,

MODE=GCONTCHAIN

Chained, discontinuous,

MODE=GDISCONTCHAIN

.
/* define line type 8 */
static GBRKSTY rep =
{GDISCONTDASH,18.0,13.0,0.0};

.
gDefineBrokenLineStyle(8, &rep);
/* select line type 8 */
gSetBrokenLine(8);
/* draw a line */
gMoveTo2D(30.0,50.0);
gDrawLineBy2D(145.0,0.0);
.
.

.
! define line type 8
type (GBRKSTY) :: rep = &

GBRKSTY(GDISCONTDASH, &
18.0,13.0,0.0)

.
call gDefineBrokenLineStyle(8, &

rep)
! select line type 8
call gSetBrokenLine(8)
! draw a line
call gMoveTo2D(30.0,50.0)
call gDrawLineBy2D(145.0,0.0)
.
.

This would produce a line that looks like this:

If a broken line definition is changed by gDefineBrokenLineStyle() while it is

implemented for the current line, the current line’s broken pattern will also be

modified to conform to the new definition.

The broken line type table may be examined by calls to gEnqBrokenLineStyle().

For example:

GBRKSTY rep5;

gEnqBrokenLineStyle(5,&rep5);

type (GBRKSTY) rep5

call gEnqBrokenLineStyle(5,rep5)

will return the values defining the line type of table entry 5 in rep5.mode,

rep5.repeat, rep5.dash and rep5.dot.

Continuous v Discontinuous

By default all broken linestyles, defined when a device is initialized, are

discontinuous (i.e. either GDISCONTDASH or GDISCONTCHAIN). Where an

application uses a lot of small line segments (eg. arcs, curves etc.) it is often

preferable to use the continuous broken lines styles and it would be necessary to

redefine all the required broken linestyles to achieve the desired results. A

shortcut to this is provided in the following routine:

gSwitchBrokenLineStyles(switch)

128

Attribute Tables LINE ATTRIBUTES

where switch can be GCONTDASH or GDISTCONTDASH. When this routine

is called, ALL the entries in the broken line table are set to be either continuous

or discontinuous as requested. All other settings in the table (i.e. repeat length,

dash and dot lengths) are not affected by this call.

Line Definition Table

Up to 256 different line definitions can be stored in the line definition table using

the following two routines to define and enquire their settings:

gDefineLineStyle(line, rep)

gEnqLineStyle(line, rep)

where line is the table entry and rep is a structure of type GLINSTY which

contains the line definition. A complete line definition involves the specification

of values for each of the six line attributes.

Whenever a device is nominated, all 256 table entries are initialized with the

following values:

rep.vis rep.brk rep.col rep.width rep.type rep.end

1 0 line 0.2(mm) 0 0

The line styles table does not have the same default settings for each entry. An

entry may be redefined by calling routine gDefineLineStyle(). The valid range

for gDefineLineStyle’s arguments is the same as for the individual attribute

routines gSetLineVis(), gSetBrokenLine(), gSetLineColour(), gSetLineWidth(),

gSetPenType() and gSetLineEnd().

The statements:

static GLINSTY line1 = {
GVISIBLE, GLONGDASH, GYELLOW,
0.6, GDEFAULT, GROUND};

gDefineLineStyle(1,&line1);

type (GLINSTY) :: line1=GLINSTY(
GVISIBLE, GLONGDASH, GYELLOW, &
0.6, GDEFAULT, GROUND)

call gDefineLineStyle(1,line1)

129

LINE ATTRIBUTES Attribute Tables

would define a line, identified in the table as line=1, which was visible

(line1.vis=GVISIBLE), discontinuous dashed (line1.brk=GLONGDASH,

assuming GINO default broken types), yellow (line1.col=GYELLOW, assuming

standard GINO colours), 0.6mm wide (line1.width=0.6), drawn with a default

pen type (line1.type=GDEFAULT), and has round ends (line1.end=GROUND).

This example assumes that the values of the entries selected in the colour and

broken line tables have not been changed since device nomination. If entries in

these tables are ever redefined it is the new values that will be selected via the

line definition table.

Table entries may be examined by using gEnqLineStyle(). line identifies the

entry of interest and its parameter values are returned in rep.vis, rep.brk, etc. If

line=0, the current line attributes are returned.

The absolute value of line is used for gDefineLineStyle() and gEnqLineStyle(). If

the absolute value is greater than 256, a warning message is output and no further

action is taken.

Changing the Current Line Attributes

The routine gDefineLineStyle() can be used to redefine the current line attributes

by setting its first argument, the line style identifier line, to zero:

static GLINSTY rep={
GVISIBLE, GLONGCHAINED, GBLUE,
0.2, GDEFAULT, GNONE};

gDefineLineStyle(0,&rep);

type (GLINSTY) :: rep=GLINSTY(&
GVISIBLE,GLONGCHAINED,GBLUE, &
0.2, GDEFAULT, GNONE)

call gDefineLineStyle(0,rep)

This single call is equivalent to a call to each of the 6 individual attribute

controlling routines:

gSetLineVis(GVISIBLE);
gSetBrokenLine(GLONGCHAINED);
gSetLineColour(GBLUE);
gSetLineWidth(0.2);
gSetPenType(GDEFAULT);
gSetLineEnd(GNONE);

call gSetLineVis(GVISIBLE)
call gSetBrokenLine(GLONGCHAINED)
call gSetLineColour(GBLUE)
call gSetLineWidth(0.2)
call gSetPenType(GDEFAULT)
call gSetLineEnd(GNONE)

In the following example all the attributes of the current line are changed with the

exception of colour. These values are reported to the program by using

gEnqLineStyle() with line set to zero so that it points to the current line.

130

Attribute Tables LINE ATTRIBUTES

C code

int saved_colour;
GBRKSTY def, newdef;

/* Save the current line colour */
gEnqLineColour(&saved_colour);

/* Redefine current line but using saved colour id. */
def.vis = GVISIBLE;
def.brk = GLONGCHAINED;
def.col = saved_colour;
def.width = 0.6;
def.type = GDEFAULT;
def.end = GROUND;
gDefineLineStyle(0,&def);

/* enquire about new current line */
gEnqLineStyle(0,&newdef);

F90 code

integer saved_colour
type (GBRKSTY) def, newdef

! Save the current line colour
call gEnqLineColour(saved_colour)

! Redefine current line but using saved colour id.
def%vis = GVISIBLE
def%brk = GLONGCHAINED
def%col = saved_colour
def%width = 0.6
def%type = GDEFAULT
def%end = GROUND
call gDefineLineStyle(0,def)

! enquire about new current line
call gEnqLineStyle(0,newdef)

Retrieving and Storing Current Line Attributes

Two routines are provided to set and save a line style definition:

gSetLineStyle(line)

gSaveLineStyle(line)

The routine gSetLineStyle() selects a complete line attribute specification

(identified by line) from the table of line definitions and implements this for the

current line. For example:

gSetLineStyle(5); call gSetLineStyle(5)

causes line definition 5 to be selected as the current line style. If the definition

identifier line is outside the range 1 to 256, no change is made to the current line

but a warning message is issued.

131

LINE ATTRIBUTES Attribute Tables

The routine gSaveLineStyle() saves the complete specification of the current line

attributes to the line definition table. For example:

gSaveLineStyle(10); call gSaveLineStyle(10)

copies the values of all the current line attributes into entry 10 of the line

definition table. This line specification can be reselected later. For example:

gSetLineStyle(10); call gSetLineStyle(10)

In the example below, entries are made in the line definition table in two ways.

First by using gDefineLineStyle() to assign values to entries 1 and 2, and second

by using gSaveLineStyle() to copy current line attribute values into entry 3.

C code

static GLINSTY line1 = {1, 2, 2, 0.2, 2, 0},
line2 = {1, 6, 2, 3.0, 2, 1};

gDefineLineStyle(1, &line1);
gDefineLineStyle(2, &line2);

/* select a set of line attributes */
gSetLineStyle(2);

/* draw a line */
gMoveTo2D(20.0, 100.0);
gDrawLineBy2D(200.0, 0.0);

/* change with line width and broken style */
gSetLineWidth(0.2);
gSetBrokenLine(GLONGCHAINED);

/* draw result */
gMoveTo2D(20.0, 80.0);
gDrawLineBy2D(200.0, 0.0);

/* save line to table entry 3 */
gSaveLineStyle(3);

/* select another line from table and draw it */
gSetLineStyle(1);
gMoveTo2D(20.0, 60.0);
gDrawLineBy2D(200.0, 0.0);

/* reselect saved line and draw */
gSetLineStyle(3);
gMoveTo2D(20.0, 40.0);
gDrawLineBy2D(200.0, 0.0);

132

Attribute Tables LINE ATTRIBUTES

F90 code

type (GLINSTY) :: line1 = GLINSTY(1,2,2,0.2,2,0), &
line2 = GLINSTY(1,6,2,3.0,2,1)

call gDefineLineStyle(1, line1)
call gDefineLineStyle(2, line2)

/* select a set of line attributes
call gSetLineStyle(2)

/* draw a line
call gMoveTo2D(20.0, 100.0)
call gDrawLineBy2D(200.0, 0.0)

/* change with line width and broken style
call gSetLineWidth(0.2)
call gSetBrokenLine(GLONGCHAINED)

/* draw result
call gMoveTo2D(20.0, 80.0)
call gDrawLineBy2D(200.0, 0.0)

/* save line to table entry 3
call gSaveLineStyle(3)

/* select another line from table and draw it
call gSetLineStyle(1)
call gMoveTo2D(20.0, 60.0)
call gDrawLineBy2D(200.0, 0.0)

/* reselect saved line and draw
call gSetLineStyle(3)
call gMoveTo2D(20.0, 40.0)
call gDrawLineBy2D(200.0, 0.0)

133

LINE ATTRIBUTES Attribute Tables

Chapter 6
CHARACTERS

Character Introduction

GINO provides the ability for drawing characters using hardware and software

fonts, and a large variety of symbols and special characters, together with

routines for specifying font, size, justification, shape, orientation and fill style.

The routines described in this section are:

a) For outputting:

ASCII characters gDisplayAsciiChar()

Character strings gDisplayStr()

gPrintf()

gDisplayStrPolylineTo2D()

gDisplayStrPolylineBy2D()

gFitCharStr()

Numbers gDisplayRealExponent() gConvertRealExponent()

gDisplayRealFixed() gConvertRealFixed()

gDisplayRealFloat() gConvertRealFloat()

gDisplayInteger() gConvertInteger()

Special symbols gDrawMarker()

b) For specifying and enquiring:

135

Font availability gEnqHardFontList()

Font style gSetCharFont()

gEnqFontStyle()

gSetFontFillStyle()

gSetFontWeight()

gSetFontSpacing()

gSetFontForm()

Character attributes gSetHardChars() gEnqCharAttribs()

gSetMixedChars()

gSetSoftChars()

gSetHardCharSize()

gSetCharSize()

gSetCharSizePoint()

gSetStrAngle()

gSetItalicAngle()

gSetCharTransformMode()

Text blocks gStartTextBlock() gEnqTextBlockAttribs()

gMoveToNextLine()

gSetInterlineSpace()

String attributes gSetStrJustify() gEnqStrJustify()

gSetStrUnderscore() gEnqStrUnderscore()

gSetStrExponent() gEnqStrExponent()

Null character form gDefineNullChar()

Escape character gSetEscapeChar() gEnqEscapeChar()

Enquiry gEnqCharTransform()

gReturnStrInfo()

Character Mode - Hardware v Software

GINO provides the following modes for character output:

Hardware - Characters are entirely generated by the device. This produces the

most presentable output and is usually the quickest, but output may vary from

device to device.

136

Character Mode - Hardware v Software CHARACTERS

Software Untransformable - Characters are generated by GINO using solid

straight lines and area filling, according to the requested character attributes. The

characters cannot be transformed.

Software Transformable - As above but generated with the current line style

(Dashed pattern and Thickness), transformed by the current transformation

(rotation, scale and shear - if any) and windowed/masked by the current window

or mask settings.

The quality of software characters are not as good as hardware, but the output on

all devices will be exactly the same.

By default, GINO starts up in an untransformable ‘mixed’ mode

(gSetMixedChars()), whereby, characters will be output by hardware if the size is

available, otherwise will be output by software. On devices where only a limited

number of sizes are available, this will result in some strings being drawn with a

hardware font and some with a software font which may look untidy.

To change the mode, call one of the following routines:

gSetHardChars() Characters always generated by the device, but size may only be

the nearest available if hardware only supports limited sizes.

gSetMixedChars() Characters are generated by the device if within 10% of the size

requested, 1 degree of specified orientation and 5 degrees of

specified italic angle, otherwise software characters selected.

gSetSoftChars() Characters generated by GINO exactly as specified, but without

applying any GINO transformation.

gSetCharTransformMode() Characters generated by GINO exactly as specified and applying

current transformation.

Output of Characters

Single ASCII Characters

Any ASCII character may be output using:

gDisplayAsciiChar(code)

where code is an integer in the range 0 - 255, and is the decimal ASCII

representation of the required character. ASCII characters are shown in the font

tables in Appendix C.

Example:

137

CHARACTERS Output of Characters

/* Output the character A */
gDisplayAsciiChar(65);

! Output the character A
call gDisplayAsciiChar(65)

The routine gDisplayAsciiChar() is useful for outputting non-printable

characters. Single ASCII characters are not affected by the string justification

routine but are affected by the character attribute routines gSetCharSize(),

gSetStrAngle(), gSetItalicAngle(), and gSetStrUnderscore().

Character Strings

Character strings may be output using one of the routines:

gDisplayStr(string)

gPrintf(char format, ...) [C/C++ only]

The routine gDisplayStr() passes the argument string to the output device. It may

include any combination of characters in the ASCII set, and any special

characters permitted by the system.

gDisplayStr(”Hello World”); call gDisplayStr(”Hello World”)

The routine gPrintf() passes a format string together with optional arguments and

expands it before passing it to the output device via. the former routine. gPrintf()

therefore provides the format control of printf() together with the character

control of gDisplayStr() for graphical character output.

gPrintf(“Command %s - Section %d.%d”,command,sect,subsect);

Output of Numbers

Integer and real numbers may be output using the character routines:

gDisplayInteger(number, nwidth)

gDisplayRealFloat(value, nwidth)

gDisplayRealFixed(value, nwidth, nplace)

gDisplayRealExponent(value, nwidth, nplace)

138

Output of Numbers CHARACTERS

The format of the output is controlled by the argument nwidth and, in the case of

gDisplayRealFixed() and gDisplayRealExponent(), nplace which is the number

of decimal places required. The character string attributes apply to the output of

numbers.

Field Width

nwidth specifies the character field width of the output. No output is generated if

nwidth is zero. If a number is too large for the specified field width, a string of

asterisks is output. The field width is limited to 32 characters.

The sign of nwidth determines whether a number is right- or left-justified within

the field width. Any spare character positions are filled with spaces. If nwidth is

greater than zero, the output is right-justified. If nwidth is less than zero, the

output is left-justified.

A leading zero, when appropriate, will be output before a decimal point, provided

there is room for it.

Example:

C code

/* Output nyear left-justified in a filed of 4 */
gDisplayInteger(nyear,-4);

/* Output rate in a fixed-point format with 2
decimal figures, right-justified in a field of 10*/
gDisplayRealFixed(rate,10,2);

/* Output fact in floating-point form with 8
decimal figures, left-justified in a field of 15. */
gDisplayRealExponent(fact,-15,8);

/* Output sales in floating-point form,
right-justified in a field of 12. */
gDisplayRealFloat(sales,12);

F90 code

! Output nyear left-justified in a filed of 4
call gDisplayInteger(nyear,-4)

! Output rate in a fixed-point format with 2
! decimal figures, right-justified in a field of 10

call gDisplayRealFixed(rate,10,2)
! Output fact in floating-point form with 8
! decimal figures, left-justified in a field of 15.

call gDisplayRealExponent(fact,-15,8)
! Output sales in floating-point form,
! right-justified in a field of 12.

call gDisplayRealFloat(sales,12)

139

CHARACTERS Output of Numbers

Conversion of Numbers to Character Strings

The following routines convert numbers to character strings:

gConvertInteger(number, nwidth, string)

gConvertRealFloat(value, nwidth, string)

gConvertRealFixed(value, nwidth, nplace, string)

gConvertRealExponent(value, nwidth, nplace, string)

The numbers are stored as strings in the same format as the output produced by

the routines gDisplayInteger(), gDisplayRealFloat(), gDisplayRealFixed() and

gDisplayRealExponent(). The length of the resultant string is limited to 32

characters. If the format of the number exceeds this then it is truncated to 32

characters and a warning message is output.

The position of the number in the character array string is determined by the

value of nwidth. If nwidth is positive then the number is right justified. If

nwidth is less than zero then the number is left justified. Nothing is returned if

nwidth is zero for any of the routines.

140

Output of Numbers CHARACTERS

Numeric output

The character string, once returned, may be used in other string handling

routines. For example, passing the string to the routine gReturnStrInfo() would

allow the size of the number, output in the current font, to be returned. The string

may be concatenated with other number strings, text strings, and escape

characters.

Character Fonts

Font styles

The default font (font 0) on all devices is a fixed width font. A fixed width font

may be produced by hardware if the device has the capability or GINO’s default

software font will be used.

The default font can be changed using the following routine:

gSetCharFont(font)

Values of font greater than zero determine the style of font to be used. Font

numbers 1 to 99 specify software font styles. Numbers between 100 and 108

specify a set of registered hardware fonts, if font numbers 101-108 are not

available a software equivalent font will be selected. Numbers greater than 108

access device specific hardware fonts.

The current character mode setting can affect the hardware or software accessing

of fonts. For all software fonts the software character mode applies (as if

gSetSoftChars() had been called). For the current registered hardware fonts the

character mode can be controlled by the gSetSoftChars() / gSetHardChars()

routines, with an approximate software equivalent addressing shortfalls in the

specific hardware capabilities. Non-registered hardware fonts (108+) operate in

the hardware character mode only (as if gSetHardChars() had been called).

The availability of hardware fonts on any particular device can be enquired with

the routine gEnqHardFontList (described later). Appendix B also details the font

styles available for a specific device.

141

CHARACTERS Character Fonts

Fonts 70 to 79 are primarily symbol characters which are provided for use with

the gDrawMarker() routine, which outputs a character centred upon the current

character position, however they can also be used with gDisplayStr() providing a

mapping between ASCII characters and symbols.

GINO Software Fonts

0 GDEFAULT

1 GRoman_Simplex

2 GRoman_Duplex

3 GRoman_Complex

142

Character Fonts CHARACTERS

1: 2:

3: 4:

5: 6:

7: 8:

9: 10:

11: 12:

13: 14:

15: 16:

17: 18:

19: 20:

101:Helvetica 102:Times

103:Avant Garde 104:Lublin Graph

105:New Century 106:Souvenir

107:Palatino 108:Chancery

GINO Software and Hardware Fonts

4 GRoman_Triplex

5 GItalic_Complex

6 GItalic_Triplex

7 GScript_Simplex

8 GScript_Complex

9 GGreek_Simplex

10 GGreek_Complex

11 GGothic_English

12 GGothic_German

13 GGothic_Italian

14 GCyrillic_Complex

15 GSwiss_Solid *

16 GDutch_Solid *

17 GWestern *

18 GComputer *

19 GDisplay *

20 GLatin *

21 GGreek_Font_1

22 GGreek_Font_2

23 GGreek_Font_3

24 GGreek_Font_4

25 GGreek_Font_5

Symbol Fonts

70 GMaths_Symbols * (DIN 6776)

71 GHershey_Maths_Symbols

72 GHershey_Symbols_1

73 GHershey_Symbols_2

74 GSymbol1_normal *

75 GSymbol1_thick *

76 GSymbol1_filled *

77 GSymbol2 _normal *

78 GSymbol2 _filled *

79 GGINO_Dingbats *

143

CHARACTERS Character Fonts

Hardware and Software Fonts

100 GCourier [Hardware only]

101 GHelvetica

102 GTimes

103 GAvant_Garde

104 GLublin_Graph

105 GNew_Century_Schoolbook

106 GSouvenir

107 GPalatino

108 GChancery

>108 Device specific hardware fonts (see Appendix B)

Notes:

(i) * indicates the font is defined as a polygon and can be filled (see below).

(ii) All fonts are proportionally spaced except font numbers 0 and 100.

Font Fill Style

When hardware fonts or software fonts that are defined as polygons are used, the

default fill style is solid fill in the current pen colour. This can be varied by using

the following routine:

gSetFontFillStyle(style)

where the structure style contains the following integer elements: style.type,

style.ffill, style.fline, style.bfill, style.bline. style.type defines the type of filling

that is required. style.ffill and style.bfill define the foreground and background

filling style and style.fline and style.bline define the foreground and background

line style if a filled font style is selected. If either style.ffill or style.bfill =

GNOFILL the foreground or background filling respectively is omitted. The

default setting for style is {GFILLED, GSOLID, GCURRENT, GNOFILL,

GCURRENT}.

144

Character Fonts CHARACTERS

The font style parameters can be set for hardware fonts, but the number of

foreground and background fill and line styles may be limited, whereas other

styles may be provided. Refer to Appendix B for the particular device.

Font Weight

Many hardware fonts have a weighting factor which increases or decreases either

the boldness of a font or the thickness of the vectors by which the font is drawn

(see Appendix B for the capability of the current device). This weight factor can

be set using:

gSetFontWeight(weight)

where weight is a positive or negative integer which will adjust the weight factor

of both hardware and software fonts. The following values are suggested for

standard weights:

Value Font weight

-6 Extra Thin

-3 Thin

0 Normal

+3 Bold

+6 Extra Bold

Other values of weight may have a corresponding effect, depending on the

resolution of the device. ‘Normal’ font weight refers to the default pen width.

145

CHARACTERS Character Fonts

Examples of Software Filled Text

For GINO’s software fonts, gSetFontWeight() adjusts the thickness of the vectors

used in drawing the characters or their boundary but it does not affect the shape

of any polygons, therefore gSetFontWeight() will not affect strings drawn with

font fill style type = GFILLED.

Fixed Pitch Control

It is possible to force the output of both hardware and software proportional fonts

to appear as if they were fixed pitch. This is achieved with the routine:

gSetFontSpacing(space)

If space = GNORMAL then the font is output as defined, either fixed pitch or

proportional. If space = GFIXEDPITCH then the font is forced to be fixed pitch.

Software Font Representation

As the display of software fonts can be time consuming, GINO provides a means

to simplify the representation of these fonts during program development.

gSetFontForm(rep)

The default setting for rep is zero, where the requested software font is output as

requested. Other settings of rep display either a box representing the character

width and height or a box and the same character but drawn in the default GINO

software font. Font weight is ignored when rep> 0. The variety of boxes either

include or omit left and right bearings and other height limits of the current

software font. The routine gSetFontForm() has no effect on font 0. (Hardware,

Greek and Symbol fonts are not output in the GINO software font, for odd values

of rep).

146

Character Fonts CHARACTERS

Various Font Representations

Font Enquiry

The routine gEnqFontStyle() is provided to enquire all of the above font

attributes.

gEnqFontStyle(font, style, weight, space, rep)

where font is set by gSetCharFont(), style is set by gSetFontFillStyle(), weight is

set by gSetFontWeight(), space is set by gSetFontSpacing() and rep is set by

gSetFontForm().

The routine gEnqHardFontList() returns a list of the hardware fonts available

with the current device.

gEnqHardFontList(list, n, count)

where list is an integer array of length n. gEnqHardFontList() returns a list of

hardware font numbers as used by gSetCharFont(). The total number of hardware

fonts available on the current device is returned in count.

Character Attributes

Default Character Settings

The default settings for the output of characters are:

• font 0 - (Fixed width hardware font if available, otherwise software)

• left justified

• not underlined

• size 3mm x 3mm or nearest hardware equivalent

• angle 0 degrees

• italic 0 degrees

Character Size

The default width and height of characters depends on the output device and may

be altered using the routine:

gSetCharSize(width, height)

147

CHARACTERS Character Attributes

For fixed pitch software fonts the size of the character box is the same for all

characters, there is no left bearing and the right bearing is equivalent to one third

of the current GINO character width. For proportional fonts the character box

will vary for each character and the size relates approximately to the upper case

letter M. The specified width equates to the left and right bearing together with

the individual character width.

If lower case characters with tails or descenders are being drawn (i.e. g, j, p, q or

y), the box is extended as shown in the figure below. In this case the pen is left at

the right-hand corner of the box at baseline level.

Also note that other than for software characters, if any part of each character

box in a string (including ascenders or descenders) lies outside the current

clipping window, the whole character is not output. Therefore trying to output a

string that only contains upper-case letters along the Y=0.0 line, will still result

in no output because the character box extends below the clipping margin.

For example to specify the character box to be 20mm wide and 10mm high:

148

Character Attributes CHARACTERS

Fixed Pitch Character Box Size

Character Box Dimensions

gSetCharSize(20.0,10.0); call gSetCharSize(20.0,10.0)

If gSetHardChars() has been called, the characters may not be drawn to the exact

size requested. If the device does not support all character sizes, the nearest

available hardware character size is selected. If the device cannot generate

characters at all, they will be generated by GINO to the exact size requested.

An alternative method of specifying a character size is to use the routine:

gSetCharSizePoint(points)

where points is the requested character size in printers points (1/72nd inch).

Using this routine is equivalent to setting a square character size using

gSetCharSize() with the same implications in terms of character mode as

documented above.

Character Orientation

The orientation of characters may be specified using the routine:

gSetStrAngle(angle)

angle specifies the angle in degrees between the characters to be drawn and the

horizontal (or the current X-axis if it has been transformed). The character strings

are rotated about the bottom left-hand corner of the character string. Positive

rotation is anti-clockwise as indicated in the figure below.

The pen is left at the bottom right-hand corner of the rotated box to ensure that

consecutive character strings are concatenated.

Example:

149

CHARACTERS Character Attributes

Character Orientation

gSetStrAngle(45.0);
gMoveTo2D(x,y);
gDisplayStr(“Rotated by ”);
gDisplayStr(“45 degrees”);

call gSetStrAngle(45.0)
call gMoveTo2D(x,y)
call gDisplayStr(‘Rotated by ‘)
call gDisplayStr(‘45 degrees‘)

would produce the output shown below.

If gSetHardChars() has been called and angled character strings cannot be

produced on the device, an approximation is provided in the form of a stepped

character string.

Note that Characters strings can also be rotated if Software Transformable

character mode has been selected with gSetCharTransformMode(GON) and a

GINO transformation is currently active (see page 239).

Italic Characters

Italic characters may be selected using the routine:

gSetItalicAngle(slant)

150

Character Attributes CHARACTERS

String Rotation

slant specifies the angle in degrees between the slope of the characters and the

vertical (or the current Y-axis if transformable characters are switched on). A

positive angle represents a clockwise slope.

gSetCharSize(5.0,6.0);
gSetItalicAngle(30.0);
gDisplayStr(“Italics”);

call gSetCharSize(5.0,6.0)
call gSetItalicAngle(30.0)
call gDisplayStr(‘Italics’)

would produce this output:

If gSetHardChars() has been called and the device cannot draw italicized

characters, then characters will be drawn non-italicized.

Current Character Settings Enquiry

The current character settings can be examined by calling the routine:

gEnqCharAttribs(rep)

where rep is a structure of type GCHASTY. The default character settings are set

up each time a device is nominated and gEnqCharAttribs() will return these if the

call is made before any of the character settings are changed. The default

character settings are device dependent (see Appendix B). If gSetHardChars() has

been called, the character settings returned by gEnqCharAttribs() may differ from

the requested settings.

151

CHARACTERS Character Attributes

Italic Character

To enquire the current angle and italic effects on a character string, the routine

gEnqCharTransform() requires the width and height of the character string and

returns the relative distance subject to the current angle and italic

transformations.

gEnqCharTransform(dx, dy, point)

This routine is useful for evaluating the area that a particular string will occupy.

By passing the length of the current string and the current character height, the

end position of the string is given relative to the start.

Underlining of Characters

Characters may be underlined with a solid line using the routine:

gSetStrUnderscore(swi)

Underlining is switched on for all subsequent character and string output when

swi is set to GON. The underlining occurs at 0.4 * the character height below the

characters baseline.

The current setting for underlining can be enquired using the routine:

gEnqStrUnderscore(swi)

Representation of Zero Character

The routine gDefineNullChar() offers alternative representations of the zero

character for the GINO default software font.

gDefineNullChar(nul)

where nul is in the range 0 - 2. The zero can be represented in the following

forms:

Line Attributes affecting Characters

The Line attribute of colour always affects the drawing of characters, however

the visibility, dashed-line style, line thickness, pen-type and line-end type only

affect characters if Software Transformable Characters have been selected with

gSetCharTransformMode() (see page 239).

152

Character Attributes CHARACTERS

Character String Attributes

There are a number of attributes which affect a complete character string:

• Justification

• Text Blocks

• Exponent and Index Settings

• Escape Characters

Justification

Character strings may be left, right or centre justified.

gSetStrJustify(jus)

gEnqStrJustify(jus)

For left justified characters - jus = GLEFT (the default), the start position is at

the bottom left-hand corner of the character box, and the pen is left at the bottom

right-hand corner of the box for subsequent output.

For centre justified characters - jus = GCENTRE, the start position is at the

centre of the character box, and the pen is left at the centre of the box for

subsequent output.

For right justified characters - jus = GRIGHT, the start position is at the bottom

right-hand corner of the character box, and the pen is left at the bottom left-hand

corner of the box for subsequent output.

153

CHARACTERS Character String Attributes

Justified Strings

When outputting numeric output, take care not to confuse the justification of the

number within the field width (which is controlled with the sign of the field

width; <0 = left-justified, >0 = right-justified) and the justification about the

current point which is controlled by gSetStrJustify. Outputting centred numbers

with jus =GCENTRE will only work if the number is exactly the same length as

the indicated field width.

Text Blocks

Text blocks can be created by using the routines:

gStartTextBlock(xbeg, ybeg)

gMoveToNextLine()

The xbeg and ybeg coordinates define the position of the first line of a text block.

Subsequent line positions are set using the gMoveToNextLine() routine or by

using the *N escape sequence. The distance between the lines of a text block can

be set by changing the inter-line spacing with the routine:

gSetInterlineSpace(factor)

where factor is a factor of the current character height. The default setting of the

inter-line spacing is 2.0 * character height, but this may be set to any positive or

negative real value, allowing overwriting or lines to be placed above each other.

C code

gStartTextBlock(10.0,100.0);
gDrawMarker(42);
gDisplayStr(“The owl and the pussy cat”);
gMoveToNextLine();
gDisplayStr(“Went to sea, in a beautiful pea-green boat”);
gMoveToNextLine();
gDisplayStr(“They sailed away for a night and a day”);
gMoveToNextLine();
gDisplayStr(“With a jar of honey, and plenty of money,”);
gMoveToNextLine();
gDisplayStr(“wrapped up in a five pound note”);
gMoveToNextLine();

154

Character String Attributes CHARACTERS

F90 code

call gStartTextBlock(10.0,100.0)
call gDrawMarker(42)
call gDisplayStr(‘The owl and the pussy cat’)
call gMoveToNextLine
call gDisplayStr(‘Went to sea, in a beautiful pea-green boat’)
call gMoveToNextLine
call gDisplayStr(‘They sailed away for a night and a day’)
call gMoveToNextLine
call gDisplayStr(‘With a jar of honey, and plenty of money,’)
call gMoveToNextLine
call gDisplayStr(‘wrapped up in a five pound note’)
call gMoveToNextLine

A call to gMoveToNextLine() without initializing the start position through

gStartTextBlock() will generate a warning message. The start position of the text

block will be taken as the current pen position upon the call to

gMoveToNextLine().

The current text block settings can be obtained by calling the routine:

gEnqTextBlockAttribs(xbeg, ybeg, factor)

xbeg, ybeg return the current text line position within the text block.

Exponents and Indices

Exponents and indices can be drawn within character strings using the escape

sequences *E and *I as described. The position and size of exponents and indices

are set or enquired with the routines:

gSetStrExponent(relcw, relch, posexp, posind)

gEnqStrExponent(relcw, relch, posexp, posind)

155

CHARACTERS Character String Attributes

Use of Text Block Routines

where relcw and relch are the relative character width and height of both

exponents and indices. posexp is the relative character height above the baseline

at which the exponents are drawn and posind is the relative character height

below the baseline at which indices are drawn.

Escape Characters

An escape mechanism enables various control functions to be specified in

character strings. Initially, the escape character is an asterisk *. The following

controls are provided:

‘*.’ String terminator

‘*L’ Shift to lowercase

‘*U’ Shift to upper-case

‘*Fnnn‘ Change to font nnn (eg: change to font 3: *F003)

‘*FS’ Sets the GINO font to the temporary string font

‘*FR’ Restores the font which was current when the string routine was called

‘*N’ Move to next line of text block

‘*E’ Set exponent (0.6*height above baseline)

‘*I’ Set Index (0.3*height below baseline)

‘*A’ Align position (also resets exponents, indices, underline and weight)

‘*B’ Move back to last align position on baseline

‘*O’ Position next character over previous character at exponent size setting

‘*S’ Underline following characters

‘*\’ Set italic -15 deg

‘*|’ Set italic 0 deg

‘*/’ Set italic +15 degrees

‘*W’ Bold following characters

‘*:’ Umlaut facility (must be followed by an A,O,U, or S)

‘*:S’ Displays German sz character if available in current font

‘**’ Output the escape character

The functionality of these facilities are detailed in the reference document in the

description of gDisplayStr(). For all strings specified as character variables or

arrays, it is advisable that the string be terminated by ‘*.’.

The following sequence of statements produces the characters shown in the

figure below:

156

Character String Attributes CHARACTERS

C code

gDisplayStr(“DATE OF BIRTH: ”);
gDisplayStr(“1*LST *UM*LAY 1988");
gMoveToNextLine();
gDisplayStr(”H*I2*ASO*I4*.");
gMoveToNextLine();
gDisplayStr(“a*E2*A+b*E2*A=c*E2*.”);
gMoveToNextLine();
gDisplayStr(“m*B*E*F070T*.”);
gMoveToNextLine();
gDisplayStr(“*S*\Thames*.”);
gMoveToNextLine();
gDisplayStr(“*F070S*FS*B*I*I*I*I*/i*| =”

“1*B*E*E*E*E*/m*Ak*Iin*.”);

F90 code

call gDisplayStr(DATE OF BIRTH: ‘)
call gDisplayStr(‘1*LST *UM*LAY 1988’)
call gMoveToNextLine
call gDisplayStr(‘H*I2*ASO*I4*.’)
call gMoveToNextLine
call gDisplayStr(‘a*E2*A+b*E2*A=c*E2*.’)
call gMoveToNextLine
call gDisplayStr(‘m*B*E*F070T*.’)
call gMoveToNextLine
call gDisplayStr(‘*S*\Thames*.’)
call gMoveToNextLine
call gDisplayStr(‘*F070S*FS*B*I*I*I*I*/i*| =’ // &

‘1*B*E*E*E*E*/m*Ak*Iin*.’)

157

CHARACTERS Character String Attributes

Use of Escape Sequences

Changing the Escape Character

When it is not convenient to use ‘*’ as the escape character, another character

(for example ‘!’) can be selected using:

gSetEscapeChar(cha)

The escape character may be set to any character in the ASCII set excepting

those used for escape sequences themselves.

gSetEscapeChar(“!”); call gSetEscapeChar(‘!’)

Escape Character Enquiry

The currently selected escape character may be obtained by using:

gEnqEscapeChar(cha)

Character Strings Adjusted to Fit a Specified Width

To output a string to fit between any two arbitrary points, the routine

gFitCharStr() can be used:

gFitCharStr(string, x1, y1, x2, y2, fit)

When fit = GB2P, the string angle is adjusted so that the string lies along the

arbitrary line between the two points. When fit = GSIZE the character size is also

adjusted so that the string exactly fits between the two points (other values of fit

are reserved for future development).

158

Character String Attributes CHARACTERS

Strings adjusted to fit

between two points

Character Strings Drawn Along a Curve

Two routines are provided to place character strings along the line of a curve:

gDisplayStrPolylineTo2D(npts, points, string)

gDisplayStrPolylineBy2D(npts, points, string)

The current character size and justification applies to the string which may result

in the string being clipped.

Returning Information about a String

It is often useful to be able to determine the length of a character string before it

is output. With fixed pitch fonts this can be calculated by multiplying the number

of characters by the actual character width, but where the string contains

proportional fonts or a number of escape sequences it is very difficult to calculate

this value. The routine gReturnStrInfo() can be used to return the length and

other information relating to a character string.

gReturnStrInfo(string, rlen, nnl, tch, sch, nesc)

159

CHARACTERS Character String Attributes

Example of character string

drawn along a curve

where string is the input string to be enquired. rlen is the maximum length of

that string in current units. nnl returns the number of lines contained in the string

(which is normally 1 unless the *N escape sequence has been used). tch returns

the total character height, which always includes space for descenders and

underlining and can include space for indices and multiple lines if the string

contains them. sch returns the maximum height above the base line of the string.

nesc returns the number of characters discounting the escape sequences in the

string.

Country Specific Characters

GINO provides provision for outputting certain non-standard ASCII characters in

either software or hardware character mode.

160

Character String Attributes CHARACTERS

Information returned by gReturnStrInfo()

Euro Symbol

The Euro symbol has been added into software fonts 101 and 102 at position 127

and can be output either by inserting the character directly from the keyboard-key

or <alt><key> sequence into the source code or by selecting font 101/102 and

position 127 using the routines gSetCharFont() and gDisplayAsciiChar(). The

hardware symbol can be output using the mwin, wogl, xwin, glx and postscript

drivers by using fonts 100-108 and inserting the character directly from the

keyboard-key or <alt><key> sequence. Note that the hardware Euro symbol will

only appear on Windows 98 rel. 2 or later, with the DW-Motif Euro kit under

OpenVMS, or with Postscript Level III firmware.

German Umlaut characters

The German umlaut characters have been added into various software fonts at

positions 25-31 and can be output by inserting the character directly from the

keyboard-key or <alt><key> sequence into the source code or by selecting the

required font and character position using the routines gSetCharFont() and

gDisplayAsciiChar(). The hardware symbols can be output using the mwin, wogl,

xwin, glx and postscript drivers by using fonts 100-108 and inserting the

character directly from the keyboard-key or <alt><key> sequence. The umlaut

characters can also be output by using the GINO ‘escape’ character ‘*:’ followed

by a,o,u or s and this will produce the correct character either in hardware or

software depending on the font and character mode selected.

Symbols

Any hardware or software character together with an additional 9 symbols may

be output as a centred symbol by using the routine gDrawMarker():

gDrawMarker(nsym)

where nsym is used to indicate the symbol number that is required. Apart from

the first nine symbols, numbered 0 - 8, indicated below, other characters may be

output with the gDrawMarker() routine using the symbol number printed in the

bottom left corner in the character tables in Appendix C.

Symbols are drawn the same size and shape as characters defined by the routines

gSetCharSize(), etc. However, if non-horizontal or italic symbols are required,

GINO transformations must be used with software transformable characters in

operation.

161

CHARACTERS Symbols

These are the first nine GINO symbols:

Symbol 0 is a dot of radius half the character width.

Note that the mode setting routines gSetHardChars(), gSetSoftChars() and

gSetMixedChars() also affect the output of symbols.

Positioning Symbols

Symbols are centred about the start pen position, and the pen is left at the centre

of the symbol. For example - the following statements join the nine points held in

the arrays X and Y, drawing a different symbol at each point as shown in the

figure below.

gSetCharSize(6.0,6.0);
gMoveTo2D(x[0],y[0]);
gDrawMarker(0);
for (n=1, n<9, n++) {

gDrawLineTo2D(x[n],y[n]);
gDrawMarker(n);

}

call gSetCharSize(6.0,6.0)
call gMoveTo2D(x(1),y(1))
call gDrawMarker(0)
do n=2,9

call gDrawLineTo2D(x(n),y(n))
call gDrawMarker(n-1)

end do

162

Symbols CHARACTERS

9 Pre-defined Symbols

Multiple Symbols

Routines for drawing multiple symbols in 2D or 3D are:

gDrawPolymarkerTo2D(npts, points2, nsym)

gDrawPolymarkerBy2D(npts, points2, nsym)

gDrawPolymarkerTo3D(npts, points3, nsym)

gDrawPolymarkerBy3D(npts, points3, nsym)

The following example draws an asterisk (symbol number 8) at each of 6 points

stored in the pt array and joins them with an Akima curve:

gDrawPolymarkerTo2D(6,pt,8);
gDrawAkimaTo2D(6,pt,GNONE,GNONE);

call gDrawPolymarkerTo2D(6,pt,8)
call gDrawAkimaTo2D(6,pt, &

GNONE,GNONE)

163

CHARACTERS Symbols

Multiple Symbol Drawing

Chapter 7
AREA FILLING

Area Filling Introduction

GINO provides area filling facilities for simple and complex polygons using solid

fill or various hatch styles. Simple polygons are defined as a series of points,

either singly or in sets, in 2D space, Up to a limit of 2048 points. These are

described in this chapter. Complex polygons are constructed using the 2D or 3D

drawing routines (lines, curves etc.)and stored in internal workspaces. They can

be given identifiers for selective filling and picking and can be used for defining

polygonal windows and/or masks. These are described later in this document (see

page 245).

The appearance of the fill for all these routines depends on the hatching style and

the line style in which it is drawn. GINO offers 16 default hatch styles (out of a

possible 256), all of which may be redefined by the user.

A third type of polygon, called a facet, is also available in GINO for use with

lighting and shading options (see page 295).

Filling a Rectangle

The routine for filling rectangles is :

gFillRect(fill, line, limit)

165

The fill style determines how the rectangular area is filled. If fill = GSOLID, the

area is solid filled by hardware or by horizontal lines drawn touching each other.

If fill = GBOUNDARY, only the boundary outline is drawn. Other default hatch

fill styles are shown later in this section. The style of the hatch line is selected by

line from the line definition table. If line = GCURRENT, the current line style is

selected. Line styles can modify the appearance of a hatch style. This is

particularly apparent with the attributes broken line type and colour.

For example, a solid fill by software (fill = GSOLID) is changed if a broken line

type is selected. If line is set out of range (i.e. greater than 256), the filling line

style defaults to the current line. A solid fill also results if fill is set out of range

(i.e. greater than 256).

The diagonally opposite corners of the rectangle are specified by the structure

limit. These are picture space coordinates. limit.xmin may be greater than

limit.xmax and limit.ymin may be greater than limit.ymax.

For example, the statements:

static GLIMIT limit =
{50.0,130.0,50.0,100.0};

gFillRect(6,GCURRENT,&limit);

type (GLIMIT) :: limit = &
GLIMIT(50.0,130.0,50.0,100.0)

call gFillRect(6,GCURRENT,limit)

would produce a rectangle filled with hatch style 6 (see default hatch styles table)

in the current line style.

The rectangle, like other output primitives, is subject to the current

transformation, which if any rotations of scales are present, will result in a

non-rectangular shape. For example, if a call to gFillRect() is made when a

rotation of -30.0 degrees is the current transformation, the area shown in the

figure below will be filled thus:

166

Filling a Rectangle AREA FILLING

A Filled Rectangle

static GLIMIT limit =
{0.0,80.0,100.0,160.0};

gRotate2D(-30.0);
gFillRect(GHOLLOW,3,&limit);
gFillRect(2,GCURRENT,&limit)

type (GLIMIT) :: limit = &
GLIMIT(0.0,80.0,100.0,160.0)

call gRotate2D(-30.0)
call gFillRect(GHOLLOW,3,limit)
call gFillRect(2,GCURRENT,limit)

Filling Single Polygons

The routines for filling single polygons are:

gFillPolygonTo2D(fill, line, inv, npts, points)

gFillPolygonBy2D(fill, line, inv, npts, points)

The routines gFillPolygonTo2D() and gFillPolygonBy2D() fill a single polygon

with npts vertices. Each polygon includes the current pen position and either the

absolute or relative points in the array of points being structures of GPOINT. An

extra point is added if necessary to ensure the polygon is closed before filling.

The fill style and line style are defined in the same way as gFillRect(), using fill

and line arguments.

inv specifies which area is to be filled. When inv=GAREA the interior of the

polygon is filled and when inv=GINVERSE the exterior area up to the current

window limits is filled, leaving the interior empty. If the polygon is self

intersecting, unfilled areas can be created within a polygon.

167

AREA FILLING Filling Single Polygons

The Effect of Transformation on gFillRect

The following examples show the application of 2-D polygon filling:

static GPOINT pts[6] =
{300.0,200.0, 180.0,150.0,
210.0,220.0, 240.0,200.0,
210.0,180.0, 180.0,250.0};
.
.

gMoveTo2D(180.0,250.0);
gDrawPolylineTo2D(6,pts);
gFillPolygonTo2D(1,4,GAREA,

6,pts);

type (GPOINT) :: pts(6) = (/ &
GPOINT(300.0,200.0), &
GPOINT(180.0,150.0), &
GPOINT(210.0,220.0), &
GPOINT(240.0,200.0), &
GPOINT(210.0,180.0), &
GPOINT(180.0,250.0} /)
.

call gMoveTo2D(180.0,250.0)
call gDrawPolylineTo2D(6,pts)
call gFillPolygonTo2D(1,4,GAREA,&

6,pts)

gMoveTo2D(180.0, 250.0);
gDrawPolylineTo2D(6,pts);
gFillPolygonTo2D(1,4,GINVERSE,

6,pts);

call gMoveTo2D(180.0, 250.0)
call gDrawPolylineTo2D(6,pts)
call gFillPolygonTo2D(1,4, &

GINVERSE,6,pts)

168

Filling Single Polygons AREA FILLING

Polygon Fill with Normal Fill

Filling Polygon Sets

Polygon Set Definition

A polygon set consists of an array of polygons each of which consists of an

integer number of vertices and a pointer to an array of 2D vertices. The storage of

such a 2D polygon set requires the following data structure in either C/C++ or

Fortran 90.

typedef struct {
int nvert;
GPOINT *verts;

} GPOLYGON;

type GPOLYGON
sequence
int :: nvert
type (GPOINT),dimension(:), &

pointer :: verts
end type

Each polygon is complete within itself and does not make use of the current pen

position. For this reason polygon sets can only use absolute coordinates. GINO

ensures that every polygon is closed by adding the first point to the end of each

polygon if it is not contained in the definition supplied by the application

program.

An example of a 2-D polygon set consisting of a trapezium and two triangles is

shown in the diagram below:

1 2 3 4 5 6 7 8 9 10

169

AREA FILLING Filling Polygon Sets

Polygon Fill with Inverse Fill

x: 40. 160. 340. 460. 120. 245. 245. 250. 440. 250.

y: 140. 40. 40. 140. 145. 270. 145. 145. 145. 335.

<------------------------------------> <---------------------------> <----------------------->

Polygon sizes

4 3 3

Polygon Usage

Two dimensional polygon sets are filled using the following routine:

gFillPolygonSet2D(fill, line, inv, npol, polygons)

GINO applies the current viewing transformations to the polygon to create a

single polygon which is filled the same way as normal 2-D filling. Therefore if

any polygon within the set overlaps any other, or itself, then the generated

polygon could be windowed.

The fill style and line style are defined in the same way as gFillRect(), using fill

and line arguments.

The argument inv specifies which areas are to be filled once the single polygon

has been generated. When inv = GAREA the interior of the polygon is filled, and

when inv = GINVERSE the exterior area up to the current window limits is

filled, leaving the interior empty.

The example polygon sets described previously can be implemented as follows.

170

Filling Polygon Sets AREA FILLING

Filled polygon set

C code

#include gino-c.h

GPOLYGON poly[3] = {4, 0, 3, 0, 3, 0};
GPOINT points[10] = {

40.0,140.0, 160.0,40.0, 340.0,40.0, 460.0,140.0,
120.0,145.0, 245.0,270.0, 245.0,145.0,
250.0,145.0, 440.0,145.0, 250.0,335.0};

poly[0].verts=&points[0];
poly[1].verts=&points[4];
poly[2].verts=&points[7];

gFillPolygonSet2D(6,1,GAREA,3,poly);

F90 code

use gino_f90

type (GPOLYGON) :: poly(3)
type (GPOINT) :: points(10) = {/ &

GPOINT(40.0,140.0), GPOINT(160.0,40.0), &
GPOINT(340.0,40.0), GPOINT(460.0,140.0), &
GPOINT(120.0,145.0),GPOINT(245.0,270.0), &
GPOINT(245.0,145.0), GPOINT(250.0,145.0), &
GPOINT(440.0,145.0), GPOINT(250.0,335.0) /)

poly(1)%nvert=4
poly(1)%verts=>points(1:4)
poly(2)%nvert=3
poly(2)%verts=>points(5:7)
poly(3)%nvert=3
poly(3)%verts=>points(8:10)
.
gFillPolygonSet2D(6,1,GAREA,3,poly)

Filling Modes

Depending on capabilities of the graphics device the filling mode can be

switched between hardware and software with the following routine:

gSetFillMode(sw)

By default the device is requested to execute the fill in hardware (because

hardware is more efficient) but if it cannot, GINO will fill the polygon with a

series of lines. This default case corresponds to a call to gSetFillMode(GHARD)

and the results may depend on the device. To force a software fill every time, a

call to gSetFillMode(GSOFT) should be made.

171

AREA FILLING Filling Modes

Hatch Style Definition

gDefineHatchStyle(fill, rep)

gEnqHatchStyle(fill, rep)

Up to 256 hatch styles (fill=1 to 256) may be defined and stored in GINO’s hatch

style table. This table is initialized with the set of 16 values shown in the table

below (repeated throughout the 256 entries) each time an output device is

nominated. These styles, when drawn with a solid line, appear as in the figure

below the table which displays the hatch styles.

no. name pitch angle xshift yshift xshear xhatch

1 GFINEHORIZONTAL 2.0 0.0 0.0 0.0 0.0 0

2 GFINEVERTICAL 2.0 90.0 0.0 0.0 0.0 0

3 GFINELEFTDIAGONAL 2.0 -45.0 0.0 0.0 -45.0 0

4 GFINERIGHTDIAGONAL 2.0 45.0 0.0 0.0 45.0 0

5 GFINEHORIZONTALGRID 2.0 0.0 0.0 0.0 0.0 1

6 GFINEDIAGONALGRID 2.0 45.0 0.0 0.0 0.0 1

7 GFINEHORIZONTALMESH 2.0 -30.0 0.0 0.0 30.0 1

8 GFINEDIAGONALMESH 2.0 60.0 0.0 0.0 30.0 1

9 GCOARSEHORIZONTAL 4.0 0.0 0.0 0.0 0.0 0

10 GCOARSEVERTICAL 4.0 90.0 0.0 0.0 0.0 0

11 GCOARSELEFTDIAGONAL 4.0 -45.0 0.0 0.0 -45.0 0

12 GCOARSERIGHTDIAGONAL 4.0 45.0 0.0 0.0 45.0 0

13 GCOARSEHORIZONTALGRID 4.0 0.0 0.0 0.0 0.0 1

14 GCOARSEDIAGONALGRID 4.0 45.0 0.0 0.0 0.0 1

15 GCOARSEHORIZONTALMESH 4.0 -30.0 0.0 0.0 30.0 1

16 GCOARSEDIAGONALMESH 4.0 60.0 0.0 0.0 30.0 1

172

Hatch Style Definition AREA FILLING

The user may redefine entries in the hatch styles table by calling

gDefineHatchStyle(). For example:

static GHATSTY rep =
{6.0,0.0,0.0,0.0,450.0,1};

gDefineHatchStyle(2,&rep);

type (GHATSTY) :: rep = &
GBRKSTR(6.0,0.0,0.0,0.0,450.0,1)

call gDefineHatchStyle(2,rep)

173

AREA FILLING Hatch Style Definition

Default hatch styles

would redefine table entry 2. If this hatch style was then selected by a polygon

fill routine, using a solid line, the resulting fill would look like that shown in the

figure below.

The structure GHATSTY has six elements which fully define hatch style:

rep.pitch, rep.angle, rep.xshift, rep.yshift, rep.xshear and rep.xhatch. The

elements are best understood in terms of the hatch origin and the local axes. The

hatch origin is the origin of the local axes and the local axes are the picture axes

rotated and shifted. See the figures below. In the following descriptions of the

parameters, examples are drawn from the default values set in the hatch style

table by GINO.

rep.pitch specifies the distance between hatch lines.

rep.angle is the rotation of the local axes about the picture origin. Positive

rotation is anticlockwise.

rep.xshift moves the hatch origin in the direction of the local X axis. The effect

of rep.xshift is apparent if cross hatching is selected.

rep.yshift moves the hatch origin in a direction perpendicular to the X axis.

rep.xshift and rep.yshift may be used to align the hatching pattern within a

polygon.

174

Hatch Style Definition AREA FILLING

Hatch Style Definition

rep.xshear (see figure below) is the angle by which the local Y axis is sheared.

rep.yshift remains perpendicular to the local X axis. Positive shear is clockwise.

Shear is apparent only if cross hatching or a broken fill line is selected. When the

broken line has continuous mode selected, the dashes will be centred about the

local axes.

175

AREA FILLING Hatch Style Definition

The effect of Shear

The effect of Angle and Shift

rep.xhatch switches cross hatching on and off. Hatch lines are drawn parallel to

the local axes and start at the hatch origin.

Single hatch lines (rep.xhatch=GOFF) are drawn parallel to the local X axis.

Cross hatching (rep.xhatch=GON) is drawn parallel to both local X and Y axes.

176

Hatch Style Definition AREA FILLING

Single Hatch lines (continuous broken lines)

Cross Hatch lines (continuous broken lines)

When rep.xhatch=GON both sets of hatch lines are drawn a distance rep.pitch

apart. rep.pitch is the distance between hatch lines.

A hatch pattern is generated with a hatch line coinciding with the local X axis.

Subsequent lines are drawn parallel to the local X axis at a distance rep.pitch

apart. If rep.xhatch =GON a second set of hatch lines are drawn parallel to the

local Y axis (which may be sheared) with one of them coincident with the axis

itself. Both sets of hatch lines may be thought to extend to infinity in both

directions though in practice GINO stops where there are no more polygons to be

filled or when clipping limits are reached.

When cross hatching with continuous mode broken lines (i.e. brk.mode =

GCONTDASH or GCONTCHAIN, see gDefineBrokenLineStyle()), the repeat

length is adjusted so that dashes bisect where the hatch lines cross each other.

Dash and dot lengths are adjusted proportionally. See the figures below.

177

AREA FILLING Hatch Style Definition

Cross hatching with broken line (mode=GCONTDASH)

Pitch for cross hatching

Compound hatching effects may be produced by several polygon fills of the same

polygonal area. The hatch definition and line style may be changed for each fill.

The two examples of GINO code at the end of this section produce the compound

hatching effects in the figures below. Notice the following points:

a. Repeat and dash lengths of gDefineBrokenLineStyle() are related to the pitch

distance to give horizontal and vertical symmetry to the patterns.

b. The bottom left hand corner of each polygon is a whole number of repeat

lengths from the X and Y picture axis. The hatch pattern therefore appears to

have its origin in this corner of the polygon. To change this, alter rep.xshft and

rep.yshft.

c. The broken lines specified by gDefineBrokenLineStyle() are continuous. This

means that the fill pattern is generated without reference to the edges of the

polygon. If discontinuous mode is chosen, for example, change the contents of

brk.mode from GCONTDASH to GDISCONTDASH in the broken line structure

brk in Example 1 code; the fill would appear as in the figure below.

Example 1

C code

#include <gino-c.h>
#include <math.h>
#ifndef PI
#define PI 3.141592654
#endif

178

Hatch Style Definition AREA FILLING

Cross hatching with broken line (mode=GCONTCHAIN)

main ()
{
static GPOINT pts[13]= {

30.0,80.0, 80.0,80.0, 90.0,90.0, 120.0,90.0,
120.0,80.0, 95.0,80.0, 85.0,70.0, 95.0, 60.0,
120.0,60.0, 120.0,50.0, 90.0,50.0, 80.0,60.0,
30.0,60.0};

GBRKSTY brk = { GCONTDASH, 8.0, 4.0, 0.0};
GHATSTY hat = { 4.0, 0.0, 0.0, 0.0, 0.0, 0};

gOpenGino();
/* Nominate device */

xxxxx();
gNewDrawing();

/* Set software fill and broken line generation modes */
gSetFillMode(GSOFT);
gSetBrokenLineMode(GSOFT);

/* Define broken line style */
gDefineBrokenLineStyle(7, &brk);

/* Redefine shear angle to match broken line repeat length */
hat.xshear=(atan2(brk.repeat,2.0*hat.pitch))*180.0/PI;

/* Define 2 hatch styles */
gDefineHatchStyle(1, &hat);
hat.angle=90.0;
gDefineHatchStyle(2, &hat);

/* Draw boundary and fill polygon */
gMoveTo2D(30.,60.);
gDrawPolylineTo2D(13, pts);
gSetBrokenLine(7);
gFillPolygonTo2D(1, GCURRENT, GAREA, 13, pts);
gFillPolygonTo2D(2, GCURRENT, GAREA, 13, pts);

/* Close down device and GINO */
gCloseDevice();
gCloseGino();

}

F90 code

program hatch1
user gino_f90

type (GPOINT) :: pts(13)= (/ &
GPOINT(30.0,80.0), GPOINT(80.0,80.0), GPOINT(90.0,90.0),&
GPOINT(120.0,90.0), GPOINT(120.0,80.0), GPOINT(95.0,80.0),&
GPOINT(85.0,70.0), GPOINT(95.0,60.0), GPOINT(120.0,60.0),&
GPOINT(120.0,50.0), GPOINT(90.0,50.0), GPOINT(80.0,60.0),&
GPOINT(30.0,60.0} /)

type (GBRKSTY) :: brk = GBRKSTY(GCONTDASH, 8.0, 4.0, 0.0)
type (GHATSTY) :: hat = GHATSTY(4.0, 0.0, 0.0, 0.0, 0.0, 0)
integer :: PI = 3.141592654

call gOpenGino
! Nominate device

call xxxxx
call gNewDrawing

! Set software fill and broken line generation modes
call gSetFillMode(GSOFT)
call gSetBrokenLineMode(GSOFT)

! Define broken line style
call gDefineBrokenLineStyle(7, brk)

! Redefine shear angle to match broken line repeat length
hat%xshear=(atan2(brk%repeat,2.0*hat%pitch))*180.0/PI

179

AREA FILLING Hatch Style Definition

! Define 2 hatch styles
call gDefineHatchStyle(1, hat)
hat%angle=90.0
call gDefineHatchStyle(2, hat)

! Draw boundary and fill polygon
call gMoveTo2D(30.,60.)
call gDrawPolylineTo2D(13, pts)
call gSetBrokenLine(7)
call gFillPolygonTo2D(1, GCURRENT, GAREA, 13, pts)
call gFillPolygonTo2D(2, GCURRENT, GAREA, 13, pts)

! Close down device and GINO
call gCloseDevice
call gCloseGino
stop
end

Example 2

C code

GBRKSTY brk = { GCONTDASH, 8.0, 4.0, 0.0];
GHATSTY hat = { 4.0, 0.0, 0.0, 0.0, 0.0, 0};
.
.

gDefineBrokenLineStyle(7, &brk);
/* redefine shear angle to match broken line repeat

length */
hat.xshear=(atan2(brk.repeat,2.0*hat.pitch))*180.0/PI;

/* define first hatch style */
gDefineHatchStyle(1, &hat);

/* define second broken line style */
brk.repeat=sqrt((brk.repeat**2.0)/2.0);
brk.dash=brk.repeat/2.0;
gDefineBrokenLineStyle(8, &rep);

/* define second hatch style */
hat.pitch=brk.repeat;
hat.angle=45.0;
hat.xshear=0.0;
gDefineHatchStyle(2, &hat);

180

Hatch Style Definition AREA FILLING

Compound fill of example 1

/* draw boundary and fill polygon */
gMoveTo2D(30.,60.);
gDrawPolylineTo2D(13, pts);
gSetBrokenLine(7);
gFillPolygonTo2D(1, GCURRENT, GAREA, 13, pts);
gSetBrokenLine(8);
gFillPolygonTo2D(2, GCURRENT, GAREA, 13, pts);
.
.

F90 code

type (GBRKSTY) :: brk = GBRKSTY(GCONTDASH, 8.0, 4.0, 0.0)
type (GHATSTY) :: hat = GHATSTY(4.0, 0.0, 0.0, 0.0, 0.0, 0)
.
.

call gDefineBrokenLineStyle(7, brk)
! redefine shear angle to match broken line repeat
! length

hat%xshear=(atan2(brk%repeat,2.0*hat%pitch))*180.0/PI
! define first hatch style

call gDefineHatchStyle(1, hat)
! define second broken line style

brk%repeat=sqrt((brk%repeat**2.0)/2.0)
brk%dash=brk%repeat/2.0
call gDefineBrokenLineStyle(8, rep)

! define second hatch style
hat%pitch=brk%repeat
hat%angle=45.0
hat%xshear=0.0
call gDefineHatchStyle(2, hat)

! draw boundary and fill polygon
call gMoveTo2D(30.,60.)
call gDrawPolylineTo2D(13, pts)
call gSetBrokenLine(7)
call gFillPolygonTo2D(1, GCURRENT, GAREA, 13, pts)
call gSetBrokenLine(8)
call gFillPolygonTo2D(2, GCURRENT, GAREA, 13, pts)
.
.

181

AREA FILLING Hatch Style Definition

Compound fill of example 2

GBRKSTY brk = {
GDISCONTDASH, 8.0, 4.0, 0.0];

type (GBRKSTY) :: brk = GBRKSTY(&
GDISCONTDASH, 8.0, 4.0, 0.0)

Hatch Style Enquiry

The routine gEnqHatchStyle() returns hatch style definitions from the software

table of hatch styles.

The particular table entry of interest is identified by fill.

gEnqHatchStyle(fill, rep)

E.g:

GHATSTY hat;

gEnqHatchStyle(7,&hat);

type (GHATSTY) hat

call gEnqHatchStyle(7,hat)

returns the hatch style specified by entry 7.

182

Hatch Style Definition AREA FILLING

Compound Fill of example 1 (discontinuous mode)

Multiple Hatch Styles

Complex hatch patterns may be defined using multiple hatch styles and filling the

area the same number of times as the number of hatch styles, as shown in the

examples below:

Box Hatch style

C Code

GHATSTY hatch1 = {2.5,45.0,1.25,0.0,0.0,0};
GHATSTY hatch2 = {2.5,135.0,1.25,0.0,0.0,0};
GBRKSTY brk1 = {GCONTDASH,5.0,2.5,0.0};
.
.

gDefineHatchStyle(1,&hatch1);
gDefineHatchStyle(2,&hatch2);
gDefineBrokenLineStyle(1,&brk1);

gMoveTo2D(30.,60.);
gDrawPolylineTo2D(13,pts);
gSetBrokenLine(1);
gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts);
gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts);

F90 Code

type (GHATSTY) :: hatch1 = GHATSTY(2.5,45.0,1.25,0.0,0.0,0)
type (GHATSTY) :: hatch2 = GHATSTY(2.5,135.0,1.25,0.0,0.0,0)
type (GBRKSTY) :: brk1 = GBRKSTY(GCONTDASH,5.0,2.5,0.0)
.
.

call gDefineHatchStyle(1,hatch1)
call gDefineHatchStyle(2,hatch2)
call gDefineBrokenLineStyle(1,brk1)

!
call gMoveTo2D(30.,60.)
call gDrawPolylineTo2D(13,pts)
call gSetBrokenLine(1)
call gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts)
call gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts)

!

183

AREA FILLING Multiple Hatch Styles

Brick Hatch Style

C Code

GHATSTY hatch1 = {3.0,0.0,0.0,0.0,0.0,0};
GHATSTY hatch2 = {2.5,90.0,1.5,0.0,0.0,0};
GBRKSTY brk1 = {GCONTDASH,6.0,3.0,0.0};
.
.

dr=0.017453293;
/* Brick shear */

hatch2.xshear=atan(3.0/2.5)/dr;
gDefineHatchStyle(1,&hatch1);
gDefineHatchStyle(2,&hatch2);
gDefineBrokenLineStyle(1,&brk1);

gMoveTo2D(30.,60.);
gDrawPolylineTo2D(13,pts);
gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts);
gSetBrokenLine(1)
gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts);

F90 Code

type (GHATSTY) :: hatch1 = GHATSTY(3.0,0.0,0.0,0.0,0.0,0)
type (GHATSTY) :: hatch2 = GHATSTY(2.5,90.0,1.5,0.0,0.0,0)
type (GBRKSTY) :: brk1 = GBRKSTY(GCONTDASH,6.0,3.0,0.0)
.
.

dr=0.017453293
! Brick shear

hatch2%xshear=atan(3.0/2.5)/dr
call gDefineHatchStyle(1,hatch1)
call gDefineHatchStyle(2,hatch2)
call gDefineBrokenLineStyle(1,brk1)

!

184

Multiple Hatch Styles AREA FILLING

Box Hatch Style

call gMoveTo2D(30.,60.)
call gDrawPolylineTo2D(13,pts)
call gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts)
call gSetBrokenLine(1)
call gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts)

Honeycomb Hatch Style

C Code

GHATSTY hatch1 = {1.732,30.0,1.0,0.0,0.0,0};
GHATSTY hatch2 = {1.732,-30.0,-1.0,0.0,0.0,0};
GHATSTY hatch3 = {1.732,90.0,-1.0,0.0,0.0,0};
GBRKSTY brk1 = {GCONTDASH,6.0,2.0,0.0};
.
.

185

AREA FILLING Multiple Hatch Styles

Brick Hatch Style

dr=0.017453293;
/*! Honeycomb shear */

hatch1.xshear=atan(1.732)/dr;
hatch2.xshear=atan(1.732)/dr;
hatch3.xshear=atan(1.732)/dr;

call gDefineHatchStyle(1,&hatch1);
call gDefineHatchStyle(2,&hatch2);;
call gDefineHatchStyle(3,&hatch3)
call gDefineBrokenLineStyle(1,&brk1);

call gMoveTo2D(30.,60.);
call gDrawPolylineTo2D(13,pts);
call gSetBrokenLine(1);
call gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts);
call gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts);
call gFillPolygonTo2D(3,GCURRENT,GAREA,13,pts);

F90 Code

type (GHATSTY) :: hatch1 = GHATSTY(1.732,30.0,1.0,0.0,0.0,0)
type (GHATSTY) :: hatch2 = GHATSTY(1.732,-30.0,-1.0,0.0,0.0,0)
type (GHATSTY) :: hatch3 = GHATSTY(1.732,90.0,-1.0,0.0,0.0,0)
type (GBRKSTY) :: brk1 = GBRKSTY(GCONTDASH,6.0,2.0,0.0)
.
.
!

dr=0.017453293
! Honeycomb shear

hatch1%xshear=atan(1.732)/dr
hatch2%xshear=atan(1.732)/dr
hatch3%xshear=atan(1.732)/dr

!
call gDefineHatchStyle(1,hatch1)
call gDefineHatchStyle(2,hatch2)
call gDefineHatchStyle(3,hatch3)
call gDefineBrokenLineStyle(1,brk1)

!
call gMoveTo2D(30.,60.)
call gDrawPolylineTo2D(13,pts)
call gSetBrokenLine(1)
call gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts)
call gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts)
call gFillPolygonTo2D(3,GCURRENT,GAREA,13,pts)

!

186

Multiple Hatch Styles AREA FILLING

Trellis Hatch Style

C Code

GHATSTY hatch1 = {2.5,45.0,0.0,-0.4,45.0,0};
GHATSTY hatch2 = {2.5,45.0,0.0,0.4,45.0,0};
GHATSTY hatch3 = {2.5,135.0,2.5,-0.4,45.0,0};
GHATSTY hatch4 = {2.5,135.0,2.5,0.4,45.0,0};
GBRKSTY brk1 = {GCONTDASH,5.0,3.35,0.0};
.
.

gDefineHatchStyle(1,&hatch1);
gDefineHatchStyle(2,&hatch2);
gDefineHatchStyle(3,&hatch3);
gDefineHatchStyle(4,&hatch4);
gDefineBrokenLineStyle(1,&brk1);

gMoveTo2D(30.,60.);
gDrawPolylineTo2D(13,pts);
gSetBrokenLine(1);
gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts);
gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts);
gFillPolygonTo2D(3,GCURRENT,GAREA,13,pts);
gFillPolygonTo2D(4,GCURRENT,GAREA,13,pts);

F90 Code

type (GHATSTY) :: hatch1 = GHATSTY(2.5,45.0,0.0,-0.4,45.0,0)
type (GHATSTY) :: hatch2 = GHATSTY(2.5,45.0,0.0,0.4,45.0,0)
type (GHATSTY) :: hatch3 = GHATSTY(2.5,135.0,2.5,-0.4,45.0,0)
type (GHATSTY) :: hatch4 = GHATSTY(2.5,135.0,2.5,0.4,45.0,0)
type (GBRKSTY) :: brk1 = GBRKSTY(GCONTDASH,5.0,3.35,0.0)
.
.

187

AREA FILLING Multiple Hatch Styles

Honeycomb Hatch Style

call gDefineHatchStyle(1,hatch1)
call gDefineHatchStyle(2,hatch2)
call gDefineHatchStyle(3,hatch3)
call gDefineHatchStyle(4,hatch4)
call gDefineBrokenLineStyle(1,brk1)

!
call gMoveTo2D(30.,60.)
call gDrawPolylineTo2D(13,pts)
call gSetBrokenLine(1)
call gFillPolygonTo2D(1,GCURRENT,GAREA,13,pts)
call gFillPolygonTo2D(2,GCURRENT,GAREA,13,pts)
call gFillPolygonTo2D(3,GCURRENT,GAREA,13,pts)
call gFillPolygonTo2D(4,GCURRENT,GAREA,13,pts)

!

Complex Polygonal Definition, Drawing and Filling

Complex multi-polygons with no limits to the number of vertices may be drawn

and filled. The definition of these polygons, there use and other facilities are

described later in this document (see page 245).

188

Complex Polygonal Definition, Drawing and Filling AREA FILLING

Trellis Hatch Style

Chapter 8
IMAGE HANDLING

Image Handling Introduction

This section will describe the use and control of images within GINO. An image

is a picture described by a two-dimensional array of colour values that is to be

displayed in a rectangular area on the device. Routines are provided to address

the device at the device dependent, pixel level (ie. the smallest addressable unit

on the currently nominated device) or at the device independent cell array level.

Images may be written to or read from the device, copied from one area to

another or read in from a number of external image metafile types (see page 73).

Users should however refer to Appendix B to see if such image facilities are

available on the device being used as not all facilities are available on all devices.

The following routines are described in this section:

Read/Write single pixels gGetPixel()/gDrawPixel()

Read/Write images gGetPixelArea()/gDrawPixelArea()

Draw cell array gDrawCellArray()

Define pixel data characteristics gDefinePixelPacking()

Return picture coordinate of pixel position gEnqPosOfPixel()

Return pixel coordinate of picture position gEnqPixelPos()

Define image transformation gSetPixelTransform()

Replicate image rectangle gSetPixelReplication()

Return pixel resolution of device gEnqPixelResolution()

Enquire pixel scaling attributes gEnqPixelAttribs()

Enquire pixel data characteristics gEnqPixelPacking()

Switch image display characteristics gSetPixelDisplayMode()

189

Copy pixel areas gCopyPixelArea()

Pixel Coordinate System

The GINO pixel coordinate system has its origin in the upper left corner of the

available drawing area. This means that the Y value is reversed in comparison to

the regular GINO picture coordinate system. Values for pixel coordinates range

from 0 to the maximum X value minus one and the maximum Y value minus one,

for the resolution of the current device.

The pixel resolution of the current device can be found using the routine:

gEnqPixelResolution(nxpix, nypix)

Pixel coordinate values are not affected by GINO transformations or window

limits, and the display of images will be clipped to the current device limits. The

drawing of pixel information will not affect the current pen position for GINO’s

drawing in picture coordinates.

190

Image Handling Introduction IMAGE HANDLING

0
0

YRES-1

XRES-1

XRES is the X resolution

YRES is the Y resolution

Image Coordinate System

Reading and Writing Single Pixels

Two basic routines are provided for the reading and writing of single pixels on a

screen or printer:

gGetPixel(ix,iy,pix)

gDrawPixel(ix,iy,pix)

where ix,iy is the pixel coordinate to be read or written to, and pix is the pixel

data. This may be a colour index value or, if the device is in direct colour mode

(see page 46), a 24bit packed true colour value containing the required red, green

and blue components.

Image Display

The two routines to display images are:

gDrawCellArray(x1, y1, x2, y2, npixx, npixy, isc, isr, idx, idy, pixbuf)

gDrawPixelArea(ix, iy, npixx, npixy, isx, isy, idx, idy, pixbuf)

The routine gDrawCellArray() draws the supplied image in a rectangular area

where x1,y1 and x2,y2 specify the bottom left and top right corners in the current

drawing units, whereas the routine gDrawPixelArea() draws the supplied image

at the specified pixel position ix,iy.

Therefore in the former case the corner points represent two points in picture

space which are transformed according to the current GINO transformation and

viewing state to generate the corresponding points in pixel coordinates. The

image is then scaled to fit the transformed points. Note that the image is always

displayed in a rectangle with its sides parallel to the drawing area - the image is

never skewed. This routine offers a simple way to display an image that fits a

defined rectangle in a device independent way, at the expense of possible image

distortion or loss of data.

In the latter case(gDrawPixelArea()) the point ix, iy represents the top left corner

of the image and the image is displayed relative to this anchor point according to

the current pixel transformation settings (see below). In the default case, each

data value represents the colour of a single pixel and is displayed as such.

However, unless special steps are taken the image will cover different sized areas

on different devices according to its resolution.

191

IMAGE HANDLING Reading and Writing Single Pixels

Image Data

Image data is passed in a single-dimension 32 bit integer array, pixbuf,

containing npixx * npixy words which may contain data in a variety of forms:

• 24 bit packed RGB values (one per word)

• Unpacked colour indices (one per word)

• Packed colour indices

In the case of 24bit RGB triplets and unpacked colour indices, the pixbuf array

will contain npixx * npixy data values, which when output using

gDrawPixelArea() represent npixx * npixy pixels on the drawing area. Note that

24bit RGB triplets can only be used on devices operating in Direct Colour mode

(see page 46) and are therefore not device independent.

Colour indices are pointers into the current GINO colour table and are usually up

to 8bits in size. Whilst passing one index per word is rather wasteful in terms of

storage, it if often the simplest way of handling image data. However, GINO also

handles images containing packed colour indices of virtually any format (see

below).

In all three cases the data is assumed to be passed row by row starting with the

top left data value.

Sub Images

If only a subset of the image data is required then isx and isy are defined to be the

start position of the subset within the image with idx and idy being the size of the

subset. If the full image is required then isx and isy must be one, with idx and idy

being equal to npixx and npixy respectively.

192

Image Display IMAGE HANDLING

C code

int pixbuf[64440];
:
gDrawPixelArea(0,0,358,180,1,1,358,180,pixbuf);
gDrawPixelArea(60,210,358,180,60,30,50,50,pixbuf);
gDrawPixelArea(230,240,358,180,230,60,128,100,pixbuf);
:

F90 code

integer pixbuf(64440)
:
call gDrawPixelArea(0,0,358,180,1,1,358,180,pixbuf)
call gDrawPixelArea(60,210,358,180,60,30,50,50,pixbuf)
call gDrawPixelArea(230,240,358,180,230,60,128,100,pixbuf)
:

193

IMAGE HANDLING Image Display

NPIXX

NPIXY

ISX

ISY

IDX

IDY

NPIXX
NPIXY

ISX
ISY
IDX
IDY

is the width of the image file

is the height of the image file

is the X origin of the sub-image

is the Y origin of the sub-image

is the width of the sub-image

is the height of the sub-image

Coordinate System within an Image

Pixel Packing

Where colour indices are being used, the image may contain packed data or data

stored in a non standard ordering. The required format is specified using the

following routine:

gDefinePixelPacking(nbp, nrp, npw, ndir, dir)

194

Image Display IMAGE HANDLING

The complete image and two sub images

The first four parameters determine how the pixel data bit information is packed

within the integer array. nbp is the number of bits per pixel which is also known

as the image depth. nrb is the number of relevant bits which represents how

many bits within each pixel is to be used for displaying the image. npw

represents the number of pixels that are represented within each integer word.

Finally ndir specifies the direction that the bit information is oriented. The value

+1 indicates a normal direction while -1 indicates the reverse direction. An

example of these values is represented in the figure below which uses 4 byte

words, giving a maximum of 32 bits that can be used within each integer.

The values represent a format where there are four pixel values stored in each

integer word. Each pixel has eight data bits but only the six least significant bits

are to be used.

The variable dir specifies the order that the pixel data is to be accessed within the

array to correctly display the image. It can take the value 1 to 8 which determines

the start position and whether the data has been stored row by row or column by

column.

dir = 1 Start top left with data accessed row by row (default)

dir = 2 Start top left with data accessed column by column

dir = 3 Start top right with data accessed row by row

dir = 4 Start top right with data accessed column by column

dir = 5 Start bottom left with data accessed row by row

dir = 6 Start bottom left with data accessed column by column

dir = 7 Start bottom right with data accessed row by row

dir = 8 Start bottom right with data accessed column by column

The figure below shows the output of dir on a square image file. Care should be

taken when using this variable with non-square images, if the value of npixx,

npixy is inappropriate then the image will become incomprehensible.

195

IMAGE HANDLING Image Display

Storage of pixel data within integer words

C code

int pixbuf[10000];
:
gDefinePixelPacking(8, 8, 1, 1, dir);
gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf);
:

F90 code

integer pixbuf(10000)
:
call gDefinePixelPacking(8, 8, 1, 1, dir)
call gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf)
:

The value of dir that the user should use for scanned data depends on the

scanning characteristics of the equipment used. The output effect of dir shown

below only indicates what happens to a data file stored in the default format,

when output with different values of dir. If the scanning equipment uses scans

and stores the data in a format other than, ‘first pixel top left with subsequent

pixels following along the row’, then the correct value of dir will need to be

selected.

196

Image Display IMAGE HANDLING

DIR=1(left) DIR=2(right)

DIR=3(left) DIR=4(right)

Image Display Mode

On some devices image operations can be slow. The following command will

allow pixel images to be hidden:

gSetPixelDisplayMode(mode)

This routine is for use during the development of applications where the layout is

initially more important than the actual image itself. The default value for mode

is GON which will display the image if the device is capable of displaying it. A

value of GOFF will turn off the image so that nothing will be displayed and a

value of GBOUNDARY will also turn off the image but will draw a bounding

rectangle to represent the image size and position. The output of errors and

warnings applicable to the displaying of an image are not affected by this switch.

197

IMAGE HANDLING Image Display

DIR=7(left) DIR=8(right)

DIR=5(left) DIR=6(right)

Pixel Coordinate Conversion

Whilst cell arrays are transformed and scaled according to the current GINO

transformation, pixel areas are not. It is useful however to be able to convert

between GINO’s picture coordinate system and the device’s pixel coordinate

system in order to integrate the two image styles with each other and with other

GINO graphics.

In order to convert values in the pixel coordinate system to the GINO picture

coordinate system and vice versa, the routines gEnqPosOfPixel() and

gEnqPixelPos() need to be used. Note that as the pixel coordinate system has its

origin at the top left of the drawing area, there is not a direct scaling factor

between the two coordinate systems.

gEnqPosOfPixel(ix, iy, point)

gEnqPixelPos(xsc, ysc, pix)

The routine gEnqPosOfPixel() accepts two integer pixel values in ix and iy and

returns the corresponding picture coordinate in the structure point, while

gEnqPixelPos() accepts two real values in xsc and ysc, representing a picture

coordinate and returns the corresponding integer pixel coordinate in the structure

pix. As pixel coordinates are integer values, pix.ix and pix.iy are integers and

returned as rounded values. This will cause a rounding of values if

gEnqPosOfPixel() is consequently called with the values returned from

gEnqPixelPos().

Pixel Transformations

The following routines allow greater control of pixel images drawn using the

routine gDrawPixelArea(). They do not affect images drawn using

gDrawCellArray().

Pixel Rotation and Scaling

Where simple scaling and rotation of pixel images is required, the following

routine can be used:

gSetPixelTransform(ori, xsca, ysca)

198

Pixel Coordinate Conversion IMAGE HANDLING

The variable ori will change the orientation of the image about the anchor point

in steps of 90 degrees in an anti-clockwise direction. If a rectangular image is

rotated by 90 or 270 degrees the X and Y dimensions are swapped (see figure

below).

C code

int pixbuf[10000];
:
gSetPixelTransform(rot,1.0,1.0);
gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf);
:

F90 code

integer pixbuf(10000)
:
call gSetPixelTransform(rot,1.0,1.0)
call gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf)
:

199

IMAGE HANDLING Pixel Transformations

Image Rotation

The variables xsca and ysca are scaling factors. The default is 1.0 for both giving

a 1 to 1 mapping. A value of 2.0 will double the size of the image in the specified

direction by duplicating each pixel value. Real equivalents of integer scaling

values will create a true scaled up image but it is possible to scale up by

non-integer values or reduce the size of the image. Increasing the size of the

image by non-integer scale values will create an image with added rows or

columns at even intervals. If reducing the image, rows or column will be

removed at even intervals and consequently information will be lost (see below).

C code

int pixbuf[10000];
:
gSetPixelTransform(0,0.5,0.5);
gDrawPixelArea(0,100,100,100,1,1,100,100,pixbuf);
gSetPixelTransform(0,1.0,1.0);
gDrawPixelArea(100,50,100,100,1,1,100,100,pixbuf);
gSetPixelTransform(0,1.5,1.5);
gDrawPixelArea(250,0,100,100,1,1,100,100,pixbuf);
gSetPixelTransform(0,1.0,1.5);
gDrawPixelArea(450,0,100,100,1,1,100,100,pixbuf);
gSetPixelTransform(0,11.0,1.0);
gDrawPixelArea(0,250,100,100,1,1,100,100,pixbuf);

F90 code

int pixbuf(10000)
:
call gSetPixelTransform(0,0.5,0.5)
call gDrawPixelArea(0,100,100,100,1,1,100,100,pixbuf)
call gSetPixelTransform(0,1.0,1.0)
call gDrawPixelArea(100,50,100,100,1,1,100,100,pixbuf)
call gSetPixelTransform(0,1.5,1.5)
call gDrawPixelArea(250,0,100,100,1,1,100,100,pixbuf)
call gSetPixelTransform(0,1.0,1.5)
call gDrawPixelArea(450,0,100,100,1,1,100,100,pixbuf)
call gSetPixelTransform(0,11.0,1.0)
call gDrawPixelArea(0,250,100,100,1,1,100,100,pixbuf)

200

Pixel Transformations IMAGE HANDLING

Pixel Replication

An area can be defined to be filled with pixel data made up of multiple

rectangular images. If the defined area is larger than the image rectangle output

by gDrawPixelArea(), the image will be repeated to fill the space. If the defined

area is smaller, the image will be appropriately clipped.

gSetPixelReplication(xrep, yrep)

where xrep and yrep are values in pixel coordinates which set the area that the

image is to take up. If either of these values is zero then replication is switched

off. This command will also change the direction of the image drawing relative to

the anchor point depending on whether the values are positive or negative.

Negative values result in the image display characteristics remaining unchanged,

but the image is replicated in the opposite direction. Note that the images are not

mirrored in any way.

C code

int pixbuf[10000];
:
gSetPixelReplication(250,250);
gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf);
gSetPixelReplication(100,-250);
gDrawPixelArea(300,250,100,100,1,1,100,100,pixbuf);
gSetPixelReplication(100,-200);
gDrawPixelArea(450,250,100,100,1,1,100,100,pixbuf);
gSetPixelReplication(100,-150);
gDrawPixelArea(600,250,100,100,1,1,100,100,pixbuf);
:

201

IMAGE HANDLING Pixel Transformations

Image Scaling

F90 code

integer pixbuf(10000)
:
call gSetPixelReplication(250,250)
call gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf)
call gSetPixelReplication(100,-250)
call gDrawPixelArea(300,250,100,100,1,1,100,100,pixbuf)
call gSetPixelReplication(100,-200)
call gDrawPixelArea(450,250,100,100,1,1,100,100,pixbuf)
call gSetPixelReplication(100,-150)
call gDrawPixelArea(600,250,100,100,1,1,100,100,pixbuf)
:

Pixel Enquiry Routines

The current pixel scaling attributes (as set by gSetPixelTransform() and

gSetPixelReplication()) can be enquired through the following routine:

gEnqPixelAttribs(ori, xsca, ysca , xrep, yrep)

and the current pixel packing definition (as set by gDefinePixelPacking()) can be

enquired through the following routine:

gEnqPixelPacking(nbp, nrp, npw, ndir, dir)

202

Pixel Enquiry Routines IMAGE HANDLING

Image Replication

Reading Pixel Data

On some screen devices (see Appendix B), there is the facility to read images that

are currently displayed on the screen. This is done with a command that is similar

to gDrawPixelArea() but operates in reverse.

gGetPixelArea(ix, iy, npixx, npixy, isx, isy, idx, idy, pixbuf)

The variables ix and iy define the anchor point of a screen image that has a size

represented by npixx and npixy. This is the image size that will be represented

within the array pixbuf. The actual range of the image that is read is defined by

isx and isy which is the start position of the subset within the image, with idx,

idy being the size of the subset. This method will allow the selective overwriting

of part of pixbuf which contains the full image.

The pixel rectangle must be defined within the device limits of the device or an

error will occur and no reading will take place. The pixel transformation routines

have no effect on the values passed to gGetPixelArea() (ie. replication and

rotation settings do not apply).

Copying Pixel Images

Many devices that provide pixel facilities also include a facility to copy one pixel

area to another. This facility can be accessed in GINO through the following

routine:

gCopyPixelArea(source, dest, ix, iy, width, height, ixd, iyd)

where source and dest are the source and destination display identifiers. For

copying areas on the primary display surface these should be set to 1, but in

association with displays that provide multiple drawing areas (i.e. backing

stores), pixel areas may be copied from any one to any other (see page 49).

The arguments ix,iy and width, height define the origin and dimensions of the

area to be copied and ixd, iyd supply the final position of the origin. Pixel areas

may be clipped if the copied region extends beyond the display limits.

203

IMAGE HANDLING Reading Pixel Data

Chapter 9
COLOUR DEFINITION

Colour Definition Introduction

The specification and use of colour in a GINO application varies significantly

depending on the colour capabilities of the current device (i.e. whether the device

is monochrome, has a static or dynamic colour table or operates in true colour

mode (see page 46)). In order to provide a common interface across all these

devices, GINO maintains a colour table which is initialized with a standard set of

colours whenever a device is nominated. The colour of all graphical primitives

may then be specified using indices into this colour table on any type of device.

Information in this section describes how GINO’s colour table may be modified

and the effect this has on the device as well as facilities for setting colour directly

without going through the colour table (on devices that support this).

Colour Table

When a device is nominated a default colour table is initialized in GINO and the

device itself (if possible). This table contains at least the following 11 entries:

Colour Table Index Colour Constant Colour

0 GBACKGROUND Background (device dependent)

1 GBLACK Black

2 GRED Red

3 GORANGE Orange

4 GYELLOW Yellow

205

5 GGREEN Green

6 GCYAN Cyan

7 GBLUE Blue

8 GMAGENTA Magenta

9 GBROWN Brown

10 GWHITE White

Where a device has very few colours (i.e. some plotters and monochrome

displays), the number of entries may be less than those defined above. Where a

device has many more colours, these may or may not be initialized depending on

the device driver (see Appendix B for information). Where a device does not

have a colour table (i.e. true colour devices), GINO still maintains a colour table

(of 1024 entries) which can be used in a GINO application.

In all cases the number of colour entries available on the currently nominated

device can be obtained through the following routine:

gEnqColourInfo(ndc, ndt)

where ndc is the number of colour table entries available.

Display Types

The value of ndt returned by gEnqColourInfo() gives the type of colour device

being used (see page 46) which also determines the effect of changing the

contents of a colour table entry.

On fixed colour devices, (ndt=1) changes to the colour table are ignored as only

a predefined number of colours are available through their colour number.

On static (ndt=2) and direct (ndt=4) colour devices, a colour table entry may be

modified using the routines described below. When the particular colour index is

re-used, graphical items will be drawn in the redefined colour.

On dynamic colour devices (ndt=3), changes to the colour table affect all

graphical primitives that had been and will be drawn using the relevant colour

index.

206

Colour Table COLOUR DEFINITION

Colour Resolution

When entries in the colour table are modified (using the routines described

below), both the GINO colour table and the devices’ colour table (if present) are

modified. However it should be noted that the values in both tables may not be

exactly those requested depending on the colour resolution of the device.

The colour resolution is the range of colour values that can be stored on a

particular device. For example, a colour device may only provide 4, 8 or 16 bits

for storing colour values (whereas GINO uses real values in the range 0.0 to 1.0).

This will restrict the range of colours that can be stored (and displayed).

When a change of colour is made to any device the actual colour used is returned

to the GINO colour table so that these values may be enquired.

Colour Coordinate Systems

When a change is required in the colour table, generally three values are needed.

These values are called the colour coordinates.

GINO supports three colour coordinate systems. These are RGB (red, green,

blue), HSV (hue, saturation, value), and HLS (hue, lightness, saturation). GINO

uses RGB as the standard system for communicating colour values to an output

device. All colour values are converted to RGB. Any user-defined colour systems

should be converted to RGB coordinates and call gDefineRGB().

The RGB system defines colour by the relative intensities of the red, green and

blue primaries. However, people tend to perceive colour more in terms of

intensity, strength and position in the colour spectrum, rather than as a mixture of

primary colours.

Hue defines a colour’s position in the spectrum. The spectrum is mapped onto an

angular scale, 0.0 to 360.0 degrees, where red is at 0.0, green at 120.0 and blue at

240.0 degrees (see figure below). Angles outside the range 0.0 to 360.0 are

treated modulo 360.0.

207

COLOUR DEFINITION Colour Coordinate Systems

Saturation defines the strength or brightness of a colour (i.e. bright or pale tints).

Saturation is expressed on a linear scale of 0.0 to 1.0 where 0.0 gives the palest

hue and 1.0 the strongest.

Value and lightness describe the intensity or lightness of a colour (i.e. light or

dark shades). Value and lightness are both expressed on a linear scale of 0.0 to

1.0 but work in slightly different ways (see below). An attempt to define the

coordinates saturation, lightness and value outside the range 0.0 to 1.0 causes the

coordinates to be clipped so that values less than 0.0 become 0.0, and those

greater than 1.0 become 1.0. GINO issues a warning message if this happens. The

same applies for R,G, and B intensities. These are also defined on a linear scale

of 0.0 to 1.0.

The differences between value (V) and lightness (L) is that with the HSV system,

value gives the most intense hue when equal to 1.0. whereas with HLS, lightness

gives the most intense hue when equal to 0.5 and gives white when equal to 1.0

regardless of any hue or saturation values (compare the figures below).

208

Colour Coordinate Systems COLOUR DEFINITION

The Hue Spectrum

Each colour coordinate system also defines a greyscale.

209

COLOUR DEFINITION Colour Coordinate Systems

Tints, Tones and Shades

Conversion Between Coordinate Systems

The way colour values are transmitted, makes it possible to convert values from

one coordinate system to another. Essentially this is a matter of defining a colour

value in one system, and enquiring about it in another.

The conversion need not involve the colour values stored in the device driver (i.e.

the values which drive the output device). By setting icol less than zero during

definition, the conversion to RGB is made but it only gets stored internally and

not passed to the device. If an enquiry is now made with the same (negative) icol,

the enquiry routine will look at the internal storage and return the values it finds

there.

For example:

C code

GHSVSTY hsv;
gDefineRGB(-7,0.6,0.6,0.3);
gEnqHSV(-7,&hsv);
gDisplayStr(“Coordinates in HSV:”);
gDisplayRealFloat(hsv.hue,10);
gDisplayRealFloat(hsv.sat,10);
gDisplayRealFloat(hsv.value,10);

210

Colour Coordinate Systems COLOUR DEFINITION

The Lightness Scale

F90 code

type (GHSVSTY) hsv
gDefineRGB(-7,0.6,0.6,0.3)
gEnqHSV(-7,hsv)
gDisplayStr(‘Coordinates in HSV:’)
gDisplayRealFloat(hsv%hue,10)
gDisplayRealFloat(hsv%sat,10)
gDisplayRealFloat(hsv%value,10)

Colour 7 is defined in the RGB system and examined in the HSV system. The

values returned by gEnqHSV() are output to the device. In this example,

hsv.hue=60.0, hsv.sat=0.5, hsv.value=0.6.

If an enquiry is made with a negative col after device nomination but before any

user redefinition, all coordinates return zero because the internal values have not

yet been set to anything.

RGB Colour Coordinate System

The RGB (red, green, blue) colour coordinate system defines colours by

specifying the relative intensities of the red, green and blue primaries. The

resulting colour is therefore a mixture of the three primaries.

RGB colour space takes the form of a cube (see below).

211

COLOUR DEFINITION RGB Colour Coordinate System

RGB Colour Cube

Using the RGB System

gDefineRGB(col, red, green, blue)

gEnqRGB(col, rgb)

Routine gDefineRGB() defines colours by specifying their red, green and blue

intensities. An intensity of 0.0 means that none of the primary is present, and an

intensity of 1.0 gives saturation. For example:

gDefineRGB(13,0.0,0.0,1.0); call gDefineRGB(13,0.0,0.0,1.0)

would define colour 13 (col=13) as pure primary blue.

gDefineRGB(14,0.5,0.0,0.8); call gDefineRGB(14,0.5,0.0,0.8)

would define colour 14 (col=14) as a light purple.

Whether or not these particular colours will actually be output (when selected by

gSetLineColour() or gSetLineStyle()) depends upon the capabilities of the output

device.

The routine gEnqRGB() returns the colour definition for the particular colour

identified by col in the GRGBSTY structure.

HSV Colour Coordinate System

The HSV (hue, saturation, value) system defines a colour by specifying its hue,

saturation and value.

Value is a measure of the intensity or lightness of a colour. The brightest most

intense hue occurs when saturation and value both equal 1.0.

HSV colour space may be considered as a single hexcone (see figures below).

212

HSV Colour Coordinate System COLOUR DEFINITION

It is instructive to compare the HSV (and the HLS) system with the RGB colour

cube when this cube is viewed along its principal diagonal (compare the figures

below).

213

COLOUR DEFINITION HSV Colour Coordinate System

Single Hexcone HSV Colour Model

RGB Colour Cube viewed along principal

diagonal

Using the HSV System

gDefineHSV(col, hue, sat, value)

gEnqHSV(col, hsv)

The routine gDefineHSV() defines a colour by specifying its hue, saturation and

value. The series of statements:

gDefineHSV(1,120.0,1.0,1.0);
gDefineHSV(2,140.0,1.0,1.0);
gDefineHSV(3,160.0,1.0,1.0);
gDefineHSV(4,180.0,1.0,1.0);

call gDefineHSV(1,120.0,1.0,1.0)
call gDefineHSV(2,140.0,1.0,1.0)
call gDefineHSV(3,160.0,1.0,1.0)
call gDefineHSV(4,180.0,1.0,1.0)

give a set of colour definitions which range from primary green through to cyan

(i.e. a sequence of greens which become increasingly blue).

Saturation and value are both normalized onto a scale of 0.0 to 1.0. Maximum

saturation occurs when sat=1.0. Thus the statement:

gDefineHSV(5,120.0,1.0,1.0); call gDefineHSV(5,120.0,1.0,1.0)

would define colour 5 (col=5) as the brightest, most saturated primary green. The

statement:

gDefineHSV(6,120.0,0.0,1.0); call gDefineHSV(6,120.0,0.0,1.0)

would define colour 6 as white. Notice that when saturation is zero, hue is

ignored.

The statements:

gDefineHSV(7,60.0,1.0,1.0);
gDefineHSV(8,60.0,0.8,1.0);
gDefineHSV(9,60.0,0.6,1.0);
gDefineHSV(10,60.0,0.4,1.0);
gDefineHSV(11,60.0,0.2,1.0);

call gDefineHSV(7,60.0,1.0,1.0)
call gDefineHSV(8,60.0,0.8,1.0)
call gDefineHSV(9,60.0,0.6,1.0)
call gDefineHSV(10,60.0,0.4,1.0)
call gDefineHSV(11,60.0,0.2,1.0)

give a series of colour definitions ranging from the brightest yellow through

increasingly pale yellow tints.

214

HSV Colour Coordinate System COLOUR DEFINITION

The parameter value changes colour’s position on the achromatic scale. Thus

gDefineHSV(12,120.0,1.0,0.8); call gDefineHSV(12,120.0,1.0,0.8)

would give a dark primary green. If value is set at 0.0, the colour defined is

black, regardless of the other parameter values.

The stored colour definition may be examined by gEnqHSV() to return colour

values converted to the HSV coordinate system.

HLS Colour Coordinate System

The HLS (hue, lightness, saturation) system defines colour in terms of its hue,

lightness and saturation. Hue and saturation are the same as for the HSV system

and lightness describes the intensity of a hue.

The lightness scale gives pure, most saturated hue when light=0.5 and sat=1.0.

light=1.0 results in white, regardless of the settings of hue or sat. This should be

contrasted with value in the HSV system.

215

COLOUR DEFINITION HLS Colour Coordinate System

HLS colour space may be represented as a double hexcone (see figure below).

Using the HLS System

gDefineHLS(col, hue, light, sat)

gEnqHLS(col, hls)

The routine gDefineHLS() allows the user to define a colour in terms of its hue,

lightness and saturation. At light=0.0 all colours merge into black and at

light=1.0 all colours merge into white. With zero saturation, lightness describes

an achromatic (grey) scale irrespective of any angle of hue which may be given.

In the following examples, lightness only is varied to give differing lightness of

primary blue.

The statements

gDefineHLS(7,240.0,0.5,1.0);
gSetLineColour(7);
gMoveTo2D(200.0,0.0);
gDrawLineTo2D(200.0,250.0);

call gDefineHLS(7,240.0,0.5,1.0)
call gSetLineColour(7)
call gMoveTo2D(200.0,0.0)
call gDrawLineTo2D(200.0,250.0)

216

HLS Colour Coordinate System COLOUR DEFINITION

HLS Double Hexcone

would define colour 7 as a pure, saturated primary blue, select it and draw a

visible line to absolute coordinate position (200.0,250.0).

gDefineHLS(8,240.0,0.2,1.0); call gDefineHLS(8,240.0,0.2,1.0)

would give a dark, saturated primary blue (analogous to mixing black and

primary blue). The statement:

gDefineHLS(9,240.0,0.8,1.0); call gDefineHLS(9,240.0,0.8,1.0)

would give a light saturated primary blue (analogous to mixing white with

primary blue).

Direct Colour Control

On Direct Colour devices (which do not have a colour table) it is possible to

define the colour of graphical primitives directly using a 24bit RGB triplet. This

value contains the required quantities of Red Green and Blue in the one integer

which is passed to the device through the gSetLineColour() routine. The function

which generates the required value is:

col=gTrueCol(red, green, blue)

where red, green and blue are the required quantities of these colours. The

function returns the 24bit RGB triplet containing 8 bits of data for each primary

colour.

The following code shows how these two routines are used:

gSetLineColour(
gTrueCol(0.8,0.2,0.5));

call gSetLineColour(&
gTrueCol(0.8,0.2,0.5))

Here the current drawing colour is set to a bright shade of pink with 80% red,

20% green and 50% blue.

217

COLOUR DEFINITION Direct Colour Control

Chapter 10
MAPPING, WINDOWING AND MASKING

Mapping, Windowing and Masking Introduction

By default, all drawing is performed in the current device’s paper coordinate

system. This will usually be in millimetres (unless this has been altered by using

gDefinePictureUnits() - see page 39). In the majority of cases, the user will want

to specify a different coordinate system for two reasons. Firstly, because an

application needs to be written to run on a number of different output devices

(with different drawing limits) and secondly, the items or models in any

application will rarely be limited to the physical limits of any one device. The

method by which this mismatch is overcome is to set up an application dependent

mapping from the users own coordinate system to that of the physical device on

which the application is running.

Whether a mapping is required or not, an application will often require to restrict

the drawing to within a particular subsection of the complete drawing area, or

even mask the output from another area that is used by a menu or key.

This section of the document describes the specification and use of simple

rectangular clipping areas or windows and rectangular masks. GINO also

provides for the definition of polygonal windows and masks (see page 245).

Viewport Mapping

A viewport mapping can be specified between the users picture coordinates and

the viewport limits in paper coordinates. This mapping can be altered at any time

throughout a GINO program using the routine:

gSetViewport2D(piclim, viewlim)

219

where piclim and viewlim are structures of type GLIMIT, the first of which

specifies the users own picture coordinate limits within which all drawing

dimensions should be contained. These will be mapped to the viewport limits

specified by the second structure, which should lie within the current paper

limits. Any viewport limits outside of the paper limits will be clipped

accordingly.

The aspect ratio of a viewport can be controlled by the routine:

gSetViewportMode(sw)

If the aspect ratio of the picture coordinates is retained the drawing can be

centred in the viewport (sw=GCENTRAL), or placed at the bottom left of the

viewport (sw=GBOTTOMLEFT). For sw= DEFORMED the aspect ratio is

altered and the drawing will be scaled to fit the viewport.

The routine gEnqViewportMode() returns the current viewport mode.

gEnqViewportMode(sw)

220

Viewport Mapping MAPPING, WINDOWING AND MASKING

Device Limits

Viewport Limits (viewlim)

Picture Limits (piclim)

Viewport Mapping

By default, the setting of a viewport defines a clipping rectangle outside which

no drawing can take place. In this default mode, the viewport limits effectively

re-define the device limits of the current device. However, it is possible to use the

viewport setting simply to define a convenient mapping without affecting the

clipping in any way. The routine to switch between these two modes is:

gSetViewportClipSwitch(clp)

Both gSetViewportMode() and gSetViewportClipSwitch() must be called before

gSetViewport2D() for either to take effect.

Viewport Enquiry

The current viewport state can be enquired using the following routines:

gEnqViewport2D(piclim, viewlim)

gEnqViewportState(sw, clp, limit)

where gEnqViewport2D() returns the requested viewport limits and

gEnqViewportState() returns all viewport switches and actual viewport limits in

paper units. This may vary from the requested paper limits depending on the

current viewport mapping switch.

Clearing the Viewport

The current viewport area, as defined by gSetViewport2D() and

gSetViewportMode(), can be cleared by filling with the background colour with

the routine:

gClearViewport()

The area cleared by gClearViewport() represents the complete viewport limits in

picture units as specified by gSetViewport2D() (excluding parts outside the

device limits). Depending on the viewport mapping switch this may not represent

the complete viewport in paper units set by gSetViewport2D(), but rather, those

limits as returned by gEnqViewportState(). If the larger area needs to be cleared,

this should be done prior to setting the viewport.

221

MAPPING, WINDOWING AND MASKING Viewport Mapping

Clipping

The default clipping limits are defined to be the current drawing limits as defined

by a call to gSetDrawingLimits() or the current viewport limits as set by

gSetViewport2D() as long as viewport clipping is not switched off with

gSetViewportClipSwitch() (see above).

The clipping is carried out by the device driver where possible as this is usually

the most efficient and accurate method possible. It is possible to specify that the

clipping is to be performed by GINO itself or that clipping be disabled

completely. These options are set using the routine:

gSetClippingMode(mode)

where mode may be GHARD (the default) for hardware clipping, GSOFT for

software clipping or GNOCLIP to disable clipping completely. The last mode

should only be used where output is known to be limited to the physical limits of

the device as unpredictable results may occur otherwise.

The routine gEnqClippingMode() returns the current clipping mode.

gEnqClippingMode(mode)

Note that the windowing and masking limits are in picture coordinates. Any calls

to scaling or transformation routines have no effect on the resulting window size.

Window Mode

The routine for specifying the current clipping/windowing mode is:

gSetWindowMode(swi)

This routine switches the windowing mechanism off (swi=GOFF) or on

(swi=GON or GON2D).

Switching windowing off effectively sets a window to the default clipping limits

but GINO will generate warning messages if an attempt is made to draw outside

the device limits while in this state. When swi=GON, the previous window limits

prior to switching windowing off are restored. When swi = GON2D, the function

switches 2-D windowing on and sets the window to the default 2D clipping

limits.

To switch on basic 2-D windowing and set the window to the viewport limits:

222

Clipping MAPPING, WINDOWING AND MASKING

gSetWindowMode(GON2D); call gSetWindowMode(GON2D)

Rectangular Window

The routine for defining a 2-D rectangular window is:

gSetWindow2D(window)

The structure window contains four elements representing the limits of a

rectangular window: window.xmin, window.xmax, window.ymin,

window.ymax. If the user specifies a window larger than the default clipping

limits, GINO clips it to those limits, but combines and retains the window.

For example:

Routine man() defines a gingerbread man in a 50mm square box. To draw the top

half of the picture only (as in the figure below):

static GLIMIT window =
{0.0,50.0,25.0,50.0};

gSetWindow2D(&window);
man();

type (GLIMIT) :: window = &
GLIMIT{0.0,50.0,25.0,50.0}

call gSetWindow2D(window)
call man

223

MAPPING, WINDOWING AND MASKING Clipping

2-D Windowing

Enquiring Window Limits

The current state of windowing may be obtained by using the routine:

gEnqWindowState(swi, bounds)

The current setting of the window switch is returned in swi and the complete 3D

limits are returned in the structure bounds. Note that if no Z limits have been set

using gSetWindow3D(), these are returned as arbitrary large numbers.

For example:

GLIMIT3 window;

gEnqWindowState(&swi,&window);

type (GLIMIT3) window

call gEnqWindowState(swi,window)

Rectangular Masks

The routine to define a rectangular mask and switch masking on is:

gSetMask2D(limit)

The argument of type GLIMIT defines a rectangular area, inside which no

drawing will occur until the mask is switched off or redefined. For example:

static GLIMIT mask =
{150.0,25.5,17.75,39.75};

gSetMask2D(&mask);
man();

type (GLIMIT) :: mask = &
GLIMIT(150.0,25.5,17.75,39.75)

call gSetMask2D(mask)
call man

224

Rectangular Masks MAPPING, WINDOWING AND MASKING

The routine to switch the current mask on or off is:

gSetMaskMode(swi)

where swi=GOFF switches masking off and swi=GON restores the previous

mask as defined by gSetMask2D(). The routine gSetMaskMode() has no effect if

a mask has not previously been defined.

Mask Enquiry

To enquire the current mask limits and its switch, the routine gEnqMaskState() is

used:

gEnqMaskState(swi, bounds)

swi returns the current setting of gSetMaskMode() and the remaining arguments

are the same as gEnqWindowState() except that a maximum of four limits are

available.

225

MAPPING, WINDOWING AND MASKING Rectangular Masks

Example of rectangular mask

Chapter 11
2D TRANSFORMATIONS

2D Transformations Introduction

Routines are provided in GINO to enable the geometric transformations: shift,

rotate, scale and shear to be applied to definitions of 2D objects. A simple

definition may be transformed to produce objects of differing shape, size,

orientation or position.

When a transformations routine is called, a new axis system (termed ‘space

axes’) is created and subsequent drawing and positioning coordinates are

considered in relation to this new axis system. When transformations are being

combined, each transformation is relative to the axis system set up by the

previous transformation.

To apply transformation to an object, the transformation routines must be called

before the drawing routines. Once a transformation routine is called, the

transformation that has been set up affects all subsequent drawing. Transforming

can be switched on or off at any stage in a program or can be reset or modified.

To illustrate transformations a routine man(), which defines a gingerbread man, is

used. The original axes are drawn as solid lines and denotes X and Y. The space

axes set up as a result of the transformations are denoted in the diagrams by X1

and Y1 and are shown as dashed lines.

Simple 2D Transformations

2D Shifting

Shifting specifies the vector increments through which the origin is shifted from

the origin of the previous axis system.

227

Shifting enables objects to be repositioned anywhere in the drawing area. The

routines for shifting are:

gShift2D(dx, dy)

For example - to draw a gingerbread man shifted by 50.0mm in the X direction

and 30.0mm in the Y direction:

gShift2D(50.0,30.0);
man();

call gShift2D(50.0,30.0)
call man

2D Rotation

The routine for 2-D rotation is:

gRotate2D(angle)

Where angle specifies the angle in degrees through which the X and Y axes are

rotated about the Z axis. Positive rotation is anticlockwise. Note that rotation

always takes place about the origin of the current axis system.

Example:

To draw a gingerbread man rotated through 45�:

228

Simple 2D Transformations 2D TRANSFORMATIONS

Shifting

gRotate2D(45.0);
man();

call gRotate2D(45.0)
call man

2D Scaling

The routine for scaling is:

gScale2D(sx, sy)

The arguments specify the amount by which the axes are to be scaled. Values of

greater than 1.0 give magnification and values between 0.0 and 1.0 give

reduction. If one or more arguments are negative, then a mirror image is

produced.

Examples:

• To draw a gingerbread man uniformly scaled by 0.5 in both directions:

/* Scale all axes */
gScale2D(0.5,0.5);
man();

! Scale all axes
call gScale2D(0.5,0.5)
call man

229

2D TRANSFORMATIONS Simple 2D Transformations

2-D Rotation

• To draw a fat gingerbread man scaled in X by 2:

gScale2D(2.0,1.0);
man();

call gScale2D(2.0,1.0)
call man

Mirror Images

Mirror images can be produced by using the scaling routines with negative

arguments. For example:

230

Simple 2D Transformations 2D TRANSFORMATIONS

Differential Scaling

Uniform Scaling

To draw a gingerbread man upside down:

gScale2D(1.0,-1.0);
man();

call gScale2D(1.0,-1.0)
call man

2D Shearing

The routines for shearing are:

gShear2D(dep, a)

In 2-D the value of dep can be GXAXIS or GYAXIS and indicates which of the

X or Y axes is to be sheared (the dependent axis).

The argument a gives the tangent of the angle through which the axis dep is

sheared. For example:

• To draw a sheared gingerbread man such that the shear factor is 1.0:

gShear2D(GYAXIS,1.0);
man();

call gShear2D(GYAXIS,1.0)
call man

231

2D TRANSFORMATIONS Simple 2D Transformations

Mirror Image

Combining Transformations

Using the Same Transformation Type

When combining transformations of the same type, the general result is not

dependent on the order in which the routines are called.

Example:

gScale2D(10.0,10.0);
gScale2D(3.0,3.0);

call gScale2D(10.0,10.0)
call gScale2D(3.0,3.0)

has the same effect as:

gScale2D(3.0,3.0);
gScale2D(10.0,10.0);

call gScale2D(3.0,3.0)
call gScale2D(10.0,10.0)

The above sequence of routines is equivalent to a single call to the routine with

an arguments of 30.0, i.e. the combined effect is obtained by multiplying the

arguments. In the case of transformation routines other than the scale routines,

the cumulative effect is obtained by adding the arguments.

Example:

232

Combining Transformations 2D TRANSFORMATIONS

2-D Shearing

gRotate2D(alpha);
gRotate2D(beta);

call gRotate2D(alpha)
call gRotate2D(beta)

is equivalent to:

gRotate2D(alpha+beta); call gRotate2D(alpha+beta)

Using Different Transformation Types

When combining transformations of different types, the effect obtained depends

on the order in which the routines are called. The following examples show the

effect of applying combinations of transformations in different orders.

In general the order in which transformations should be used to set up

straightforward effects is:

Shift

Rotate

Scale

Combining Shift with Scale

The figure below illustrates the following sequence:

gShift2D(50.0,50.0);
gScale2D(0.5,0.5);
man();

call gShift2D(50.0,50.0)
call gScale2D(0.5,0.5)
call man

233

2D TRANSFORMATIONS Combining Transformations

With the order reversed, i.e.:

gScale2D(0.5,0.5);
gShift2D(50.0,50.0);
man();

call gScale2D(0.5,0.5)
call gShift2D(50.0,50.0)
call man

The effect is as shown in the figure below:

234

Combining Transformations 2D TRANSFORMATIONS

Combining Shift and Rotation

The figure below illustrates the following sequence:

gShift2D(50.0,0.0);
gRotate2D(20.0);
man();

call gShift2D(50.0,0.0)
call gRotate2D(20.0)
call man

With the order reversed i.e.:

gRotate2D(20.0);
gShift2D(50.0,0.0);
man();

call gRotate2D(20.0)
call gShift2D(50.0,0.0)
call man

The result is as shown below:

235

2D TRANSFORMATIONS Combining Transformations

Combining Rotation with Uniform Scaling

Where rotation is combined with non-differential scaling, the order of calling the

routines does not effect the result.

Example, the sequence:

gScale2D(2.0,2.0);
gRotate2D(-30.0);
man();

call gScale2D(2.0,2.0)
call gRotate2D(-30.0)
call man

gives the same result as:

gRotate2D(-30.0);
gScale2(2.0,2.0);
man();

call gRotate2D(-30.0)
call gScale2D(2.0,2.0)
call man

The result is shown below:

Combining Rotation with Differential Scaling

The effect of combining rotation with differential scaling is dependent on the

order in which routines are called. For example:

gRotate2D(30.0);
gScale2D(2.0,1.0);
man();

call gRotate2D(30.0)
call gScale2D(2.0,1.0)
call man

236

Combining Transformations 2D TRANSFORMATIONS

gives the result shown below:

However, the sequence:

gScale2D(2.0,1.0);
gRotate2D(30.0);
man();

call gScale2D(2.0,1.0)
call gRotate2D(30.0)
call man()

gives a different result as shown below:

Note: The axes are no longer at right-angles.

237

2D TRANSFORMATIONS Combining Transformations

2D Transformation Enquiry

Current Drawing Position

The position of the ‘pen’ at any given time can be described in terms of its

coordinates relative to the origin of the drawing area; these are termed ‘picture

coordinates’. The pen position can also be given in terms of its coordinates

relative to the current local axis system; these are the space coordinates. In

general, objects are specified in terms of space coordinates and are drawn in

terms of picture coordinates; that is space coordinates are transformed into

picture coordinates.

At any stage in a program, the pen position can be obtained (in either picture or

space coordinates) by using one of the following routines:

gEnqPicturePos(point)

gEnqSpacePos(point)

Each of which returns a structure of type GPOINT3 structure, the elements of

which are set to the current X,Y,Z coordinates expressed in current units.

2D Untransforming

The space coordinates of any point of which the picture coordinates are known,

can be obtained using one of the routines:

gUntransformPoint2D(xp, yp, point)

The routine gUntransformPoint2D() sets point.x and point.y to zero if the

current transformation contains 3-D terms or perspective and a warning message

is output.

Point Testing of Current 2D Transformation

The routine gTransformPoint2D() enable the user to see what would happen to a

point if it were subject to the current transformation.

gTransformPoint2D(xs, ys, point)

transforms the space coordinate position (xs, ys) into picture coordinates and

returns the value of the picture coordinates in (point.x, point.y).

238

2D Transformation Enquiry 2D TRANSFORMATIONS

In the case where no current transformation exists, (xs, ys) and (point.x, point.y)

will have the same value.

2D Transformation Control

There are many addition facilities to switch on/off, save, combine or reinitialize

the current 2D transformation state. These are described along with their 3D

counterparts later in this document (see page 371).

The most useful routine for basic 2D transformation work is:

gSetTransformMode(swi)

which can be used to switch the current transformation on or off or reinitialize it

to its initial null (or unit) state.

Transforming Characters and Symbols

By default, GINO starts up in an untransformed character mode. If hardware

characters are required, these cannot be affected by GINO transformations, but

the transforming of software characters can be switched on by calling:

gSetCharTransformMode(GON)

Characters and symbols will be generated in software by GINO using straight

lines which are transformed and windowed and then output using the current line

style (Broken, Thickness and End type). The size, orientation and italic angle

with respect to the current space axes are exactly as specified, but the characters

are also affected by the current transformation set by gRotate2D(), gShift2D(),

gShear2D() or any of the transformation matrix routines.

For example - If a mirrored image is required, a call to gShift2D(1.0,-1.0) will

only mirror the characters if gSetTransformMode(GON) has been called.

C code

/* Set up mirror image transformation */
gScale2D(1.0,-1.0);
gmanandtext();

/* Select transformable software characters */
gSetCharTransformMode(GON);
gmanandtext();

239

2D TRANSFORMATIONS 2D Transformation Control

F90 code

! Set up mirror image transformation
call gScale2D(1.0,-1.0)
call gmanandtext

! Select transformable software characters
call gSetCharTransformMode(GON)
call gmanandtext

The transforming of characters and symbols can be switched off by calling

gSetCharTransformMode(GOFF). In this case, the character mode reverts to the

one set by the last call to gSetHardChars(), gSetMixedChars() or

gSetSoftChars(), or failing that it reverts to the default character mode

gSetMixedChars().

240

Transforming Characters and Symbols 2D TRANSFORMATIONS

Software Transformable Characters

Chapter 12
BASIC INTERACTION

Basic Interaction Introduction

GINO provides a simple facility to input information from a graphics device.

This is the cursor or mouse input facility and is supported by the majority of

graphics terminals and workstations. Cursor input provides a way of

communicating or interacting with a GINO program. There are, of course, other

ways to input information, e.g. standard C or Fortran I/O or using a GUI interface

such as GINOMENU.

Advanced interaction ‘events’ are described later in this document (see page

447).

Cursor Input

A graphics device that supports cursor input will be able to indicate a position on

the drawing surface by means of a graphics cursor or pointer. It will also provide

some means for the user to move the cursor around either with a mouse, arrow

keys, joystick or other device. When the cursor has been appropriately

positioned, the user presses a key or button to cause the cursor’s position to be

returned to GINO. An ASCII character code to identify which key was pressed is

also returned.

The routine to call for cursor input is:

gGetCursorEvent(key, point)

241

When gGetCursorEvent() is called, the graphics cursor or pointer is switched on

or changed to a graphics cursor shape. As soon as input has been triggered by the

user, gGetCursorEvent() returns in point the cursor’s position in picture

coordinates. Cursor input is usually triggered by pressing a key on a keyboard or

a button on a mouse. key returns the key’s ASCII code as an integer number. If

something other than a keyboard key was pressed, key returns an ASCII code

which identifies the trigger. (See page 447 for more details on the returned ASCII

values.)

On non-windowing graphics devices, a routine is provided to enable the user to

set the cursor position:

gSetCursorPos(x, y)

The position (x,y) is specified in picture coordinates. The default for the cursor

start position is usually the centre of the device limits and it is reset to this after a

call to gNewDrawing(). When gGetCursorEvent() is called, the cursor should

appear at or move to the specified position. If the call to gGetCursorEvent() is

successful, the cursor start position is automatically updated to the position

returned by gGetCursorEvent(). Therefore the call to gSetCursorPos() can only

affect the next call to gGetCursorEvent().

On windowing devices the pointer is always present but its position can be

enquired or set using the mouse position routines (See page 456)

Defining Cursor Shapes

For the devices that offer a cursor or mouse input device it is often possible to

alter the shape of the cursor. The routine gSetCursorType() changes the cursor

type and gEnqCursorType() returns the current setting.

gSetCursorType(type, forcol, bakcol)

gEnqCursorType(type, forcol, bakcol)

Where type is a positive integer that defines the type of cursor. A choice of a

small or large cross is often available on raster terminals, whereas a larger

selection is available on window machines where the cursor represents the

current pointer position and the shape is defined as a small bit pattern. The

number of cursor types available on the current device can be obtained through

the routine gEnqDeviceState() (see page 39) and users are referred to the relevant

Appendix B document for further details.

242

Defining Cursor Shapes BASIC INTERACTION

The arguments forcol and bakcol define the foreground and background colours

of the cursor if these can be set.

Defining Cursor Action Types

As well as setting the cursor shape, some devices can provide additional

functionality in the form of ‘rubber’ shapes that are continually updated while the

cursor or pointer device is moved. Typical shapes are rubber bands, rubber boxes

and rubber ellipses. Where such functionality is provided, the routine

gSetCursorAction() will set the desired cursor action type and

gEnqCursorAction() returns the current setting.

gSetCursorAction(action, lverts, points)

gEnqCursorAction(action, lverts, points)

where action defines a number of ‘rubber’ shapes that indicate both the current

pen position when gGetCursorEvent() is called and the current pointer position.

For example, when action = GRUBBERBOX, a ‘rubber’ box is drawn with one

static corner at the current pen position and a variable corner at the current

pointer position.

It is also possible to define fixed polyline shapes which can be used as a cursor or

pointer. To use this facility action is set to GPOLYLINE and the vertices of the

polyline in picture coordinates are placed in the array points. The number of

vertices is set in lverts. A maximum of 200 vertices is permitted in this facility.

The coordinates are absolute coordinates and may be positive and/or negative

such that the position (0.0,0.0) is located at the cursor or pointer position as it is

moved around the screen.

Application

Although the input facility provided by gGetCursorEvent() is apparently very

basic, it can be used in a variety of powerful ways. For example, a light pen

mechanism can be simulated by dividing part of the screen into areas so that a

cursor ‘hit’ inside an area indicates a particular function. It is also possible to

identify items on the screen by performing a similar area check. In this case,

however, it is necessary to have some sort of data structure to record where each

item is drawn. This is achieved by using segment handling software described

later (see page 423).

243

BASIC INTERACTION Defining Cursor Action Types

Chapter 13
ADVANCED USE OF 2D POLYGONS

Advanced Use of 2D Polygons Introduction

Polygonal boundaries may be defined and stored for subsequent use, e.g. filling,

and the definitions are stored in a workspace which is part of the

gSetWorkspaceLimit() workspace area maintained by GINO (see page 33). The

boundaries of a polygon are lines which join its vertices and the vertices are

stored as the polygon definition. The vertices are generated by GINO drawing

routines and the first and last vertices are connected, meaning that polygons are

always closed.

Allocating Workspace for the Storage of Polygons

Polygon definitions need a workspace within which they may be stored. The

routine gDefinePolygonWorkspace() is used to define such a workspace within

the gSetWorkspaceLimit() workspace (see page 33).

gDefinePolygonWorkspace(nw)

Polygon workspace size depends on the size and number of the polygons to be

stored. Each polygon has a number of vertices which define its edges. Each

vertex needs two real words of storage space. Each polygon also requires a

header of eight real words. So, if NP polygons with a combined total of NV

vertices are to be stored, the amount of space required, NW (number of real

words) is:

NW = 2*NV + 8*NP

For example, if a 25 sided and a 12 sided polygon are stored,

245

NV = 25 + 12

NP = 2

So,

NW = (2*37) + (8*2)

= 90

The call:

gDefinePolygonWorkspace(90); call gDefinePolygonWorkspace(90)

would allocate just sufficient space within the workspace area to store the two

polygons.

The call to gDefinePolygonWorkspace() must be preceded by a call to

gSetWorkspaceLimit() to define the global workspace. This must include at least

sufficient space for gDefinePolygonWorkspace’s needs; i.e. nw must not be

larger than the space delimited by gSetWorkspaceLimit() .

Example:

#include <gino-c.h>
main()
{

gOpenGino();
gSetWorkspaceLimit(3000);
gDefinePolygonWorkspace(1200);
.
.
gCloseGino();

}

program polygon
use gino_f90

call gOpenGino()
call gSetWorkspaceLimit(1,3000)
call gDefinePolygonWorkspace &

(1200)
.
.
call gCloseGino

stop

A polygon definition which uses arcs or curves can generate many vertices. The

user must either allow sufficient space in the polygon workspace, or modify the

resolution of the currently nominated output device. The greater the device

resolution, the more vertices are used to describe a curve. The default tolerance

set for each device generally gives a reasonable result. However, this may be

controlled by GINO software by using the gSetArcTolerance() routine (see page

77).

246

Allocating Workspace for the Storage of Polygons ADVANCED USE OF 2D POLYGONS

Polygon Definition

gStartPolygon()

gEndPolygon()

gSetPolygonMode(sw)

Polygons are defined by a series of lines, moves, etc. The coordinates supplied by

the user are transformed, if there is a current transformation, and the resulting X

and Y picture coordinates can be stored as polygon vertices.

The storage of the vertices is controlled by gStartPolygon() and gEndPolygon().

gStartPolygon() starts a new polygon and gEndPolygon() closes the current

polygon. The sequence of calls would be as follows:

gMoveTo2D(20.0,50.0);
gStartPolygon();

/* define a triangle */
gDrawLineBy2D(20.0,30.0);
gDrawLineBy2D(20.0,-30.0);
gMoveTo2D(20.0,50.0);
gEndPolygon();

call gMoveTo2D(20.0,50.0)
call gStartPolygon

! define a triangle
call gDrawLineBy2D(20.0,30.0)
call gDrawLineBy2D(20.0,-30.0)
call gMoveTo2D(20.0,50.0)
call gEndPolygon

Once gStartPolygon() is called, vertices defined by subsequent drawing routines

are stored in the polygon workspace. gEndPolygon() stops this storage of vertices

and closes the polygon definition. A polygon cannot be changed in any way once

it is closed. The gStartPolygon/gEndPolygon() pair delimit a polygon definition.

gStartPolygon() contains an implicit call to gEndPolygon() so in a sequence of

polygon definitions it is possible to omit the calls to gEndPolygon(). However,

remember not to leave a gEndPolygon() outstanding on completion of such a

sequence.

gSetPolygonMode() operates two independent switches one of which functions

outside gStartPolygon/gEndPolygon() and the other inside

gStartPolygon/gEndPolygon().

Outside gStartPolygon/gEndPolygon():

gSetPolygonMode(GOFF) Disables all polygon storage and reinitializes the

gDefinePolygonWorkspace() workspace (see

gClearPolygonWorkspace()).

247

ADVANCED USE OF 2D POLYGONS Polygon Definition

gSetPolygonMode(GON) Enables polygon storage and

gClearPolygonWorkspace(). This is the default

state.

Inside gStartPolygon()/gEndPolygon():

gSetPolygonMode(GOFF) Suppresses the vertex storage

gSetPolygonMode(GON) Enables vertex storage (set to on by

gStartPolygon())

The DART shape in the figure below is produced by the following code:

C Code

/* ***** DART ***** */
float x,y,z,x1,y1,z1;

/* Move to start point */
gMoveTo2D(180.0,250.0);

/* Switch on polygon storage */
gStartPolygon();

/* Start defining polygon */
gDrawLineBy2D(120.0,-50.0);

/* Switch off vertex storage */
gSetPolygonMode(GOFF);

/* Record where you are */
gEnqSpacePos(&x,&y,&z);

/* Move to start of write position */
gMoveBy2D(-60.0,10.0);

/* and output text */
gDisplayStr(“Area 1");

/* Move back to recorded position */
gMoveTo2D(x,y);
gSetPolygonMode(GON);
gDrawLineBy2D(-120.0,-50.0);
gDrawLineBy2D(30.0,70.0);
gDrawLineBy2D(30.0,-20.0);
gDrawLineBy2D(-30.0,-20.0);
gSetPolygonMode(GOFF);
gEnqSpacePos(&x1,&y1,&z1);
gMoveBy2D(-5.0,18.0);
gDisplayStr(”Area 2");
gMoveTo2D(y1,y1);
gSetPolygonMode(GON);
gDrawLineTo2D(180.0,250.0);

/* Close polygon */
gEndPolygon();

248

Polygon Definition ADVANCED USE OF 2D POLYGONS

F90 code

! ***** DART ***** */
real x,y,z,x1,y1,z1

! Move to start point
call gMoveTo2D(180.0,250.0)

! Switch on polygon storage
call gStartPolygon

! Start defining polygon
call gDrawLineBy2D(120.0,-50.0)

! Switch off vertex storage
call gSetPolygonMode(GOFF)

! Record where you are
call gEnqSpacePos(x,y,z)

! Move to start of write position
call gMoveBy2D(-60.0,10.0)

! and output text
call gDisplayStr(‘Area 1’)

! Move back to recorded position
call gMoveTo2D(x,y)
call gSetPolygonMode(GON)
call gDrawLineBy2D(-120.0,-50.0)
call gDrawLineBy2D(30.0,70.0)
call gDrawLineBy2D(30.0,-20.0)
call gDrawLineBy2D(-30.0,-20.0)
call gSetPolygonMode(GOFF)
call gEnqSpacePos(x1,y1,z1)
call gMoveBy2D(-5.0,18.0)
call gDisplayStr(‘Area 2’)
call gMoveTo2D(y1,y1)
call gSetPolygonMode(GON)
call gDrawLineTo2D(180.0,250.0)

! Close polygon
call gEndPolygon

Polygon Identity

gSetPolygonIdent(ident)

249

ADVANCED USE OF 2D POLYGONS Polygon Definition

DART: An Annotated Polygon

Each polygon in the polygon workspace may be given an identifier. When a

polygon is closed (gEndPolygon()), it is given the current identifier, which must

be a positive integer number. The current polygon identifier is the last identifier

defined by gSetPolygonIdent(). The default identifier is zero and if no calls are

made to gSetPolygonIdent() all polygons will have an identifier of zero.

Polygons sharing a common identifier will be grouped together and the whole

group will be selected by the one identifier. Identifiers cannot be changed once

the polygon is closed.

For example:

gStartPolygon();
/* Define a polygon */

.
.

/* Define polygon identifier */
gSetPolygonIdent(ident);
gEndPolygon();

call gStartPolygon
! Define a polygon

.

.
! Define polygon identifier

call gSetPolygonIdent(ident)
call gEndPolygon

A polygon must be given a unique identifier if it is to be distinguished from all

other polygons.

Clearing Polygon Workspace

By calling gClearPolygonWorkspace() the gDefinePolygonWorkspace() storage

space is reinitialized.

gClearPolygonWorkspace()

This deletes all polygons in the gDefinePolygonWorkspace() workspace. The

routine gClearPolygonWorkspace() is ignored if gSetPolygonMode(GOFF) is

called outside gStartPolygon()/gEndPolygon(); that is for

gClearPolygonWorkspace() to re-initialize the workspace, gSetPolygonMode()

must be set to GON (default).

Status of Polygon Workspace

The routine gEnqPolygonWorkspace() returns information about the state of

gDefinePolygonWorkspace() workspace, and the value of the current polygon

identifier.

gEnqPolygonWorkspace(npoly, nvert, nfree, ident)

250

Clearing Polygon Workspace ADVANCED USE OF 2D POLYGONS

npoly Returns the total number of completed polygons with one or more vertices.

nvert Returns the total number of vertices defined so far.

nfree Returns the amount of remaining free space (real words).

ident Returns the current polygon identifier.

If gEnqPolygonWorkspace() is called after the polygon DART has been defined,

and assuming gDefinePolygonWorkspace() was set up as in the example in the

‘Allocating Workspace for the Storage of Polygons’ section, the following results

will be returned:

npoly=1

nvert=7

nfree=1178

These three quantities are related to gDefinePolygonWorkspace() size in this way

(8 * npoly) + (2 * nvert) + nfree = nw

where nw is the number of words allocated in gDefinePolygonWorkspace().

If gEnqPolygonWorkspace() is called before any polygons are defined, npoly and

nvert return zero and nfree returns nw, the number of words declared in

gDefinePolygonWorkspace(). If no gDefinePolygonWorkspace() storage space

has been assigned, nfree will also return zero.

Drawing Polygon Boundaries

Polygon boundaries may be drawn by a call to the routine:

gDrawPolygonBound(line)

where line selects the line style for the boundary from the line definitions table.

If line is set to GCURRENT the edges are drawn in the current line style.

For example, if the drawing area is cleared by a call to gNewDrawing(), a

polygon may be redrawn by a call to gDrawPolygonBound(). The statements:

gNewDrawing();
gDrawPolygonBound(GCURRENT);

call gNewDrawing
call gDrawPolygonBound(GCURRENT)

251

ADVANCED USE OF 2D POLYGONS Drawing Polygon Boundaries

would have this effect if appended to the code for DART. The routine

gDrawPolygonBound() draws all edges of all selected polygons, including those

edges that were originally drawn with invisible lines. In the DART example the

annotations ‘Area 1’, ‘Area 2’ will not be drawn by gDrawPolygonBound() since

they were not stored as part of the definition.

Polygon Filling Workspace Requirements

Before complex polygons can be filled, a temporary workspace must also be

provided. The space this workspace needs is in addition to the space needed for

polygon storage (see page 33). The following sections detail how to calculate the

size of the temporary workspace depending whether hardware or software fill is

in operation.

If software filling is forced using gSetFillMode(GSOFT) then only the space

required for software filling needs to be calculated. Clearly if hardware and

software fill occur in the same program through user selection or the device

capabilities the maximum size must be catered for, however, allowances for

windowed and masked filled areas are described under ‘Polygon Windowing and

Masking’ later in the section.

Hardware Fill Workspace Requirements

GINO ensures that all polygonal boundaries presented to the output device

remain within device limits. A temporary workspace is required to hold this data.

No specific rule can be given for the size of this temporary workspace. In the

extreme case, the clipping process can generate up to twice the original number

of vertices in any polygon. In normal circumstances, clipping reduces the amount

of data that needs to be stored.

The following formula should provide sufficient additional space NWHF, for

hardware area fill:

NWHF = NP*8 + NV*2 (words)

Where,

NP = number of polygons selected for fill

NV = total number of vertices in all selected polygons

This is equivalent to NW as defined previously if all defined polygons are

selected for fill simultaneously.

252

Polygon Filling Workspace Requirements ADVANCED USE OF 2D POLYGONS

Software Fill Workspace Requirements

The area-filling software in GINO needs temporary workspaces to hold extra

information that is necessary for generating hatch lines.

The size of the workspace depends on the total number of vertices, NV,

describing the polygons selected for area fill.

Size = 5*NV (words)

Example Calculations of Workspace Requirements

Suppose it were necessary to store and fill a maximum of 21 polygons

containing, at maximum, 200 vertices. All polygons are capable of being filled at

one time; there is no section of polygons involved; hardware fill is always

available and used.

What is the total workspace requirement?

Step 1. Calculate the size of the polygon storage area

Size = 2*200 + 8*21

= 568

Step 2. Calculate size of the selection list workspace

Size = 0

Step 3. Calculate size of the hardware fill workspace

Size = that found in step 1 (in general)

= 568

Total = 568 + 0 + 568 = 1136 (words)

This total is only approximate. In practice the sequence of program calls would

look like this:

gSetWorkspaceLimit(1200);
gDefinePolygonWorkspace(568);

call gSetWorkspaceLimit(1,1200)
call gDefinePolygonWorkspace(568)

253

ADVANCED USE OF 2D POLYGONS Polygon Filling Workspace Requirements

Supposing that only 11 polygons out of the 21 are to be selected for filling and it

has been estimated that these polygons contain, at most, 100 vertices and

software area fill is to be used. What would be the new workspace size?

Step 1. As before

Size = 2*200 + 8*21

= 568

Step 2. The selection list workspace size is given by

Size = 11

Step 3. Calculate size of the software fill workspace

Size = 5*100

= 500

Total = 568 + 11 + 500 = 1079 (words)

In practice the sequence of program calls would look like this:

int list[1];
.
gSetWorkspaceLimit(1100);
gDefinePolygonWorkspace(568);
.
.
gSetFillMode(GSOFT);
gSelectPolygons(list,11);
.
.

integer list(1)
.
call gSetWorkspaceLimit(1,1100)
call gDefinePolygonWorkspace(568)
.
.
call gSetFillMode(GSOFT)
call gSelectPolygons(list,11)
.
.

Polygon Selection

By default GINO will use all polygons currently defined in the polygon

workspace. However, a subset of the currently defined polygons may be selected

by a call to the routine:

gSelectPolygons(list, n)

Polygons are selected by their identifiers. The user integer array list should

contain the list of identifiers to be selected. The statement:

254

Polygon Selection ADVANCED USE OF 2D POLYGONS

int list[N];
.
gSelectPolygons(list, n);

integer list(N)
.
call gSelectPolygons(list, n)

then causes n identifiers to be copied from array list into the workspace area.

This becomes the current list of polygon identifiers - For example:

C code

#include <gino-c.h>
main()
{

int list[2];
float x,y;
.
gOpenGino();
.
.
gSetWorkspaceLimit(3000);
gDefinePolygonWorkspace(1200);
.
.
x=20.0;
y=230.0;
gSetArcIncrement(6);

/* Define and store polygons */
for (i=1; i<=4; i++) {

gStartPolygon();
gMoveTo2D(x, y);
gDrawArcBy2D(20.0,0.0,0.0,0.0,GCLOCKWISE);

/* Give polygon an identification */
gSetPolygonIdent(i);
gEndPolygon();
y -= 50.0;

}
gNewDrawing();

/* Write identifiers 2 and 3 into list */
list[0]=2;
list[1]=3;

/* Copy LIST to workspace */
gSelectPolygons(list,2);

/* Draw boundaries of selected polygons **** */
gDrawPolygonBound(GCURRENT);

.
gCloseGino();

}

F90 code

program poly
use gino_f90

integer list(2)
real x,y
.
call gOpenGino
.
.

255

ADVANCED USE OF 2D POLYGONS Polygon Selection

call gSetWorkspaceLimit(1,3000)
call gDefinePolygonWorkspace(1200)
.
.
x=20.0
y=230.0
call gSetArcIncrement(6)

! Define and store polygons
do i=1,4

call gStartPolygon
call gMoveTo2D(x, y)
call gDrawArcBy2D(20.0,0.0,0.0,0.0,GCLOCKWISE)

! Give polygon an identification
call gSetPolygonIdent(i)
call gEndPolygon
y=y-50.0

end do
call gNewDrawing

! Write identifiers 2 and 3 into list
list(1)=2
list(2)=3

! Copy LIST to workspace
call gSelectPolygons(list,2)

! Draw boundaries of selected polygons ****
call gDrawPolygonBound(GCURRENT)

.
call gCloseGino

}

Only those polygons identified in the current list are considered by

gDrawPolygonBound().

The routine gSelectPolygons() may be called repeatedly. Each time the list is

redefined, the old one is first deleted.

The routine gSelectPolygons() uses a small amount of space within the

workspace area and this should be included in the calculation of

gSetWorkspaceLimit()’s size. The space needed is equal to the maximum number

of identifiers to be selected at any one time. For example, seven identifiers gives

a space requirement of seven words.

To cancel the gSelectPolygons() list, set n to 0:

gSelectPolygons(list,0);

This deletes the list from the workspace area and GINO reverts to using all

currently defined polygons.

256

Polygon Selection ADVANCED USE OF 2D POLYGONS

Polygon Selection Enquiry

An enquiry may be made to establish which polygons are currently selected for

filling using:

gEnqPolygonList(list, n, count)

This routine returns the number of polygon identifiers in the last call to

gSelectPolygons() as count and the polygon identifiers in the array list. The

actual number of returned identifiers is between zero and count up to a maximum

of n. If n is less than zero then a warning is given.

Filling a Polygon

GINO allows general polygonal areas to be filled. Polygonal boundaries must be

defined prior to filling. These definitions should be stored in the

gDefinePolygonWorkspace() workspace unless the output device’s hardware is

capable of storing polygons.

The following points should be considered for area filling:

1. Boundaries may be defined anywhere in picture space and are independent of

any window or clipping limits.

2. Polygonal boundaries are by definition closed. There is an edge between the

first and last vertex.

3. Boundaries may be of any shape and may self-intersect.

4. An area’s boundary may be formed from several polygons which may

intersect each other.

5. Polygons stored in gDefinePolygonWorkspace() workspace each have an

identifier and therefore a subset of the currently defined polygons may be

selected (gSelectPolygons()) for filling.

The routine for filling a general polygon area is:

gFillSelectedPolygons(fill, line, inv)

This is a global filling routine which can fill any general polygonal area.

The routine gFillSelectedPolygons() allows the user to choose the hatch and line

styles with which the fill is to be drawn. For example:

257

ADVANCED USE OF 2D POLYGONS Filling a Polygon

gFillSelectedPolygons(2,3,GAREA); call gFillSelectedPolygons(2,3, &
GAREA)

will implement hatch style 2 (fill=2) and line style 3 (line=3). The actual

appearance of the style depends on whether they are implemented by hardware or

software. For inv=GAREA causes areas to be filled with an odd number of

boundaries between them and the background area.

The arguments fill and line behave in the same way as for gFillRect() (see AREA

FILLING), namely, they identify the hatch and line styles to be used for the fill.

If fill=0 or out of range, it gives a solid fill and line=0 or out of range gives the

current line style. The routine gSetFillMode() (see AREA FILLING) may be

used to select between hardware and software fill styles.

The argument inv specifies which areas are filled. With simple polygons, that is

those that do not intersect or enclose each other, when inv = GAREA the polygon

interiors are filled as in the figure below:

When inv = GINVERSE the background area is filled as shown in the figure

below:

258

Filling a Polygon ADVANCED USE OF 2D POLYGONS

Simple Polygons, Area fill

Simple Polygons Inverse fill

With complex polygons, that is those that intersect themselves or intersect or

enclose each other, when inv = GAREA, all areas which have an odd number of

edges between them and infinity are filled, as in the figure below:

When inv = GINVERSE all areas with an even number of edges between them

and infinity are filled, as in the figure below:

Notice that the whole of picture space is considered when deciding which areas

are to be filled. However, the actual fill is always clipped to the current window

or device limits.

The polygons that are filled by gFillSelectedPolygons() are those stored in

polygon workspace and selected by gSelectPolygons(). If no polygon selection

has occurred, all polygons whose definitions are in the polygon workspace will

be filled.

An example of this mechanism can be shown by modifying the previous program

example. If the call to gDrawPolygonBound() (marked by four asterisks) is

replaced by a call to gFillSelectedPolygons(), that is:

259

ADVANCED USE OF 2D POLYGONS Filling a Polygon

Complex Polygons, Inverse fill

Complex polygons Area fill

GFillSelectedPolygons(8,
GCURRENT,GAREA);

call gFillSelectedPolygons(&
8,GCURRENT,GAREA)

the two polygons identified as 2 and 3 will be filled according to hatch style 8,

drawn with the current line style.

Note that it is not necessary to use the line definition table to specify the style of

the filling line. By setting line = GCURRENT, the current line style is selected.

Current line style may be modified by redefining the current line attributes. For

example, adding the following code to the previous program example:

C code

int list[1];
.
.
.

/* Reselect polygons */
list[0]=4;
gSelectPolygons(list,1);

/* Change current line colour and fill */
gSetLineColour(GYELLOW);
gFillSelectedPolygons(5,GCURRENT,GAREA);
.
.
.

F90 code

integer list(1)
.
.
.

! Reselect polygons
list(1)=4
call gSelectPolygons(list,1)

! Change current line colour and fill
call gSetLineColour(GYELLOW)
call gFillSelectedPolygons(5,GCURRENT,GAREA)
.
.
.

will cause polygon 4 to be filled in yellow with hatch style 5.

The routine gSetFillMode() may be used to select between hardware and

software fill styles (see page 165).

260

Filling a Polygon ADVANCED USE OF 2D POLYGONS

Interaction with Polygons

The routine gPolygonHit() allows the user to specify and search an area of

picture space for polygons which overlap the area.

gPolygonHit(ident, x, y, r)

If any are found, the identifiers of the polygon whose edge comes closest to the

centre of the area is returned in ident.

The search area (or ‘hit area’) is bounded by a circle of radius r whose centre, the

‘hit centre’, is x,y in picture coordinates.

The routine gPolygonHit() is useful in interactive applications and the

coordinates for the hit centre would typically derive from a call to the routine

gGetCursorEvent() (see page 241). This routine only examines those polygons

which are currently selected. If no polygon overlaps the hit area, -1 is returned in

ident.

Polygon Windowing and Masking

Polygons Suitable for Windowing and Masking

GINO allows general polygonal areas to be used as windows or masks. Polygonal

boundaries must be defined prior to use. These definitions should be stored in the

polygon workspace.

The following points should be considered for polygonal windowing and

masking:

1. Boundaries may be defined anywhere in picture space and are independent of

any window or clipping limits.

2. Polygonal boundaries are by definition closed. There is an edge between the

first and last vertex.

3. Multi-polygonal windows cannot be used, only the first polygon in a set of

polygons may be used.

261

ADVANCED USE OF 2D POLYGONS Interaction with Polygons

Workspace Requirements for Windowing and Masking of Filled Areas

In order to utilize polygonal windowing and masking of filled areas enough space

must be allocated. The space for windowing and masking is in addition to the

space needed for polygon storage (see page 33). The following notes give

guidelines on the amounts of space required for combinations of windowing and

masking. The actual amounts required ultimately depend on the window, mask

and object definitions.

Windowing Requirements

The following formula should provide sufficient temporary space (NWHW) to

create the new clipped polygon which is sufficient for software and hardware

filling, and should, therefore, be used instead.

NWHW = 7*(NV + IW + NW) + 2*NVW

where,

IW= number of intersections between the object and window

NV= number of vertices in the object being clipped

NW= number of vertices in the window

NVW= number of vertices in the windowed object

Masking Requirements

The following formula should provide sufficient temporary space (NWHM) to

create the new masked polygon which is sufficient for software and hardware

filling, and, therefore, should be used instead.

NWHM = 7*(NV + IM + NM) + 2*NVM

where,

IM= number of intersections between the object and mask

NV= number of vertices in the object being masked

NM= number of vertices in the mask

NVM= number of vertices in the masked object

262

Polygon Windowing and Masking ADVANCED USE OF 2D POLYGONS

Requirements for Simultaneous Windowing and Masking

The following formula should provide sufficient space (NWM) for

simultaneously windowed and masked hardware filling:

NWM = 7*MAX((NV + IW + NW),(NV + IM + NM)) + 2*NVW + 2*NVM

where,

IW= number of intersections between the object and window

IM= number of intersections between the object and mask

NV= number of vertices in the object being clipped and masked

NW= number of vertices in the window

NM= number of vertices in the mask

NVW= number of vertices in the windowed object

NVM= number of vertices in the masked object

Example - Calculation of Fill Workspace Requirements

The following calculations are for the simultaneous windowing and masking of a

triangle as shown below:

NV= 3

NM = 4

NW= 4 NWM = 7*MAX ((3+4+4) , (3+2+4)) + 2*5 + 2*4

263

ADVANCED USE OF 2D POLYGONS Polygon Windowing and Masking

A Simultaneously Masked and Windowed Triangle

IW= 4

IM= 2=7*MAX (11,9) + 10 + 8

NVW= 5

NVM=4=95

The total workspace required for storing and filling the triangle above is

calculated in the following steps.

Step 1. Polygon workspace

Size = 2*3 + 8*1

= 14

Step 2. Fill workspace

Size = 95

Total = 95 + 14 = 109 (words)

The sequence of program calls would look like this:

int list1[1],lins2[1];
.
.
gSetWorkspaceLimit(109);
gDefinePolygonWorkspace(14);
.
.
gSetFillMode(GSOFT);
gSetPolygonWindow(list1,1);
gSetPolygonMask(list2,1);
.
.

integer list(1),list2(1)
.
.
call gSetWorkspaceLimit(1,109)
call gDefinePolygonWorkspace(14)
.
.
call gSetFillMode(GSOFT)
call gSetPolygonWindow(list1,1)
call gSetPolygonMask(list2,1)
.
.

Polygonal Windowing

gSetPolygonWindow(list, n)

The routine gSetPolygonWindow() selects n polygon identifiers from the array of

identifiers in list. The boundaries of these polygons are then used as the current

window until a different set of polygons is selected or the windowing is turned

off.

264

Polygon Windowing and Masking ADVANCED USE OF 2D POLYGONS

The following code generates a three sided window, and then draws a

gingerbread man using the routine man(), as shown in the figure below.

int list[1];

/* Store polygon */
gMoveTo2D(5.,0.);
gStartPolygon();

gSetPolygonIdent(101);
gDrawLineTo2D(85.,10.);
gDrawLineTo2D(45.,70.);
gDrawLineTo2D(5., 0.);

gEndPolygon();
/* Store polygon identity */

list[0] = 101;
/* Set window */

gSetPolygonWindow(list,1);

man();

integer list(1)

! Store polygon
call gMoveTo2D(5.,0.)
call gStartPolygon

call gSetPolygonIdent(101)
call gDrawLineTo2D(85.,10.)
call gDrawLineTo2D(45.,70.)
call gDrawLineTo2D(5., 0.)

call gEndPolygon
! Store polygon identity

list(1) = 101
! Set window

call gSetPolygonWindow(list,1)

call man

Polygonal Masking

gSetPolygonMask(list, n)

The routine gSetPolygonMask() selects n polygon identifiers from the array of

identifiers in list. The boundaries of these polygons are then used as the current

mask until a different set of polygons is selected or the masking is turned off.

The following code generates a three sided mask, and then draws a gingerbread

man using the routine man, as shown in the figure below.

265

ADVANCED USE OF 2D POLYGONS Polygon Windowing and Masking

Three Sided Polygonal Windowing

int list[1];

/* Store polygon */
gMoveTo2D(5.,0.);
gStartPolygon();

gSetPolygonIdent(101);
gDrawLineTo2D(85.,10.);
gDrawLineTo2D(45.,70.);
gDrawLineTo2D(5., 0.);

gEndPolygon();
/* Store polygon identity */

list[0] = 101;
/* Set mask */

gSetPolygonMask(list,1);

man();

integer list(1)

! Store polygon
call gMoveTo2D(5.,0.)
call gStartPolygon

call gSetPolygonIdent(101)
call gDrawLineTo2D(85.,10.)
call gDrawLineTo2D(45.,70.)
call gDrawLineTo2D(5., 0.)

call gEndPolygon
! Store polygon identity

list(1) = 101
! Set mask

call gSetPolygonMask(list,1)

call man

Windowing and Masking Polygon List Enquiry

The routines gEnqPolygonMaskList() and gEnqPolygonWindowList() each

return a list of currently selected polygon identifiers for masking and windowing

respectively.

gEnqPolygonMaskList(list, n, count)

gEnqPolygonWindowList(list, n, count)

266

Polygon Windowing and Masking ADVANCED USE OF 2D POLYGONS

Three Sided Polygonal Masking

Each routine returns up to n polygon identifiers. The actual number of currently

selected polygons is returned as count. If n is greater than count then only count

identifiers are returned; if n is less than count then only n identifiers are

returned. The identifiers are returned in the array list which should be defined to

hold n integers. If n is equal to or less than zero then no identifiers are returned;

if n is less than zero then a warning message is output.

Windowing and Masking Control

Basic windowing and masking provides rectangular windows and masks only

(see page 219). However, the following basic control features are also applicable

to polygonal windowing and masking.

Windows and masks may be switched on and off using the routines

gSetWindowMode() and gSetMaskMode() respectively.

gSetWindowMode(GOFF) Switches current windowing off

gSetWindowMode(GON) Switches most recently defined windowing on

gSetMaskMode(GOFF) Switches current masking off

gSetMaskMode(GON) Switches most recently defined masking on

Calls to gEnqWindowState() and gEnqMaskState(), return the bounding boxes of

currently defined windows and masks. For example, the call

GLIMIT bounds;

gEnqMaskState(&swi, &bounds);

type (GLIMIT) bounds

call gEnqMaskState(swi, bounds)

to enquire the X and Y limits of the currently defined mask applied to the

polygonal mask shown in the previous figure will return the following limits

(100.0, 190.0, 100.0, 170.0)

267

ADVANCED USE OF 2D POLYGONS Polygon Windowing and Masking

Chapter 14
3D GRAPHICS

3D Graphics Introduction

The move from 2D graphics, covered in the earlier sections of this document to

3D graphics, is essentially the addition of the 3rd coordinate and the ability of

defining and displaying objects in 3D space. However, the reality persists that at

the end of the day, the objects are still being displayed on a flat 2D screen and the

applications’ desire is to create an illusion of a 3D scene. This can be done using

a number of techniques available to the GINO user:

1) Perspective – Using a transformation of the 3D coordinates, objects further

away from the viewer appear smaller than those closer to them.

2) Hidden surface removal – Sorting objects into depth order, irrespective of

drawing order so that those hidden by closer objects are not displayed.

3) Shading – Calculating the effect of lights shining on objects to alter their

perceived colour.

4) Depth cueing – Reducing the colour intensity of objects further away from

the viewer.

All these affects are observed naturally in the real world and so give the

impression of reality.

269

Shaded Objects

Whilst 3D scenes can be built up from lines, curves and symbols in 3D space, the

primary component of realistic objects is the facet primitive. This simple

polygonal shape has a number of additional attributes that enable the effect of

complex lighting conditions to be displayed on the surface. The material

attributes which indicate the facet’s absorptive, reflective and translucent

properties, together with the angle the facet makes with the viewer provide

information needed to calculate the visual cues for this primitive. When the

effects of multiple lights are added into the calculations, the final colour of the

facet can be displayed. These calculations can be performed for each facet (flat

shading) or for each vertex within a facet (smooth shading) where more realistic

images are required.

The Scene

As well as the basic facet primitive, GINO also provides a set of 3D objects, such

as boxes, cones, cylinders and Bezier surfaces, each of which are composed of

separate facets. These provide a simple ways to start building much more

complex scenes which have the same lighting and shading principles as the basic

primitive.

Additional object complexity or realism can also be performed by adding texture

to an object. This is achieved by mapping the contents of a 2D pixel array to the

surface of an object which may consist of a single facet or a collection, such as

provided in the 3D objects. The texture can also be made subject to the lighting

conditions (see page 345).

The process of building up and manipulating 3D models is performed by

translating and/or rotating individual components and possibly storing them in

hierarchical segment structures for efficient retrieval (see page 423).

GINO also provides the ability to animate 3D objects or complete scenes in 3D

space using event based interaction methods (see page 447).

270

3D Graphics Introduction 3D GRAPHICS

3D Device Drivers

It should be pointed out, that whilst it is possible to display 3D graphics on all

GINO output devices, the lighting and shading facilities are only available on

devices driving 3D ‘hardware’. At the present time , there are two graphics

drivers that provide these facilities, namely gWogl (for use under Microsoft

Windows and Windows printers) and gGlx (for use under X-Windows). On all

other devices, objects will be displayed in the appropriate solid colour, in the

order they are drawn, and irrespective of any lighting or special effects that have

been defined.

BMP files can also be created from 3D shaded pictures using the gWoglpp()

nomination routine.

Performance

There are an increasing number of graphics cards that offer performance

acceleration for 3D graphics, either generally or specifically for OpenGL,

Direct3D or Glide. It should be noted, however, that unless certain programming

guidelines are adopted in a 3D application, a graphics card operating at full

acceleration can in fact perform slower than operating without acceleration.

The following guidelines should therefore be adopted in order to achieve

maximum performance on any graphics card.

• Use as few light sources as possible

• Store objects in segments and redraw using gDrawSeg()

• In animated objects, only use the facet primitive - most cards are tuned to

draw only triangular facets at high speed

• Use as few changes to material properties within an object as possible - i.e.

group together facets with the same material

• Cull back facing facets if possible - see gSetShadingMode()

• Switch off back surface lighting - see gSetMaterialIndex()

• Try changing to a lower resolution (some graphics cards do not perform

well at very high resolutions such as 1600 x 1200)

• Check the Depth Buffer capabilities of the graphics card and if not 32-bit

(GINO’s default), change GINO’s value by setting the config or

environment variable WOGLDEPTH

These points are repeated in the relevant sections in the following chapters.

271

3D GRAPHICS 3D Graphics Introduction

The 3D World

When a 3D device is initialised, a default 3D coordinate system or ‘world’ is set

up. As has been said, 3D drawing can be performed on any device, whether it

drives a simple pen plotter, a monochrome printer or sophisticated 3D graphics

card. The initial 3D world that is set up represents a cube with the following

layout.

Note that the default 3D origin (0.0,0.0,0.0) lies on the surface of the screen or

paper, in the bottom left corner.

The limits of these physical dimensions in the X-Y direction can be enquired at

any time using the routine gEnqDrawingLimits() which by default will return its

measurements in millimetres:

gEnqDrawingLimits(dim,type)

It is possible to both change the default units, and in some instances, the physical

drawing limits of the current device (see page 39).

272

The 3D World 3D GRAPHICS

Initial 3D World

Note that the Z coordinate range is purely notional and in most cases extends

from the least to the greatest numerical value possible on the particular

hardware/implementation being used. On devices that drive 3D graphics

hardware, a range of twice the screen or window width is used so as to define a

fitting 3D drawing volume.

3D Viewport Mapping

Whilst drawing to these physical limits may be satisfactory for basic programs, it

should be noted that the physical limits will vary from device to device. For

example, the limits of a window on a 15” screen will obviously be different on a

larger screen and on an A4 piece of paper. Developing a program to cater for

these varying limits can be cumbersome and it is therefore useful to be able to

map a predefined, application dependent range onto all or part of the physical

limits that are available on the current device. This is called viewport mapping

and is achieved using the following routine:

gSetViewport3D(piclim,viewlim)

The first argument piclim is a structure of type GLIMIT3 containing limits in all

three directions (X,Y and Z) that define the users’ 3D picture coordinate area or

volume. Whereas viewlim is a structure of type GLIMIT which defines the area

on the device onto which the user limits are to be mapped. These are measured in

the current drawing limits as returned by gEnqDrawingLimits(). Any viewport

limits outside the device limits will be clipped accordingly.

273

3D GRAPHICS 3D Viewport Mapping

3D Viewport

Example: The following code maps a 3D volume defined in picture units, on to

the available drawing area of the nominated device:

C code

#Include <gino-c.h>
GDIM paper;
GLIMIT3 picture = {0.0,1000.0,0.0,750.0,-2000.0,2000.0};
GLIMIT viewport = {0.0,1.0,0.0,1.0};

gOpenGino();
xxxxx();
gEnqDrawingLimits(paper,ipapty);

/* Define viewport */
viewport.xmax=paper.xpap;
viewport.ymax=paper.ypap;
gSetViewport3D(picture,viewport);

F90 code

use gino_f90
type (GDIM) paper
type (GLIMIT3) :: picture = &
GLIMIT3(0.0,1000.0,0.0,750.0,-2000.0,2000.0)
type (GLIMIT) :: viewport = GLIMIT(0.0,1.0,0.0,1.0)
!

call gOpenGino
call xxxxx
call gEnqDrawingLimits(paper,ipapty)

! Define viewport
viewport%xmax=paper%xpap
viewport%ymax=paper%ypap
call gSetViewport3D(picture,viewport)

Note that, by default, the aspect ratio in X-Y is maintained, and the viewport is

centrally placed in the area defined, possibly leaving gaps on the left and right, or

top and bottom in which no drawing will take place. This viewport setting can be

controlled by the routine:

gSetViewportMode(sw)

In addition to the default setting described above (sw=GCENTRAL), the

viewport can be placed at the bottom left of the viewport limits

(sw=GBOTTOMLEFT), or the aspect ratio may be deformed (sw=

DEFORMED) so that the picture limits are scaled to fit the viewport limits.

The current 3D viewport can be enquired using the following routine:

gEnqViewport3D(piclim,viewlim)

where piclim and viewlim are of the same type as the setting routine.

274

3D Viewport Mapping 3D GRAPHICS

When setting up a 3D viewport, the depth (Z) range can affect the accuracy of

any depth sorting or clipping so it is advisable not to set this to an arbitrary depth

range, but one that suits the application and the objects being drawn

appropriately (see page 327).

3D Clipping

The action of defining a viewport will, by default also define a clipping volume,

outside which no drawing will take place (unless the routine

gSetViewportClipSwitch() has been called). It may be necessary to set up a

different or separate clipping volume within the picture limits to control the

visible part of the drawing or model. This is achieved using the following

routine:

gSetWindow3D(window)

where window is a structure of type GLIMIT3 containing limits in all three axes

measured in picture units. Note that the limits of the clipping volume will always

lie parallel to untransformed X,Y and Z axes.

As in 2-D, user-defined 3-D windows may be switched off/on by using

gSetWindowMode().

Enquiring 3D Window Limits

The current state of windowing may be obtained by using the routine:

gEnqWindowState(swi, bounds)

The current setting of the window switch is returned in swi and the complete 3D

limits are returned in the structure bounds.

For example:

GLIMIT3 window;
.
gEnqWindowState(&swi,&window);

type (GLIMIT3) window
.
call gEnqWindowState(swi,window)

275

3D GRAPHICS 3D Clipping

Chapter 15
3D DRAWING

3D Drawing Introduction

GINO provides 3D drawing facilities for:

• Positioning

• Single straight lines

• Polylines

• Polyline sets

• Circular arcs

• B-spline curves

• Bezier curves

277

3D Axes

The 3D coordinate system used is right-handed as shown below, with the X-axis

horizontal, the Y-axis vertical and the Z-axis coming out of the page.

Three-dimensional drawing can be anywhere within X,Y,Z space, with the initial

origin being the bottom back left-hand corner of the drawing cube.

3D Start and End Pen Position

All drawing starts from the position at which the pen was left by the previous

drawing instruction - this is termed the start pen position. Initially, the position of

the pen is at (X,Y,Z) = (0.0,0.0,0.0). The arguments for all 3D drawing routines

define the point at which the pen will be left after executing the routine. This is

termed the “end pen position”. The end position of one routine becomes the start

position for the next. The arguments can specify the absolute coordinates of the

end pen position, or the end pen position relative to the start position.

3D Naming Conventions

The naming convention for 3D drawing routines is as follows:

(a) The initial part indicates the routine:

278

3D Drawing Introduction 3D DRAWING

Right Handed Coordinate System

gMove* - positioning

gDrawLine* - drawing straight lines

gDrawArc* - drawing circular arcs

gDrawPolyline* - drawing series of straight lines

gDrawPolylineSet* - drawing a set of polylines

gDrawSpline* - drawing a cubic spline curve

gFillPolygon* - fill a polygon

(a) The latter part indicates the type of coordinates:

To - absolute

By - relative

(c) The last part indicates dimension:

**2D - two dimensions (see page 77)

**3D - three dimensions

3D Positioning

The routines for “straight line movement” are:

gMoveTo3D(x, y, z)

gMoveBy3D(dx, dy, dz)

Examples:

• To position the pen at point (1.5,2.5,3.5) the following statement could be

used:

gMoveTo3D(1.5,2.5,3.5); call gMoveTo3D(1.5,2.5,3.5)

279

3D DRAWING 3D Positioning

• To increment the start pen position by xa in the X-direction, ya in the

Y-direction and za in the Z direction the following statement could be

used:

gMoveBy3D(xa,ya,za); call gMoveBy3D(xa,ya,za)

3D Straight Lines

The routines for drawing straight lines are:

gDrawLineTo3D(x, y, z)

gDrawLineBy3D(dx, dy, dz)

For example - to draw a straight line from the point (50.0,20.0,-10.0) to the point

(60.0,80.0,200.0) the following statements can be used:

gMoveTo3D(50.0,20.0,-10.0);
gDrawLineTo3D(60.0,80.0,200.0);

call gMoveTo3D(50.0,20.0,-10.0)
call gDrawLineTo3D(60.,80.,200.)

3D Polylines

The routines for drawing 3D multiple straight lines from the current pen position

are:

gDrawPolylineTo3D(npts, points3)

gDrawPolylineBy3D(npts, points3)

where points3 is an array of structures of type GPOINT3 each containing three

real elements representing the x, y and z coordinates in either absolute or relative

terms.

For example - to draw the 3D arrow head shown below, an array points3 of type

GPOINT3 is initialized with four coordinate as shown below:

C Code

GPOINT3 arrow[4] = {7.07,10.0,7.07, 7.65,8.0,3.65,
3.65,8.0,7.65, 7.07,10.0,7.07};

gMoveTo3D(0.0,0.0,0.0);

280

3D Straight Lines 3D DRAWING

gDrawPolylineTo3D(4,arrow);

F90 Code

type (GPOINT3) :: arrow(4) = (/ &
GPOINT3(7.07,10.0,7.07), GPOINT3(7.65,8.0,3.65), &
GPOINT3(3.65,8.0,7.65), GPOINT3(7.07,10.0,7.07) /)

call gMoveTo3D(0.0,0.0,0.0)
call gDrawPolylineTo3D(4,arrow)

The same figure could have been produced using the routine

gDrawPolylineBy3D() as follows:

C Code

GPOINT3 arrow[4] = {7.07,10.0,7.07, 0.58,-2.0,-3.42,
-4.0,0.0,4.0, 3.42,2.0,-0.58};

gMoveTo3D(0.0,0.0,0.0);
gDrawPolylineBy3D(4,arrow);

F90 Code

type (GPOINT3) :: arrow(4) = (/ &
GPOINT3(7.07,10.0,7.07), GPOINT3(0.58,-2.0,-3.42), &
GPOINT3(-4.0,0.0,4.0), GPOINT3(3.42,2.0,-0.58) /)

call gMoveTo3D(0.0,0.0,0.0)
call gDrawPolylineBy3D(4,arrow)

Shaded Polylines

To draw a polyline that is affected by lighting and shading users are referred to

the section on 3D objects (see page 305).

281

3D DRAWING 3D Polylines

3D Polyline

3D Polyline Sets

3D Polyline Set Definition

A polyline set consists of an array of polylines each of which consists of an

integer number of vertices and a pointer to an array of 3D vertices.

Each polyline is complete within itself and does not make use of the current pen

position. For this reason polygon sets can only use absolute coordinates.

An example of a 3-D polyline set consisting of a trapezium and two triangles is

represented by the following coordinates and shown in the diagram below:

1 2 3 4 5 6 7 8 9 10 11 12 13

x: 40. 160. 340. 460. 40. 120. 245. 245. 120. 250. 440. 250. 250.

y: 140. 40. 40. 140. 140. 145. 270. 145. 145. 145. 145. 335. 145.

z: 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

<------------------------------------> <---------------------------> <----------------------->

Polyline sizes

5 4 4

282

3D Polyline Sets 3D DRAWING

3D Polyline Usage

Three dimensional polyline sets are filled using the following routine.

gDrawPolylineSet3D(npol, polylines3)

where npol is the number of polylines contained in the GPOLYGON3 array

polylines3.

The example polyline sets described previously can be implemented as follows.

C code

static GPOLYGON3 poly[3] = {5, 0, 4, 0, 4, 0};
static GPOINT3 points[13] = {

40.0,140.0,0.0, 160.0,40.0,0.0,
340.0,40.0,0.0, 460.0,140.0,0.0, 40.0,140.0,0.0,

120.0,145.0,10.0, 245.0,270.0,10.0,
245.0,145.0,10.0, 120.0,145.0,10.0,
250.0,145.0,10.0, 440.0,145.0,10.0,
250.0,335.0,10.0, 250.0,145.0,10.0};

main()
{

poly[0].verts=&points[0];
poly[1].verts=&points[5];
poly[2].verts=&points[9];

gDrawPolylineSet3D(3,poly);
}

283

3D DRAWING 3D Polyline Sets

3D Polyline Set

F90 code

type (GPOLYGON3) :: poly(3)
type (GPOINT3) :: points(13) = {/ &

GPOINT3(40.0,140.0,0.0), GPOINT3(160.0,40.0,0.0), &
GPOINT3(340.0,40.0,0.0), GPOINT3(460.0,140.0,0.0), &
GPOINT(40.0,140.0,0.0), &
GPOINT3(120.0,145.0,10.0),GPOINT3(245.0,270.0,10.0), &
GPOINT3(245.0,145.0,10.0),GPOINT(120.0,145.0,10.0), &
GPOINT3(250.0,145.0,10.0),GPOINT3(440.0,145.0,10.0), &
GPOINT3(250.0,335.0,10.0),GPOINT(250.0,145.0,10.0) /)

poly(1)%nvert=5
poly(1)%verts=>points(1:5)
poly(2)%nvert=4
poly(2)%verts=>points(6:9)
poly(3)%nvert=4
poly(3)%verts=>points(10:13)
.
call gDrawPolylineSet3D(3,poly)

3D Arcs

The routines for drawing 3D circular arcs are:

gDrawArcTo3D(xc, yc, zc, xe, ye, dze, dxt, dyt, dzt)

gDrawArcBy3D(dxc, dyc, dzc, dxe, dye, dze, dxt, dyt, dzt)

All arcs are drawn from the start pen position. The radius of an arc is the distance

from the start point to the centre. The end pen position or any point on the

straight line from the centre through the end point of the arc may be specified.

The end pen position will then be calculated.

In 3-D the direction of the arc is indicated by specifying a “direction vector”. If a

circle or semicircle is being drawn this vector is used to specify the plane in

which the arc lies and the direction in which it has to be drawn.

284

3D Arcs 3D DRAWING

Example:

• To draw a horizontal semicircle from point (1.0,2.0,2.0), centre

(2.0,2.0,3.0) and end point (3.0,2.0,4.0):

/* Move to start */
gMoveTo3D(1.0,2.0,2.0);

/* Direction vector */
dtx = 0.0;
dty = 0.0;
dtz = 10.0;
gDrawArcTo3D(2.0,2.0,3.0,

3.0,2.0,4.0,dtx,dty,dtz);

! Move to start
call gMoveTo3D(1.0,2.0,2.0)

! Direction vector
dtx = 0.0
dty = 0.0
dtz = 10.0
call gDrawArcTo3D(2.0,2.0, &

3.0,3.0,2.0,4.0,dtx,dty,dtz)

If the arc to be drawn is not a circle or semicircle, then the start and end point

together with the centre point specify the plane in which the arc is to lie. In this

case the direction vector merely indicates whether a major or minor arc is

required.

285

3D DRAWING 3D Arcs

3-D Semicircle

Example:

• To draw an arc from point (1.0,2.0,2.0) with centre (2.0,2.0,3.0) and end

point on the line from the centre (2.0,3.0,2.0). If the direction vector is

(0.0,-1.0,0.0) then the major arc is drawn and if the direction vector is

(0.0,1.0,0.0) the minor arc is drawn (see below).

gMoveTo3D(1.0,2.0,2.0);
gDrawArcTo3D(2.0,2.0,3.0,
2.0,3.0,2.0, 0.0,-1.0,0.0);

call gMoveTo3D(1.0,2.0,2.0)
call gDrawArcTo3D(2.0,2.0,3.0, &
2.0,3.0,2.0, 0.0,-1.0,0.0)

gMoveTo3D(1.0,2.0,2.0);
gDrawArcTo3D(2.0,2.0,3.0,

2.0,3.0,2.0, 0.0,1.0,0.0);

call gMoveTo3D(1.0,2.0,2.0)
call gDrawArcTo3D(2.0,2.0,3.0, &

2.0,3.0,2.0, 0.0,1.0,0.0)

286

3D Arcs 3D DRAWING

3-D Direction Vector (Major arc)

The same arcs can be drawn using the gDrawArcBy3D() routine using vector

increments as shown below:

For the major arc:

gMoveTo3D(1.0,2.0,2.0);
gDrawArcBy3D(1.0,0.0,1.0,

1.0,1.0,0.0, 0.0,-1.0,0.0);

call gMoveTo3D(1.0,2.0,2.0)
call gDrawArcBy3D(1.0,0.0,1.0, &

1.0,1.0,0.0, 0.0,-1.0,0.0)

For the minor arc:

gMoveTo3D(1.0,2.0,2.0);
gDrawArcBy3D(1.0,0.0,1.0,

1.0,1.0,0.0, 0.0,1.0,0.0);

call gMoveTo3D(1.0,2.0,2.0)
call gDrawArcBy3D(1.0,0.0,1.0, &

1.0,1.0,0.0,0.0,1.0,0.0)

287

3D DRAWING 3D Arcs

3-D Direction Vector (Minor arc)

Direction Vector

Identical 3D arcs can be obtained using different direction vectors.

For Example:

• The direction vector in the major-arc example above could have been

specified as (0.0,-100.0,0.0) showing that the magnitude is not significant.

• The minor arc could have been produced if the direction vector had been

(0.0,0.0,-10.0) showing the plane is not significant (see below).

3D Spline Curves

GINO provides two routines to draw a smooth curve through a series of 3D

points using cubic splines:

gDrawSplineTo3D(npts, points3, beg, fin)

gDrawSplineBy3D(npts, points3, beg, fin)

Where points3 is an array of type GPOINTS3 containing the three components

of the point in space.

288

3D Spline Curves 3D DRAWING

3-D Direction Vector

An example of a 3D spline curve is shown below, indicating the fitting of a curve

to a 20 point helix.

3D Spline Curve Control

End conditions, increments and tension for 3D spline curves are set in the same

manner as for 2D splines curves (see page 77).

The routines gSetCurveAttribs3D()/gEnqCurveAttribs3D() are used to set and

enquire the end conditions for 3D spline curves. Thus:

gSetCurveAttribs3D(dxbeg, dybeg, dzbeg, dxfin, dyfin, dzfin, xbeg, ybeg,

zbeg, xfin, yfin, zfin)

gEnqCurveAttribs3D(dxbeg, dybeg, dzbeg, dxfin, dyfin, dzfin, xbeg, ybeg,

zbeg, xfin, yfin, zfin)

289

3D DRAWING 3D Spline Curves

Spline curve using 20 data points

3D Bezier Curves

The Bezier curve routines offer a very different kind of curve control where the

data supplied represents control points rather than points on the curve itself. Two

routines are provided for this kind of curve drawing in 3D:

gDrawBezierTo3D(npts, points3)

gDrawBezierBy3D(npts, points3)

where points3 is an array of type GPOINT3 and npts are the number of control

points stored in the array.

3D Elevation and Reduction

As in the case of 2D Bezier curves, two routines are also provided to elevate and

reduce a 3D Bezier curve definition:

gElevateBezier3D(npts, points3)

gReduceBezier3D(npts, points3)

Users are referred to the section on 2D Bezier curves for additional information

on the usage of all these routines (see page 101)

3D Polygons

The routines for filling 3D polygons are:

gFillPolygonTo3D(fill, line, inv, npts, points3)

gFillPolygonBy3D(fill, line, inv, npts, points3)

gFillPolygonSet3D(fill, line, inv, npol, polygons3)

The routines gFillPolygonTo3D(), and gFillPolygonBy3D() fill a single polygon,

starting at the current pen position, containing npts vertices of either absolute or

relative points of type GPOINT3 in the array of points3.

290

3D Polygons 3D DRAWING

The routine gFillPolygonSet3D() fills a set of npol polygons contained in the

array polygons3 of type GPOLYGON3. Each polygon is self contained without

making reference to the current pen position. An example of filling and using an

array of type GPOLYGON3 is described above with the description of

gDrawPolylineSet3D().

In all three cases, an extra point is added if necessary to ensure the polygon is

closed before filling. The fill style and line style are defined in the same way as

gFillRect(), using fill and line arguments (see page 165).

The argument inv specifies which area is to be filled. When inv=GAREA the

interior of the polygon is filled and when inv=GINVERSE the exterior area up to

the current window limits is filled, leaving the interior empty. If the polygon is

self intersecting, unfilled areas can be created within a polygon.

Overlapping Polygons

GINO applies all the current modelling and viewing transformations to the points

in the polygon or polygon set to create a set of points in 2-D (see page 385). This

polygon set is filled in the same way that a 2-D polygon would be filled.

Therefore, if any parts of the 3-D polygon overlap when viewed using the current

settings, unfilled areas can be created within the filling.

The following example shows two views of the same object displayed using 3-D

polygon filling. In the first view none of the shape’s faces overlap any other, in

the second view overlapping takes place and causes an unfilled area to be created

within the generated 2-D polygon:

291

3D DRAWING 3D Polygons

C code

static GPOINT3 pts[8] =
{80.0, 0.0,60.0, 80.0, 0.0, 0.0,
80.0,80.0, 0.0, 0.0,80.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,60.0,
0.0,80.0,60.0, 80.0,08.0,60.0};

.

.
gDefinePerspView(665.,405.,90.,-6.65,-4.05,0.,784.);
gGenerateView();
.
.
gMoveTo3D(pts[7].x,pts[7].y,pts[7].z);
gFillPolygonTo3D(1,0,GAREA,8,&pts);
.
.
gSetTransform(-1);
gDefinePerspView(475.,405.,475.,-4.75,-4.05,-4.75,784.);
gGenerateView();
.
.
gMoveTo3D(pts[7].x,pts[7].y,pts[7].z);
gFillPolygonTo3D(1,0,GAREA,8,pts);
.

F90 code

type (GPOINT3) :: pts(8) = (/ &
GPOINT3(80.0, 0.0,60.0), GPOINT3(80.0, 0.0, 0.0), &
GPOINT3(80.0,80.0, 0.0), GPOINT3(0.0,80.0, 0.0), &
GPOINT3(0.0, 0.0, 0.0), GPOINT3(0.0, 0.0,60.0), &
GPOINT3(0.0,80.0,60.0), GPOINT3(80.0,08.0,60.0} /)

.

.
call gDefinePerspView(665.,405.,90.,-6.65,-4.05,0.,784.)
call gGenerateView
.
.
call gMoveTo3D(pts(8)%x,pts(8)%y,pts(8)%z)
call gFillPolygonTo3D(1,0,GAREA,8,pts)
.
.
call gSetTransform(-1)
call gDefinePerspView(475.,405.,475.,-4.75,-4.05,-4.75,784.)
call gGenerateView
.
.
call gMoveTo3D(pts(8)%x,pts(8)%y,pts(8)%z)
call gFillPolygonTo3D(1,0,GAREA,8,pts)

292

3D Polygons 3D DRAWING

The shapes’ edges are added using gMoveTo3D() and gDrawLineTo3D().

Users are referred to the Facet primitive for true 3D polygon display (see page

295).

3D Point Storage

In a similar manner as the 2D drawing routines, all the vertices generated by the

3D drawing routines are stored when point or polygon storage is switched on and

can be used for the definition of polygons or returning to the application. These

facilities are described in the 2D Drawing section of the document (see page

103).

The routine to return all 3 coordinates of the stored points is:

nret=gReturnInternalPoints3D(nn, points3, np, polylines3, npts, npol)

where points3 is an array of type GPOINT3 and polylines3 is an array of type

GPOLYGON3. The arguments nn and np should be set to the size of these

arrays. The arguments npts and npol return the number of points and polylines

that actually exist in the internal workspace which may be more than those

returned if the supplied arrays are not sufficiently large enough. The function

itself returns the actual number of complete polylines that have been placed in

the user supplied arrays.

Further details can be found in the above referenced section of this document.

293

3D DRAWING 3D Point Storage

Two views of the same 3-D polygon

3D Interpolation

GINO provides a facility to interpolate user suppled 3D data or from previously

drawn 3D curves, lines or arcs using the above point storage mechanism. Passing

a single data value with a set of 3D data points, the function

gInterpolateData3D() can return all the intersections using linear interpolation.

The function has the following form:

nint=gInterpolateData3D(nopt, ptint, npts, points3, nptout, ptout1, ptout2)

where nopt can be GXDATA, GYDATA or GZDATA indicating the

interpretation of the argument ptint, the value to be interpreted. The argument

npts specifies the number of 3D data points supplied in the array points3 (which

is of type GPOINT3) and nptout is the size of the output arrays ptout1 and

ptout2.

The function returns the number of intersection points returned in the arrays

ptout1 and ptout2. Where nopt=GXDATA these arrays will contain Y and Z

values, where nopt=GYDATA they will contain X and Z values and where

nopt=GZDATA they will contain X and Y values respectively. There may be

zero, one or more than one depending on the form of the data, but it will never

exceed nptout even though there may be more intersections possible from the

supplied data.

294

3D Interpolation 3D DRAWING

Chapter 16
FACETS

Facets Introduction

A facet is a special kind of polygon that can be made subject to the current

lighting and shading environment (see page 325). Without lighting and shading,

the facet is displayed in the current colour as either a filled polygon or its

boundary depending on its fill style. The facets reaction to light is defined in

terms of its material properties which are used instead of its colour when lighting

and shading is enabled (see page 339).

In the same way as a normal polygon, a facet is defined by a set of vertices in 3D

space, but because of its association with lighting and shading the facet should be

defined as either triangular (3 vertices) or quadrilateral (4 vertices). The

primitive is not actually limited to this number or vertices, but in order to be able

to correctly calculate the true effect of light shining on the facet, the vertices

should be planar (i.e. All the vertices lie in one plane), hence the preference for

triangular and quadrilateral facets. It is also often true that graphics hardware is

also tuned to the display of these simpler facets, giving a much improved

performance when objects are limited to them.

In addition to the facet vertices, this primitive can have additional information

associated with the vertices which determine the actual appearance of the facet in

the current lighting and shading environment. These include non-planar normals,

texture coordinates or vertex colours. These are described in the following

sections.

295

Facet Definition

In its simplest form, a facet is defined as an array of 3D vertices stored in an

array of structures of type GPOINT3 using the following routine:

gDrawFacet(npts, points, [gNormals, gTextCoords, gColours].)

where points is an array of 3D vertices and npts is the number of vertices in the

array. The arguments gNormals, gTextCoords and gColours are all optional and

are described below.

Facet Faces

Before describing the additional facet forms, it is important to note that unlike

normal polygons, facets have two faces, a front and back face, each of which can

be given different material attributes and therefore appear differently when

viewed from either direction. The order of the vertices as viewed by the viewer is

used to determine which face is which. By default, vertices lying in an

anti-clockwise order are deemed to be showing the front face, and therefore if

you move round to the other side, the vertices will lie in a clockwise order, and

so you will be looking at the back of the facet. This is known as the winding rule.

Therefore the order in which the vertices are passed to the facet drawing routine

are important in determining the ‘structure’ of a single or a group of facets.

296

Facet Definition FACETS

Facet Faces

Note the default winding rule can be reversed when setting up the lighting and

shading environment (see page 325).

Normals

The method used to calculate the correct shade of a facet in any lighting

environment uses the angle that the facet lies in relation to the direction the light

is shining. In actual fact, the underlying mathematics uses a vector which is

perpendicular to the plane of the facet, known as its normal. GINO will

automatically calculate this vector (unless alternative vectors are supplied) based

on the position of the first 2 and last vertices in each facet. This single normal is

called a planar normal because it applies to the whole plane of the facet.

This single vector is sufficient when flat shading is being used or where the facet

represents a flat surface. If, however, curved surfaces are being constructed, and

smooth shading is required, a more accurate definition of the facet is required to

give an accurate visual appearance. Under these circumstances normals need to

be calculated for each vertex by averaging planar normals of adjacent facets and

then supplied to the gDrawFacet() routine in the gNormals optional array

argument.

GINO provides a routine to return the planar normal of a set of vertices that may

then be manipulated as required by the application.

gReturnPlanarNormal(npts, vertices, normal)

where vertices is an array of npts points of type GPOINT3 and the planar

normal is returned similarly in a structure of type GPOINT3. The following

example shows the smoothing of two adjoining facets by averaging their planar

normals:

C Code

/* Averages planar normals for smooth surface */
include <gino-c.h>

GPOINT3 facet1[] = {60.0,30.0,20.0 ,60.0,30.0,10.0 ,20.0,10.0,5.0 },
facet2[] = {110.0,10.0,5.0 ,60.0,30.0,10.0 ,60.0,30.0,20.0};

GPOINT3 normal1(3),normal2(3),n1,n2,na;

main()
{

gOpenGino();
XXXXX();

297

FACETS Facet Definition

/* Get planar normals */
gReturnPlanarNormal(3,facet1,n1);
gReturnPlanarNormal(3,facet2,n2);

/* Average normal */
na.x=(n1.x + n2.x)/2.0;
na%y=(n1.y + n2.y)/2.0;
na%z=(n1.z + n2.z)/2.0;

/* Generate facet with user supplied normals */
normal1[0]=na;
normal1[1]=na;
normal1[2]=n1;

normal2[0]=n2;
normal2[2]=na;
normal2[3]=na;

/* Draw facets */
gDrawFacet(3,facet1,gNormals,normal1,0);
gDrawFacet(3,facet2,gNormals,normal2,0);

gSuspendDevice();
gCloseGino();

}

F90 Code

! Averages planar normals for smooth surface
use gino_f90
!
type (GPOINT3) :: facet1(3) = &

(/ GPOINT3(60.0,30.0,20.0), &
GPOINT3(60.0,30.0,10.0), &
GPOINT3(20.0,10.0,5.0) /)

type (GPOINT3) :: facet2(3) = &
(/ GPOINT3(110.0,10.0,5.0), &

GPOINT3(60.0,30.0,10.0), &
GPOINT3(60.0,30.0,20.0) /)

type (GPOINT3) :: normal1(3),normal2(3),n1,n2,na
!

call gOpenGino
call XXXXX

!
! Get planar normals

call gReturnPlanarNormal(3,facet1,n1)
call gReturnPlanarNormal(3,facet2,n2)

!
! Average normal

na%x=(n1%x + n2%x)/2.0
na%y=(n1%y + n2%y)/2.0
na%z=(n1%z + n2%z)/2.0

!
! Generate facet with user supplied normals

normal1(1)=na
normal1(2)=na
normal1(3)=n1

!
normal2(1)=n2
normal2(2)=na
normal2(3)=na

298

Facet Definition FACETS

!
! Draw facets

call gDrawFacet(3,facet1,gNormals=normal1)
call gDrawFacet(3,facet2,gNormals=normal2)

!
call gSuspendDevice
call gCloseGino
stop
end

Textured Facet

In addition, or as an alternative, to the lighting effects on a facet, one or more

facets may be ‘covered’ with a texture. This powerful technique can be used to

‘drape’ a predefined image over a series of facets to add a textured appearance to

an object. The image may represent some abstract pattern, some additional 4D

data or a photo realistic image, but in all cases the data is supplied in the same

form as for a pixel image described earlier in this document (see page 189).

In these circumstances, the facet definition may need to define its location in

relation to the image and this is achieved by supplying texture coordinates in the

optional gTextCoord array argument to the gDrawFacet() routine. The texture

mapping facility is fully described later in this document (see page 345).

Coloured Facet

A third type of facet is provided by the GINO library, that is not affected by

lighting or texture mapping. If the gDrawFacet() routine is supplied with specific

colours for each vertex in the optional gColours array, the facet will be drawn

with its interior (or boundary) with graduated colours between those specified.

Therefore, along one edge, if one vertex is specified as red, and the other as

yellow, the edge will be drawn with each displayable point along the edge

changing from red through orange to yellow. The same applies to the interior of

the facet where three or more vertices are defined.

299

FACETS Facet Definition

Averaging Normals

Colours may be supplied as indices in the current colour table or as 24bit RGB

triplets using the gTrueCol() function.

An example of drawing a coloured facet is shown below:

C Code

/* draws coloured facets */
include <gino-c.h>

GPOINT3 facet1[] = {60.0,30.0,20.0 ,60.0,30.0,10.0 ,20.0,10.0,5.0 },
facet2[] = {110.0,10.0,5.0 ,60.0,30.0,10.0 ,60.0,30.0,20.0};

int cols1[] = { 2,4,5 };
int cols2[] = { 7,4,2 };

main()
{

gOpenGino();
XXXXX();

/* Set up view */
xeye=60.0;
yeye=300.0;
zeye=100.0;
gDefinePerspView(xeye,yeye,zeye,0.0,-yeye,-zeye,800.0);
gGenerateView();

/* Define smooth shading */
gSetShadingMode(GGOURAUD,0);

/* Draw two coloured facets */
gDrawFacet(3,facet1,gColours,cols1,0);
gDrawFacet(3,facet2,gColours,cols2,0);

gSuspendDevice();
gCloseGino();

}

F90 Code

! draws coloured facets
use gino_f90
!
type (GPOINT3) :: facet1(3) = &

(/ GPOINT3(60.0,30.0,20.0), &
GPOINT3(60.0,30.0,10.0), &
GPOINT3(20.0,10.0,5.0) /)

type (GPOINT3) :: facet2(3) = &
(/ GPOINT3(110.0,10.0,5.0), &

GPOINT3(60.0,30.0,10.0), &
GPOINT3(60.0,30.0,20.0) /)

integer :: cols1(3) = (/ 2,4,5 /)
integer :: cols2(3) = (/ 7,4,2 /)

300

Facet Definition FACETS

!
call gOpenGino
call XXXXX

!
! Set up view

xeye=60.0
yeye=300.0
zeye=100.0
call gDefinePerspView(xeye,yeye,zeye,0.0,-yeye,-zeye,800.0)
call gGenerateView

!
! Define smooth shading

call gSetShadingMode(GGOURAUD)
!
! Draw two coloured facets

call gDrawFacet(3,facet1,gColours=cols1)
call gDrawFacet(3,facet2,gColours=cols2)

!
call gSuspendDevice
call gCloseGino
stop
end

Note that smooth colour graduations between vertices will only occur if

GGOURAUD shading is set in gSetShadingMode().

Facet Attributes

Facet Fill Style

Facets can be drawn in two different styles, either solid filled or a series of lines

linking the vertices (the boundary). This attribute is set using the routine:

gSetFacetFillStyle(fill)

301

FACETS Facet Attributes

Coloured facets

where fill can be either GSOLID (default) or GHOLLOW. In both cases, the facet

is drawn using the current colour or material properties.

The current facet fill style can be enquired using the following routine:

gEnqFacetFillStyle(fill)

As it is not possible to define a different coloured boundary to that of the centre,

if two such colours are required then the facet needs to be drawn twice with

different colour attributes (but see below).

Facet Offset

Where a facet boundary needs to be displayed as well as its interior, or some

additional detail needs to be added to the ‘surface’ of an object, care needs to be

taken as to the hidden surface mechanism used in GINO. Full details of the depth

buffering technique used to display 3D objects is given later in this document

(see page 327), suffice to say that the default is to only display information that is

nearer to the viewer. This has the effect of removing detail at the same distance

from the viewer (unless the default depth buffering mode is changed) subject to

the accuracy of the Z buffer.

A useful alternative to the modification of the depth buffer, is to specify a

nominal offset to either the facet’s interior or its boundary as necessary. This can

be achieved using the following routine:

gSetFacetOffsetMode(mode)

where mode can be any of the following:

GOFF Switch off all offsets

GBOUNDARYAWAY Shift boundary away from viewer

GINTERIORAWAY Shift interior away from viewer

GINTERIORNEAR Shift interior nearer viewer

GBOUNDARYNEAR Shift boundary nearer viewer

In the simple case of requiring the visibility of both the facet and its boundary,

the boundary can be ‘shifted’ nearer the viewer by setting the offset mode to

GBOUNDARYNEAR. Where additional surface detail is required, possibly

drawn using gDrawPolylineTo3D(), shifting the interior away from the viewer

would be the preferred option (mode = GINTERIORAWAY).

302

Facet Attributes FACETS

The current facet fill style can be enquired using the following routine:

gEnqFacetOffsetMode(mode)

303

FACETS Facet Attributes

Chapter 17
3D OBJECTS

3D Objects Introduction

GINO provides facilities to draw a set of 3D objects which (apart from the

shaded polyline) are generated from facets positioned in 3D space. Such objects

may be used to construct complex models according to the current viewing and

modelling transformations.

Shaded Polyline:

Solid 3D primitives:

• Box

• Wedge

• Cone

• Cylinder

• Sphere

• Volume

Surface primitives:

• Spline Surface

• Bezier surface

• Ruled Bezier surface

• Tabulated Bezier surfaces

• Swept Bezier surface

• Bezier sphere

• Bezier volume

305

Local Axes System

All objects and surfaces (except those mentioned below) are defined in a local

axes system U,V and W. For 3D primitives these are aligned along the current

X,Y and Z axes, whereas for Bezier surfaces, the U axis is aligned along the

major curve and the V axis is aligned along the extrusion.

All the solid object routines require a set of obligatory arguments to define their

position in 3D space, together with certain dimensions (some of which default to

1.0). Alternative dimensions and orientations are specified using optional

arguments for width, height, depth or radii together with local rotations about the

U, V and or W axes, or as absolute or relative vectors in the local axis system.

Shaded polylines, Spline and Bezier surfaces are fully defined in 3D space by

their data/control points, but the Bezier sphere and volumes of rotation can have

optional local rotations.

Object Complexity

Objects of rotation and surfaces are built up from a number of quadrilateral facets

in each of the U and V axes (representing the circumferential and vertical

dimensions for volumes of rotation). This can be altered using optional

arguments in the appropriate routines to increase or decrease the smoothness of

the object as required. The exception to this is for normal volumes of rotation

where the vertical complexity is determined by the number of points in the

supplied outline.

Object Shading

All 3D objects are shaded according to the current lighting/shading environment

with automatic generation of planar or averaged normals as required by the

current shading mode (see page 325). Objects are drawn using the current facet

attributes (see page 301) and colour or material properties (see page 339).

Object Texture Mapping

Individual objects are assigned texture mapping coordinates in the range 0.0 to

1.0 where texture mapping has been switched on prior to the drawing of the

object (see page 345). This allows the draping of complete image files over each

object with ease. Where images are required to be replicated over one object or to

cover several objects, it is the responsibility of the application writer to generate

appropriate texture coordinates using the texture coordinate generation routines

(see page 349).

306

3D Objects Introduction 3D OBJECTS

Shaded Polyline

The shaded polyline is a special 3D object that is fully defined through its

arguments. It is distinct from the normal polyline in that it is subject to the

current lighting, material and texture mapping settings and is distinct from the

other objects in this section in that it is not constructed from facets.

The routine to draw such a polyline is:

gDrawShadedPolylineTo3D(npts, points, normals, [gTextCoords])

where npts are the number of vertices defining the polyline and points and

normals are arrays of type GPOINT3 which define the coordinates and the

normals at each vertex. An optional argument gTextCoords can also be supplied

if texture mapping is to be applied to the polyline.

The shaded polyline is useful where linear detail needs to be added to a scene

with objects and/or surfaces and where the detail needs to respond to the current

lighting conditions. It is important that the correct normals are supplied with this

routine, usually indicating the normals of the associated facets on which the

detail is being added.

Note that all other polylines, polygons and rectangles are drawn with lighting and

texture mapping switched off and thus appear in their specified colour.

3D Primitives

The following sections describe the drawing of each of the solid 3D primitives.

Boxes

Three forms of a box primitive are provided:

gDrawRect3D(xmin, xmax, ymin, ymax, zmin, zmax)

gDrawCube(xc, yc, zc, dim, [gURot, gVRot, gWRot, gUComp, gVComp,

gWComp])

gDrawBox(xp, yp, zp, [gUDim, gVDim, gWDim, gURot, gVRot, gWRot,

gUVec, gVVec, gWVec, gAbs, gUComp, gVComp, gWComp])

307

3D OBJECTS Shaded Polyline

The gDrawRect3D() routine draws a box whose edges are aligned along the

current axes and does not have a local orientation. The gDrawCube() routine

draws a cube centred at the specified position, whereas gDrawBox() is a

generalised box routine, the dimension and orientation of which can be specified

in one of three different ways.

• Dimensions and rotations – using optional arguments gUDim, gVDim,

gWDim together with optional local rotations set about the U, V or W axes

using arguments gURot, gVRot and gWRot

• Absolute vectors – using optional arguments gUVec, gVVec, gWVec with

gAbs set to GABSOLUTE

• Relative vectors – using optional arguments gUVec, gVVec, gWVec with

gAbs set to GRELATIVE

Where absolute or relative vectors are used, these must be mutually

perpendicular in order to maintain the cuboid shape.

Each of the obligatory and optional arguments are shown in the figure below.

The optional arguments gUComp, gVComp and gWComp determine the

number of sub-divisions of each face in the U,V or W directions respectively.

The default in each case is 1.

308

3D Primitives 3D OBJECTS

Box Primitive

Wedges

A wedge is similar to a box except that one corner is cut between the upper left

and lower right corners as shown below:

gDrawWedge(xp, yp, zp, [gUDim, gVDim, gWDim, gURot, gVRot, gWRot,

gUVec, gVVec, gWVec, gAbs])

Cylinders and Cones

Cones and cylinders can be drawn using the following routines:

gDrawCylinder(xp, yp, zp, radius, [gHeight, gURot, gVRot, gWRot,

gVVec, gAbs, gUComp, gVComp])

gDrawCone(xp, yp, zp, rad1, rad2, [gHeight, gURot, gVRot, gWRot,

gVVec, gAbs, gUComp, gVComp])

309

3D OBJECTS 3D Primitives

Wedge Primitive

where xp, yp, zp is the centre of the base of each object and the radii are

specified as shown below.

Note that the height of either object may be specified using the optional argument

gHeight together with optional local rotations set about the U, V or W axes using

arguments gURot, gVRot and gWRot, or by using gVVec as an absolute or

relative vector from the object’s origin (i.e. the centre of the base).

The optional arguments gUComp and gVComp determine the number of facets

in the circumferential and vertical directions respectively. In the above figures,

the values of 18 and 3 are used.

Spheres

A simple faceted sphere may be drawn using the following routine:

gDrawSphere(xc, yc, zc, radius, [gURot, gVRot, gWRot, gUComp,

gVComp])

310

3D Primitives 3D OBJECTS

Cone and Cylinder Primitives

Where xc, yc and zc specify the centre position of the sphere as shown below.

The optional angular rotations gURot, gVRot, gWRot, do not affect the visual

appearance of the sphere, but may be used to control the alignment of a texture

map that is added to the surface of the sphere.

The optional arguments gUComp and gVComp determine the number of facets

in the horizontal and vertical directions respectively controlling the smoothness

of the sphere.

Volumes of Rotation

Volumes of rotation can be constructed using the following routine:

gDrawVolume(xp, yp, zp, npts, points, [gVVec, gAbs, gURot, gVRot,

gWRot, gUComp])

311

3D OBJECTS 3D Primitives

Sphere Primitive

where xp, yp, zp is the bottom centre of rotation of a set of points in the X-Y

plane.

The axis of rotation by default extends from the base centre vertically upwards in

the Y direction, but this may be altered by specifying an absolute or relative

vector (using gVVec and gAbs) or local axes of rotation (using gURot, gVRot

and/or gWRot).

Surface Primitives

Two basic forms of surface primitive are provided for in the GINO library, the

Spline surface and the Bezier surface. The basic difference between the two

forms is the interpretation of the supplied data points. In the same way as the

corresponding curve types, Spline surfaces pass through all the supplied data

points, whereas the Bezier surface only aligns with the supplied data at the start

and end of the surface. The supplied data can therefore be seen as control points

affecting the shape of the surface only.

Both forms of surface are constructed using one or more sets of user supplied 3D

data/control points from which are interpolated a smooth set of points that

represent the interior/edges of the surface.

312

Surface Primitives 3D OBJECTS

Volume of Rotation

In other words, the complexity of the surface is not determined by the number of

points supplied in the data arrays, but the values set in the optional arguments

gUComp and gVComp.

The following sections describe the drawing of each of the surface primitives.

Spline surface

The basic Spline surface is constructed from a grid of 3D data points, with an

optional complexity specification of the final surface:

gDrawSplineSurface(nx, ny, mesh, [gUComp, gVComp])

Where nx and ny are the dimensions of the 2 dimensional array of data points of

type GPOINT3 passed in mesh.

The setting of gUComp and gVComp define the complexity of the surface in

terms of the number of facets generated across the complete surface in each

direction. The values of gUComp and gVComp may however be rounded down

internally as the actual number of facets must be a multiple of the number of data

points so that the surface passes through each of them as supplied. The default

setting for these arguments is 4*(nx-1) and 4*(ny-1) respectively

No end conditions can be set for spline surfaces but special attention is given to

data that is closed in the ‘U’ direction such that a smooth join is automatically

maintained at the junction. The routine gSetSplineTension() can also be used to

control the tension of the spline surface in the same manner as for curves (see

page 100).

313

3D OBJECTS Surface Primitives

A closed spline surface generated from 25 data points is shown in the figure

below with the code following:

C Code

#include <math.h>
#include <gino-c.h>

#define NX 5
#define NY 5
#define CLOSED 1

int main ()
{

GDIM paper;
GLIMIT3 viewport = {-100.0,100.0,-100.0,200.0,0.0,5000.0};
GLIMIT limits = {0.0,0.0,0.0,0.0};

/* Define control points */
GPOINT3 pxyz[NX][NY];

int i,j,ip;
float s,x,y,z;
float spten=0.0;

/* Initialise Gino and Device */
gOpenGino();
xxxxx();

/* Set up 3D Viewport to fit whole drawing area */
gEnqDrawingLimits(&paper,&ip);
limits.xmax = paper.xpap;
limits.ymax = paper.ypap;
gSetViewport3D(&viewport,&limits);

314

Surface Primitives 3D OBJECTS

Spline Surface

/* Define View */
gDefinePerspView(100.0,200.0,800.0,-0.1,-0.2,-0.8,1200.0);
gUpdateView();

/* Compute surface grid */
/* Define the elliptic cylinder - to show the difference a closed
and */
/* open surface choose exact or approximate values of Pi below */

for (i=0; i<NX; i++) {
if (CLOSED)

s = 2.0*3.1415926*i/(NX-1);
else

s = 2.0*3.14*i/(NY-1);

x = sin(s);
z = 2.0*cos(s);
for(j=0; j<NY; j++) {

y = -1.0 + 2.0*j/(NY-1);
pxyz[i][j].x = x*50;
pxyz[i][j].y = y*50;
pxyz[i][j].z = (z+1.0)*50;

}
}

/* Set Hollow Fill Style */
gSetFacetFillStyle(GHOLLOW);

/* Compute spline surface after setting the spline tension */
gSetSplineTension(spten);
gSetLineColour(GRED);
gDrawSplineSurface(NX,NY,(GPOINT3 *)pxyz);

/* Draw control points mesh */
gSetLineColour(GBLACK);
gSetLineWidth(1.0);
for(i=0; i<NX; i++) {

gMoveTo3D(pxyz[i][0].x,pxyz[i][0].y,pxyz[i][0].z);
gDrawPolylineTo3D(NY,pxyz[i]);

}
for(i=0; i<NY; i++) {

gMoveTo3D(pxyz[0][i].x,pxyz[0][i].y,pxyz[0][i].z);
for(j=1; j<NX-1; j++)

gDrawLineTo3D(pxyz[j][i].x,pxyz[j][i].y,pxyz[j][i].z);
}
gFlushGraphics ();

/* Close down */
gSuspendDevice();
gCloseGino();

}

F90 Code

use gino_f90
parameter (nx=5,ny=5)
type (GDIM) :: paper
type (GLIMIT3) :: viewport =
GLIMIT3(-100.0,100.0,-100.0,200.0,0.0,5000.0)
type (GLIMIT) :: limits = GLIMIT(0.0,0.0,0.0,0.0)
! Define control points
type (GPOINT3) :: pxyz(nx,ny)

315

3D OBJECTS Surface Primitives

!
! Initialise Gino and Device

call gOpenGino
call gWogl

!
! Set up 3D Viewport to fit whole drawing area

call gEnqDrawingLimits(paper,ip)
limits%xmax = paper%xpap
limits%ymax = paper%ypap
call gSetViewport3D(viewport,limits)

!
! Define View

call gDefinePerspView(100.0,200.0,800.0,-0.1,-0.2,-0.8,1200.0)
call gUpdateView

!
! Compute surface grid
! Define the elliptic cylinder - to show the difference a closed
and
! open surface choose exact or approximate values of Pi below

iclose=1
do i = 1, nx

if (iclose .eq. 1) then
s = 2.0*3.1415926*(i-1)/(nx-1)

else
s = 2.0*3.14*(i-1)/(nx-1)

end if
x = sin(s)
z = 2.0*cos(s)
do j = 1, ny

y = -1.0 + 2.0*(j-1)/(ny-1)
pxyz(i,j)%x = x*50
pxyz(i,j)%y = y*50
pxyz(i,j)%z = (z+1.0)*50

end do
end do

!
! Set Hollow Fill Style

call gSetFacetFillStyle(GHOLLOW)
!
! Compute spline surface after setting the spline tension

call gSetSplineTension(spten)
call gSetLineColour(GRED)
call gDrawSplineSurface(nx,ny,pxyz)

!
! Draw control points mesh

call gSetLineColour(GBLACK)
call gSetLineWidth(1.0)
do i = 1, ny

call gMoveTo3D(pxyz(1,i)%x,pxyz(1,i)%y,pxyz(1,i)%z)
call gDrawPolylineTo3D(nx-2,pxyz(2,i))

end do
do i = 1, nx

call gMoveTo3D(pxyz(i,1)%x,pxyz(i,1)%y,pxyz(i,1)%z)
do j = 2, ny

call gDrawLineTo3D(pxyz(i,j)%x,pxyz(i,j)%y,pxyz(i,j)%z)
end do

end do
call gFlushGraphics

!
! Close down

call gSuspendDevice
call gCloseGino
end

316

Surface Primitives 3D OBJECTS

Bezier surface

The basic Bezier surface is constructed from a grid of 3D control points, with an

optional complexity specification of the final surface:

gDrawBezierSurface(nx, ny, mesh, [gUComp, gVComp])

Where nx and ny are the dimensions of the 2 dimensional array of control points

of type GPOINT3 passed in mesh.

Note that whilst only 16 control points are passed to the gDrawBezierSurface()

routine, the surface consists of 100 (10x10) facets due to the default settings of

gUComp and gVComp. This example is produced using the following code:

C Code

#include <gino-c.h>
#define NX 4
#define NY 4
GDIM paper;
GLIMIT3 viewport = {-200.0,200.0,-200.0,200.0,0.0,1000.0};
GLIMIT limits = {0.0,0.0,0.0,0.0};

317

3D OBJECTS Surface Primitives

Bezier Surface

/* Define control points */
GPOINT3 pxyz[NX][NY] = {

0.0, 0.0, 0.0, 0.0, 0.0, 50.0,
0.0, 0.0,100.0, 0.0, 0.0,150.0,

50.0,30.0, 0.0, 50.0,30.0, 50.0,
50.0,30.0,100.0, 50.0,30.0,150.0,

75.0,30.0, 0.0, 75.0,30.0, 50.0,
75.0,30.0,100.0, 75.0,30.0,150.0,

100.0, 0.0, 0.0,100.0, 0.0, 50.0,
100.0, 0.0,100.0,100.0, 0.0,150.0};

main()
{

int ip,i,j;

/* Initialize GINO and device */
gOpenGino();
xxxxx();

/* Set up 3D Viewport to fit whole drawing area */
gEnqDrawingLimits(&paper,&ip);
limits.xmax=paper.xpap;
limits.ymax=paper.ypap;
gSetViewport3D(&viewport,&limits);

/* Define Lighting and shading */
gSetShadingMode(GFLAT,0);
gSetLightSwitch(1,GON);

/* Define view */
gDefinePerspView(300.0,300.0,600.0,-0.3,-0.3,-0.6,800.0);
gUpdateView();

/* Set hollow fill style */
gSetFacetFillStyle(GHOLLOW);

/* Set material and draw surface */
gSetMaterialIndex(GDEFAULT,GDEFAULT);
gSetLineColour(GBLACK);
gDrawBezierSurface(NX,NY,&pxyz[0][0]);

/* Draw control points mesh */
gSetLineWidth(1.0);
for(i=0; i<NX; i++) {

gMoveTo3D(pxyz[i][0].x,pxyz[i][0].y,pxyz[i][0].z);
gDrawPolylineTo3D(NY,pxyz[i]);

}
for(i=0; i<NY; i++) {

gMoveTo3D(pxyz[0][i].x,pxyz[0][i].y,pxyz[0][i].z);
for(j=1; j<NX; j++)

gDrawLineTo3D(pxyz[j][i].x,pxyz[j][i].y,pxyz[j][i].z);
}

/* Close down */
gSuspendDevice();
gCloseGino();

}

318

Surface Primitives 3D OBJECTS

F90 Code

use gino_f90
parameter (nx=4,ny=4)
type (GDIM) :: paper
type (GLIMIT3) :: viewport = G
LIMIT3(-200.0,200.0,-200.0,200.0,0.0,1000.0)
type (GLIMIT) :: limits = GLIMIT(0.0,0.0,0.0,0.0)
! Define control points
type (GPOINT3) :: pxyz(nx,ny) = reshape((/ &

GPOINT3(0.0, 0.0, 0.0), GPOINT3(50.0,30.0, 0.0), &
GPOINT3(75.0,30.0, 0.0), GPOINT3(100.0, 0.0, 0.0), &

GPOINT3(0.0, 0.0,50.0), GPOINT3(50.0,30.0,50.0), &
GPOINT3(75.0,30.0,50.0), GPOINT3(100.0, 0.0,50.0), &

GPOINT3(0.0, 0.0,100.0), GPOINT3(50.0,30.0,100.0), &
GPOINT3(75.0,30.0,100.0), GPOINT3(100.0, 0.0,100.0), &

GPOINT3(0.0, 0.0,150.0), GPOINT3(50.0,30.0,150.0), &
GPOINT3(75.0,30.0,150.0), GPOINT3(100.0, 0.0,150.0) /), &
(/nx,ny/))

!
! Initialize GINO and device

call gOpenGino
call xxxxx

!
! Set up 3D Viewport to fit whole drawing area

call gEnqDrawingLimits(paper,ip)
limits%xmax=paper%xpap
limits%ymax=paper%ypap
call gSetViewport3D(viewport,limits)

!
! Define Lighting and shading

call gSetShadingMode(GFLAT)
call gSetLightSwitch(1,GON)

!
! Define view

call gDefinePerspView(300.0,300.0,600.0,-0.3,-0.3,-0.6,800.0)
call gUpdateView

!
! Set hollow fill style

call gSetFacetFillStyle(GHOLLOW)
!
! Set material and draw surface

call gSetMaterialIndex(GDEFAULT,GDEFAULT)
call gSetLineColour(GBLACK)
call gDrawBezierSurface(nx,ny,pxyz)

!
! Draw control points mesh

call gSetLineWidth(1.0)
do i = 1, ny

call gMoveTo3D(pxyz(1,i)%x,pxyz(1,i)%y,pxyz(1,i)%z)
call gDrawPolylineTo3D(nx-1,pxyz(2,i))

end do
do i = 1, nx

call gMoveTo3D(pxyz(i,1)%x,pxyz(i,1)%y,pxyz(i,1)%z)
do j = 2, ny

call gDrawLineTo3D(pxyz(i,j)%x,pxyz(i,j)%y,pxyz(i,j)%z)
end do

end do

319

3D OBJECTS Surface Primitives

!
! Close down

call gSuspendDevice
call gCloseGino
stop
end

Tabulated Bezier surface

The tabulated Bezier surface is generated from a set of 3D control points and a

vector. An intermediate Bezier curve is computed from the control points and the

surface is constructed by extending the curve along the specified vector.

gDrawTabulatedBezierSurface(np, points, vector, [gUComp, gVComp])

Swept Bezier surface

A swept Bezier surface is similar to the tabulated surface except that the surface

is constructed along the curve computed from a second set of control points:

320

Surface Primitives 3D OBJECTS

Tabulated Surface

gDrawSweptBezierSurface(np1, points1, np2, points2, [gUComp,

gVComp])

Ruled Bezier surface

The ruled Bezier surface is also generated from two sets of 3D control points

except that the surface is generated by constructing a grid of patches between

each computed curve. The number of points in each set of control points need not

be the same.

321

3D OBJECTS Surface Primitives

Swept Surface

gDrawRuledBezierSurface(np1, points1, np2, points2, [gUComp,

gVComp])

Bezier sphere

A Bezier sphere is internally constructed by rotating a semi-circular Bezier curve

around a central axis. The user needs only to specify the centre, radius and

optionally its complexity and local orientation.

322

Surface Primitives 3D OBJECTS

Ruled Surface

gDrawBezierSphere(xc, yc, zc, radius, [gUComp, gVComp, gURot, gVRot,

gWRot])

Bezier volume

A Bezier volume of rotation is constructed from a user supplied set of 2D control

points rotated round a central axis. The control points are used to generate a

smooth Bezier curve which is rotated about a vector (0.0,1.0,0.0) starting at the

position specified in xp,yp,zp. The optional arguments can be used to alter the

complexity and local orientation.

323

3D OBJECTS Surface Primitives

Bezier Sphere

gDrawBezierVolume(xp, yp, zp ,npts, points, [gURot, gVRot, gWRot,

gUComp, gVcomp])

324

Surface Primitives 3D OBJECTS

Bezier Volume

Chapter 18
LIGHTING AND SHADING

Lighting and Shading Introduction

The routine that sets up the lighting and shading environment is:

gSetShadingMode(mode, [gCulling, gBlending, gWinding])

which also sets up other lighting parameters as described below.

Shading

By default shading is switched off, under which circumstances objects are

displayed in their defined colour, ignoring any lights and not sorted according to

their distance from the viewer. Therefore new objects will hide objects already on

the display if they occupy the same space.

When shading is switched on, objects further away from the viewer are

automatically hidden from those closer. This is also known as depth buffering

(see below) in which data is only placed on the output device if it represents an

object which is closer to the view point than the data already displayed at that

point. At the same time, the correct colour of the object is calculated using the

current lighting and the objects material properties.

325

This shading can be performed in a number of different ways, requiring different

amount of processing, and giving different levels of realism.

• Flat shading (mode = GFLAT) uses a single facet normal to calculate the

lighting values of each facet.

• Smooth or Gouraud shading (mode = GGOURAUD) uses normals at each

vertex if available and can give much smoother surfaces as long as the

correct data is supplied with the facets.

• Phong shading (mode = GPHONG) gives the best results as this method

interpolates normals at each pixel of each facet and is only available on

certain systems.

To take full advantage of lighting and shading facilities, it is advisable to use the

facet primitive, as these primitives contain all the necessary material attributes to

calculate their correct appearance under different lighting conditions (see page

295).

Culling

One of the features of a facet is that it has a front and back face which allows

different material properties to be defined for the inside and the outside of objects

using a single ‘skin’. However, it is obviously more expensive, in computing

terms, to calculate the lighting values on both sides of every facet. It is possible

therefore to save time by ignoring either all of the front or all of the back facing

facets using the optional argument gCulling to the gSetShadingMode() routine.

This feature is useful if the scene is composed of solid objects and you are never

interested in the inside or back of these objects.

Blending

Where any of the 3D objects in a scene are required to be transparent, using the

appropriate material property, it is necessary to enable an additional shading

function called blending. This adds another level of complexity to the lighting

calculation as the colours of existing pixels need to be multiplied by the new

objects colour to obtain the correct values. This feature is switched on using the

optional argument gBlending to gSetShadingMode().

326

Lighting and Shading Introduction LIGHTING AND SHADING

Winding Rule

By default, GINO interprets the coordinates of facets and polygons such that

vertices defined in an anti-clockwise order are understood to be facing the

viewer. Conversely, where vertices are defined as being in an anti-clockwise

order as seen from the current viewing point, the surface is interpreted as facing

away from the viewer. This is known as the facet winding and can be reversed

using the optional argument gWinding argument where an application requires

its vertices to be interpreted in the opposite way.

Shading Enquiry

The current lighting and shading settings may be enquired using the routine:

gEnqShadingMode(att)

where att is a structure of type GSHADING which contains the four aspects of

the lighting and shading environment.

Depth Buffering

Once the depth buffer has been enabled using one of the shading modes

described above, the decision to display an object is based on two things. 1) The

distance of the object in relation to other objects already on the screen or window

and 2) the logical depth test to be applied. By default these are calculated as

follows:

The distance of an object from the viewer is mapped on to a value between 0.0

and 1.0 which represents the total range of the viewing volume as set up by

gSetViewport3D(). Therefore objects at the back of the volume (i.e. furthest

away from the viewer) are said to have a depth of 1.0 and objects closes to the

viewer are said to have a depth of 0.0. When the screen or window is cleared the

depth buffer is set to 1.0 for each pixel. Whenever a new object is displayed, its

distance from the viewer is mapped onto the depth range (0.0 to 1.0) and for each

pixel, if the depth is less than the depth in the depth buffer, the pixel is displayed

and the buffer is updated. Otherwise if the depth is greater than or equal to the

value in the depth buffer the pixel is not displayed (because it is deemed to

behind an existing object).

327

LIGHTING AND SHADING Depth Buffering

In most systems, this depth range (0.0 to 1.0) is further mapped onto a 32bit or 16

bit integer to speed up the calculation and so there are in fact only 2**16 or

2**32 different depth values that can be tested against. This trade off of

performance against accuracy enhances the importance of the correct setting of

the viewing volume as set up by gSetViewport3D(), because too large a range

will decrease the accuracy of the depth buffering algorithms. This can result in

small objects which lie in front of existing objects not being displayed because

their depth (as a 16/32bit integer) is calculated as being the same as the existing

object.

It is possible to change these default settings using the following routine:

gSetDepthMode(mode,dinit)

where mode is the test that is applied to each pixel to be displayed, against the

value in the depth buffer. The list of possible modes is given in the table below,

together with its normal setting of the depth buffer initial value, dinit:

Mode Initial Value

GNEVER n/a

GLESSTHAN (default) 1.0

GLESSTHANOREQUALTO 1.0

GEQUALTO As required

GNOTEQUALTO As required

GGREATERTHANOREQUALTO 0.0

GGREATERTHAN 0.0

GALWAYS n/a

As explained above, the default mode is GLESSTHAN and most of the

alternative settings would only be required when special effects are required.

Setting the mode to GLESSTHANOREQUAL can be useful for adding detail

onto the surface of an existing object as this sets the logical test so that pixels less

than or equal to the existing objects are still displayed. However this technique

depends on the accuracy of the Z range set in the current 3D viewport (see also

gSetFacetOffsetMode() for an alternative method).

Note that the depth buffer is only initialized to the value set in dinit when the

screen is next cleared (gNewDrawing()) and mode is activated when

gSetShadingMode() is next called.

328

Depth Buffering LIGHTING AND SHADING

The current depth buffer mode settings can be enquired using the following

routine:

gEnqDepthMode(mode,dinit)

where the arguments return the values last set by gSetDepthMode() or the default

ones.

Lighting

Light exists in three forms, ambient, diffuse and specular, and objects will absorb

or reflect different amounts of these different kinds of light giving a different

visual appearance.

Ambient light is background light that doesn’t have a particular source and is

shining in all directions.

Diffuse light has a particular source and is reflected off a surface evenly. A

surface will be brighter if it lies perpendicular to the direction of the light source.

Specular light is also directional, but it is reflected sharply in a particular

direction. A surface will be brighter if the angle of the surface reflects the light

source towards the viewer.

Thus, in a simple example, a blue object is one which reflects blue ambient and

diffuse light, and is shiny if it reflects specular light.

In the real world, things are a little more complex, with objects reflecting some

kinds of light and absorbing others, letting some colours pass through all together

(transparency) or even emitting light. All of these features will be dealt with later

when an object’s material properties are described (see page 339).

Light Sources

GINO provides a single routine that is used to define up to 8 independent light

sources of 4 different types:

gDefineLightSource(light, colour, ...)

where light is the light number (1-8) and colour is the colour of the light source

(which may be defined in terms of a colour index number or a 24bit RGB triplet

(see page 205)). The setting of additional optional arguments to this routine

define the different types of light source.

329

LIGHTING AND SHADING Lighting

Ambient light

With no extra arguments, the type of light defined is an ambient light, ie. one that

has no specific source or direction.

For example:

amb=gTrueCol(0.3,0.3,0.3);
gDefineLightSource(1,amb,0);

amb=gTrueCol(0.3,0.3,0.3)
call gDefineLightSource(1,amb)

defines light number one to be an ambient light with 30% white light.

Directional Light

Adding a direction vector using the optional argument gDir, specifies a

directional light source. This is one where the source of light is said to be an

infinite distance away in the direction of the vector specified. The rays of light

are parallel to each other travelling from the source along the vector (in the

opposite direction to the vector itself). A directional light source will only

illuminate the side of objects in some way facing the light source, which in any

one scene will always be the same side.

For example:

GPOINT3 vector = {100.0,0.0,0.0);

gDefineLightSource(1,5,
gDir,vector,0);

type (GPOINT3) :: vector = &
GPOINT3(100.0,0.0,0.0)

call gDefineLightSource(1,5, &
gDir=vector)

specifies a green directional light source at an infinite distance away along the X

axis which will illuminate the right hand side of all objects in a scene..

Point Light Source

Adding a 3D coordinate using the optional argument gPos, specifies a point light

source at the specified position. Here the light is said to radiate out in all

directions from the position of the light source and will therefore illuminate all

objects with sides facing this position.

For example:

330

Lighting LIGHTING AND SHADING

GPOINT3 pos = {10.0,10.0,-10.0);

gDefineLightSource(1,10,
gPos,pos,0);

type (GPOINT3) :: pos = &
GPOINT3(10.0,10.0,-10.0)

call gDefineLightSource(1,10, &
gPos=pos)

specifies a white light located at (10.0,10.0,-10.0), which will illuminate all

object surrounding this position.

A point light may also have two additional attenuation factors gAtten1 and

gAtten2, which specify its constant and linear attenuation over distance from its

source. These factors affect the light’s strength according to the following

formulae:

Attenuation factor = 1.0 / (gAtten1 + distance * gAtten2)

Unless specified otherwise, gAtten1 = 1.0 and gAtten2 = 0.0 which implies full

strength and no fade over distance.

Spot Light

A spot light is one which has a narrower focus than a point light, and so needs

both the gPos (to specify its position) and gDir (to specify its direction) optional

arguments. Two additional optional arguments specify the concentration and

spread angle of the spot light.

331

LIGHTING AND SHADING Lighting

Spot light definition

For example:

GPOINT3 pos = {0.0,0.0,10.0),
dir = (0.0,0.0,-1.0);

gDefineLightSource(1,10,
gPos,pos,gDir,dir,
gConc,100.0,gSpread=40.0,0);

type (GPOINT3) :: &
pos = GPOINT3(0.0,0.0,10.0),&
dir = GPOINT3(0.0,0.0,-1.0)

call gDefineLightSource(1,10, &
gPos=pos,gDir=dir, &
gConc,100.0,gSpread,40.0)

specifies a point light source at (0.0,0.0,10.0) shining along the Z axis. The

concentration is set at 100% which is at full strength and the spread angle of the

light source is set at 40 degrees. This means that there is no light emanating from

this source outside a notional cone with a 40% internal angle.

Specular Light Component

Under normal circumstances, ambient lights emit ambient light whilst directional,

point and spot lights emit diffuse light. It is possible, however, to add a specular

colour component to any light source using the optional argument gSpec. This

may be necessary to define a light source which contains high levels of specular

light, for instance in a spot light.

Light Switch

In order to light up a scene, it is not enough to simply specify the required light

sources. They have to be switched on as well! The routine to control the state of

each of the defined light sources is:

gSetLightSwitch(light,switch)

where light is the number and switch may be GON or GOFF. Note that, by

default, all lights are switched off, so all objects will appear black until at least

one light is switched on.

Default Lights

When GINO is initialised, two light sources are predefined. These may simply be

switched on using gSetLightSwitch() or re-defined using gDefineLightSource().

The two lights are:

Light1: A white ambient light

Light2: A white directional light shining from 0.0,0.0,ZMAX

332

Lighting LIGHTING AND SHADING

Light Source Enquiry

The complete set of attributes of any of the eight lights sources, including their

state, may be enquired using the routine:

gEnqLightAttribs(light,attribs)

where light is the light number and attribs is a structure of type GLITATT.

Light Usage

An example using material and lighting is shown below:

C Code

#include <gino-c.h>

GDIM paper;
GLIMIT3 picture = {0.0,300.0,0.0,200.0,-1600.0,1600.0};
GLIMIT viewport = {0.0,1.0,0.0,1.0};
GPOINT3 position = {0.0,500.0,100.0};
GPOINT3 direction = {0.0,-0.6,-1.0};
GMATATT material2;
GPOINT3 table[4] = {400.0,-25.0,-200.0, -400.0,-25.0,-200.0,

-400.0,-25.0,2000.0, 400.0,-25.0,2000.0};

#if defined(MWIN) || defined(WOGL)
int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)

#else
int main ()
#endif
{

int ip;
gOpenGino();
gWogl(hInstance,hPrevInstance);

/* Set up viewport */

gEnqDrawingLimits(&paper,&ip);
picture.xmax=paper.xpap;
picture.ymax=paper.ypap;
viewport.xmax=paper.xpap;
viewport.ymax=paper.ypap;
gSetViewport3D(&picture,&viewport);

/* Define view */

gDefineSphericalView(-50.0,50.0,100.0,350.0,0.5,-0.5,-1.0,200.0);
gUpdateView();

/* Define lights */

gSetShadingMode(GGOURAUD,gCulling,GBACK,0);
gDefineLightSource(2,GWHITE,gPos,position,gDir,direction,

gConc,80.0,gSpread,100.0,0);
gSetLightSwitch(1,GON);
gSetLightSwitch(2,GON);

333

LIGHTING AND SHADING Lighting

/* Define material */

material2.ambient=0.3;
material2.diffuse=0.6;
material2.specular=1.0;
material2.shine=80.0;
material2.trans=1.0;
gDefineMaterial(2,&material2);

/* Plot table */

gSetMaterialIndex(1,1);
gSetMaterialColour(gTrueCol(0.0,0.5,0.0),0);
gDrawFacet(4,table,0);

/* Plot reds */

gSetMaterialIndex(2,0);
gSetMaterialColour(GRED,0);
gDrawSphere(0.0,0.0,0.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(-60.0,0.0,0.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(-120.0,0.0,0.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(60.0,0.0,0.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(120.0,0.0,0.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(-90.0,0.0,52.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(-30.0,0.0,52.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(30.0,0.0,52.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(90.0,0.0,52.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(-60.0,0.0,104.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(60.0,0.0,104.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(0.0,0.0,104.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(-30.0,0.0,156.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(30.0,0.0,156.0,30.0,gUComp,25,gVComp,25,0);
gDrawSphere(0.0,0.0,208.0,30.0,gUComp,25,gVComp,25,0);

/* Plot pink */

gSetMaterialColour(gTrueCol(1.0,0.8,0.8),0);
gDrawSphere(0.0,0.0,268.0,30.0,gUComp,25,gVComp,25,0);

/* Plot black */

gSetMaterialColour(GBLACK,0);
gDrawSphere(0.0,0.0,-60.0,30.0,gUComp,25,gVComp,25,0);

/* Plot blue */

gSetMaterialColour(GBLUE,0);
gDrawSphere(0.0,0.0,460.0,30.0,gUComp,25,gVComp,25,0);

/* Close down */

gSuspendDevice();
gCloseGino();

}

F90 Code

Program snooker
use gino_f90
type (GDIM) paper

334

Lighting LIGHTING AND SHADING

type (GLIMIT3) :: picture =
GLIMIT3(0.0,300.0,0.0,200.0,-1600.0,1600.0)
type (GLIMIT) :: viewport = GLIMIT(0.0,1.0,0.0,1.0)
type (GPOINT3) :: position = GPOINT3(0.0,500.0,100.0)
type (GPOINT3) :: direction = GPOINT3(0.0,-0.6,-1.0)
type (GMATATT) :: material2
type (GPOINT3) :: table(4) = (/ &

GPOINT3(400.0,-25.0,-200.0), GPOINT3(-400.0,-25.0,-200.0), &
GPOINT3(-400.0,-25.0,2000.0), GPOINT3(400.0,-25.0,2000.0) /)

!
call gOpenGino
call xxxxx

!
! Set up viewport

call gEnqDrawingLimits(paper,ip)
picture%xmax=paper%xpap
picture%ymax=paper%ypap
viewport%xmax=paper%xpap
viewport%ymax=paper%ypap
call gSetViewport3D(picture,viewport)

!
! Define view

call gDefineSphericalView(-50.0,50.0,100.0,350.0, &
0.5,-0.5,-1.0,200.0)

call gUpdateView
!
! Define lights

call gSetShadingMode(GGOURAUD,gCulling=GBACK)
call gDefineLightSource(2,GWHITE,gPos=position,gDir=direction, &

gConc=80.0,gSpread=100.0)
call gSetLightSwitch(1,GON)
call gSetLightSwitch(2,GON)

!
! Define material

material2%ambient=0.3
material2%diffuse=0.6
material2%specular=1.0
material2%shine=80.0
material2%trans=1.0
call gDefineMaterial(2,material2)

!
! Plot table
!

call gSetMaterialIndex(1,1)
call gSetMaterialColour(gTrueCol(0.0,0.5,0.0),0)
call gDrawFacet(4,table)

!
! Plot reds
!

call gSetMaterialIndex(2,0)
call gSetMaterialColour(GRED,0)
call gDrawSphere(0.0,0.0,0.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(-60.0,0.0,0.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(-120.0,0.0,0.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(60.0,0.0,0.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(120.0,0.0,0.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(-90.0,0.0,52.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(-30.0,0.0,52.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(30.0,0.0,52.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(90.0,0.0,52.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(-60.0,0.0,104.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(60.0,0.0,104.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(0.0,0.0,104.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(-30.0,0.0,156.0,30.0,gUCcomp=25,gVComp=25)

335

LIGHTING AND SHADING Lighting

call gDrawSphere(30.0,0.0,156.0,30.0,gUComp=25,gVComp=25)
call gDrawSphere(0.0,0.0,208.0,30.0,gUComp=25,gVComp=25)

!
! Plot pink
!

call gSetMaterialColour(gTrueCol(1.0,0.8,0.8),0)
call gDrawSphere(0.0,0.0,268.0,30.0,gUComp=25,gVComp=25)

!
! Plot black
!

call gSetMaterialColour(GBLACK,0)
call gDrawSphere(0.0,0.0,-60.0,30.0,gUComp=25,gVComp=25)

!
! Plot blue
!

call gSetMaterialColour(GBLUE,0)
call gDrawSphere(0.0,0.0,460.0,30.0,gUComp=25,gVComp=25)

!
! Close down

call gSuspendDevice
call gCloseGino
stop
end

It should also be noted that, increasing the number of lights that are used (i.e.

switched on), increases the time taken to calculate the correct colour of the

objects being displayed.

336

Lighting LIGHTING AND SHADING

Snooker Balls

Fog

Fog simulation is available on devices that provide 3D lighting and shading

facilities and can be useful for added visual realism in a scene. This special effect

mixes a user defined colour into the scene based on the distance from the viewer

that each object is drawn. The same routine can either add the colour based

linearly on the distance from the viewer (which is essentially depth-cueing), or

more realistically on an exponential function of the distance.

The routine to define the required fog attributes is:

gDefineFog(mode, colour, [gStart,gEnd,gDensity])

where mode can be one of:

• GNONE - No fog simulation

• GLINEAR - Linear fade used for depth-cueing

• GEXP1 - Exponential fade used for simulating cloud or heavy fog

• GEXP2 - Exponential fade used for simulating smoke or weather haze

For most fog applications, the fog colour would be white, although any colour

can be used, passed either as a colour index or a 24bit RGB triplet.

The optional arguments to the gDefineFog() routine specify the arguments to

various fog modes.

The GLINEAR fog mode can be used for depth-cueing, where objects are

obscured according to their distance from the viewer. In this mode the start and

end distances (gStart and gEnd) specify the viewing range over which the fog

should be applied. For example, in a perspective view drawn within a viewing

volume with a depth of 1000.0, specifying start and end values of 500.0 and

1000.0 will cause the fog to start half way through the volume and be at full

density (i.e. the fog colour) at the back of the viewing volume.

337

LIGHTING AND SHADING Fog

For GEXP1 and GEXP2 fog modes, the gDensity setting controls the exponential

calculations. Density values of around 0.0025 give realistic effects.

Fog Enquiry

The current fog settings can be enquired using the routine:

gEnqFog(attribs)

where attribs is a structure of type GFOGATT containing values that are the

default settings or those set by the last call to gDefineFog().

338

Fog LIGHTING AND SHADING

Adding Fog to a Scene

Chapter 19
MATERIAL PROPERTIES

Material Properties Introduction

The facet primitive and all objects built up of facets (cubes, cylinder, bezier

surfaces etc.) may use the current drawing colour to define their colour, but in

order to fully describe their appearance under different lighting conditions, a

facet has a material property.

In its full form, a material property describes the facets reaction to the different

types of light described in the previous chapter, namely ambient, diffuse and

specular. In addition to this, a material may be defined as having a certain level

of translucence (i.e. allowing light to pass through it), or even emit light itself.

Due to the complexity of specifying material properties, GINO provides a

number of levels of definition so that lighting effects can be quickly introduced

as well as providing sophisticated facilities for photo realistic effects.

It should be remembered that unlike other primitives, a facet has two surfaces, a

front and back and different material properties can be assigned to each.

Material Property Definition

Three different levels of material definition are provided by GINO, each with

increasing sophistication and complexity. These are described in the following

sections.

339

Colour Matching

The simplest way of defining the colour of facets (and objects) is to use the

current line colour (gSetLineColour()) to automatically set both the ambient and

diffuse material properties of the surface. This is in fact the default state of

material definition and so no special calls are needed if this method is required.

Under these circumstances, facets (and objects) appear in a shade of the specified

colour according to the angle of the light(s) shining on the surface. If no lights

are switched on, the facets will appear in the colour selected without shading.

To return to this mode from a different material mode, the following use of the

routine gSetMaterialIndex() is required:

gSetMaterialIndex(GOFF,GOFF); call gSetMaterialIndex(GOFF,GOFF)

Material Table

The second alternative is to use a material table to define a set of material

properties that can be used for many facets or objects independently of their

actual colour. Therefore if a scene has many objects of different colours but made

of the same ‘substance’, a single table entry would be defined to represent that

material. Examples include matt or shiny surfaces.

The material table stores coefficients of ambient, diffuse and specular light,

which are multiplied by the object colour to give the actual material properties of

the facets when drawn. The material table can contain up to 256 entries defining

different material types. Each entry is set using the routine:

gDefineMaterial(mat, rep)

where mat is the material table index and rep is a structure of type GMATATT

containing the material table attributes.

When GINO is initialized, three entries of the table are set to the following

values:

mat ambient diffuse specular shine trans description

1 0.3 0.6 0.0 30.0 1.0 normal

2 0.3 0.6 1.0 30.0 1.0 plastic

3 0.3 0.6 1.0 100.0 1.0 shiny

340

Material Property Definition MATERIAL PROPERTIES

The settings for any entry in the material table may be enquired through the

routine:

gEnqMaterial(mat, rep)

Material Index and Colour

The current material coefficients are set using the following routine:

gSetMaterialIndex(fmat,bmat)

where fmat and bmat are the material table indices required for all the front and

back faces of subsequently drawn facets.

The current facet material colour is then set using the routine:

gSetMaterialColour(fcol, bcol)

where fcol and bcol are the required colour setting for all the front and back

faces. These may be indices into GINO’s colour table or 24-bit true colour values

returned through the function gTrueCol()(see page 205).

Example:

Two special cases of material index values to the routine gSetMaterialIndex()

should be noted. If either fmat or bmat are negative, the current index setting for

the front or back face (as appropriate) is not changed. If the back face material

index, bmat is set to GOFF, then no lighting calculations are performed on the

back facing surfaces. This operation is separate from the culling of back faces

performed by gSetShadingMode(), but by applying the two together can

dramatically improve performance on some graphics cards if back faces are not

required in a scene.

The current material index and colour settings are returned using the following

routine:

gEnqMaterialAttribs(fcol,bcol,fmat,bmat)

where fcol and bcol are the current material colours for the front and back faces

and fmat and bmat are the current material table indices.

This method is sufficient for the majority of lighting scenes, but does not provide

for objects that reflect different colours of ambient and diffuse light, or objects

that emit light.

341

MATERIAL PROPERTIES Material Property Definition

Facet Material Properties

The final method sets the current material property in terms of the actual colours

required for all the possible attributes including emission. This is achieved using

the routine:

gSetFacetMaterialProps(side, amb, diff, spec, emit, shine, trans)

where side is either GFRONT or GBACK, representing the facet face being

defined. The arguments amb, diff, spec and emit are all integer colour values

which may be indices into GINO’s colour table or 24-bit true colour values

returned through the function gTrueCol(). The materials shininess is set as a

percentage using shine and its translucence, in the range 0.0 to 1.0, is set in

trans.

This method overrides the use of the material table as the setting routine

gSetFacetMaterialProps() sets the material properties directly.

The current facet material properties can be enquired using the routine:

gEnqFacetMaterialProps(side, amb, diff, spec, emit, shine, trans)

Translucence

One of the material properties of facets that can be defined in conjunction with its

reflectivity and shininess, is its translucence. A solid object is said to be opaque

(trans=1.0) if you cannot see any object through it and transparent (trans=0.0) if

you can see right through it. In reality, glass and Perspex objects have varying

levels of translucence which can be emulated using this property of the material

being defined. However, it is important to note that translucence is only correctly

calculated if blending is switched on in the gSetShadingMode() routine.

Shadows

Simple (planar) shadows can be generated with the aid of the two following

routines:

gCreatePlanarShadowMatrix(plane,light,matrix)

gModifyView(matrix)

where plane is a set of three (GPOINT3) points representing the plane on which

the shadow is to be drawn, light is the position of the light source and matrix is a

16 element (4x4) array containing a modification to the current view.

342

Translucence MATERIAL PROPERTIES

The steps required to generate a shadow of one or more objects on a planar

surface are as follows:

1) Switch the depth mode to be GLESSTHANOREQUAL. This is required

because the shadow needs to be drawn at the same depth as a surface object on

which it lies and must not be omitted from the depth buffer.

2) Define a suitable (black) shadow material. GMATSTY(0.0,0.0,0.0,0.0,0.8)

defines one which has no colour components and a little transparency. Remember

to switch blending on if you want the transparency to be realised.

3) Set up the lighting conditions and draw the required surface and objects.

4) Set up the shadow matrix and modify the current view using the above

routines.

5) Redraw the objects using the shadow material for each of them.

The source of GINO Example program 10 shows the generation of shadows

whilst moving the light source and/or spinning the objects.

343

MATERIAL PROPERTIES Shadows

Chapter 20
TEXTURE MAPPING

Texture Mapping Introduction

Texture mapping is the ‘draping’ of images over objects and is used to give

objects texture or to map complex pictures over a multi-faceted surface. The

process is achieved by mapping the pixels of a pixel array onto the pixels of

either a single facet (polygon) or a set of facets. More and more graphics cards

now provide hardware facilities to do texture mapping, so the process can be

relatively quick although on the older or more basic hardware the addition of

textures will dramatically slow down an application.

Texture mapping is not the same as ray-tracing which is another technique to map

images onto a surface. Ray tracing is however limited to mapping images onto a

surface after it has been transformed onto a 2D plane where as texture mapping is

done at the 3D level and is therefore much more useful to 3D scenes.

Texture Mapping Modes

Texture data can be ‘draped’ over an object in two different ways, either to

replace or merge with other details of the surface. The required mode is selected

using the routines:

gSetTextureMappingMode(mode, ...)

where mode can be one of the following:

345

• GOFF - switch texture mapping off (the default state).

• GOVERLAY - where the texture is placed directly on the surface with no

modification.

• GMODULATE - where the texture is merged with the colour of the

surface. This is used where you want to merge a texture with the defined

colour (and lighting effects) of an object.

• GBLEND - where the texture is merged with the object’s colour (as above)

and a constant blend colour.

The remaining optional arguments to gSetTextureMappingMode() are described

below (see page 354).

Texture Mapping Data

GINO uses the same pixel data that is used for the display of 2D images for

texture mapping, i.e. an integer array containing colour index values or 24 bit

packed RGB values (see page 205). These can be generated within an application

or read into an appropriately sized integer array from a BMP or JPEG files using

gGetImageFile(type, file, coldef, offset, collim, xgrid, ygrid, npix, pixbuf)

This routine should be used in conjunction with gEnqImageFile() to check the

image type and dimensions of the external file being read, as well as defining any

colour mapping that is required (see page 73).

It should be noted however, that it is usually not possible to use any sized pixel

array for texture mapping. In order for the process to be as efficient as possible,

texture mapping software requires the texture map to be dimensioned in terms of

a power of 2 (up to a total limit of the equivalent of 1024x1024 pixels). The

image doesn’t have to be square, but it has to be a power of 2 in both directions.

e.g. 8x16, 64x64, 512x256 or 2048x512.

The texture map may contain an additional optional border of 1 pixel around each

edge increasing the image size by 2 pixels in each direction. Thus a 64x64 pixel

image becomes 66x66. The border is used for the correct tiling of large images

(see page 349) or where a separate repeated colour is used when the image is

smaller than the object it is being draped over (see page 354).

Once the data has been read into memory, the pixel array is assigned to be the

current texture map using the following routine:

gDefineTexture(level, xgrid, ygrid, border, nbyte, pixbuf)

346

Texture Mapping Data TEXTURE MAPPING

where level is the level of a possible multi-level texture map (see page 348),

xgrid and ygrid define the dimensions of the pixel array with the data itself

passed in the integer array pixbuf. The argument border is set to GON of GOFF

depending on whether the image has an extra border of 1 pixel around each edge.

The value of nbyte should be set to the number of relevant bytes in the pixel data

that are to be used for the texture map. The following table illustrates the possible

settings:

nbyte Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

1 1 Luminance

2 1 Alpha Luminance

3 (default) 1 Red Green Blue

4 Alpha OR 1 Red Green Blue

Note that byte values of 1 and 2 are only relevant to texture modes

GMODULATE and GBLEND and byte values of 3 and 4 are only relevant to

texture modes GMODULATE and GOVERLAY. Where colour indices or data

returned from gGetImageFile() are used for texture maps, nbyte should be set to

3. Other values can only be used where the texture map data is manually

constructed or special significance is to be interpreted into data read from

alternative sources. In all these cases bit 24 of the texture map data should be set

to 1.

The following code shows the steps required to read in a texture image and

assign a texture mapping mode:

C Code

include <gino-c.h>
int *image;

int type,xgrid,ygrid,nbpp,ncols,nn;
/* Initialize GINO and device */

gOpenGino();
xxxxx();

/* Enquire image file dimensions */
gEnqImageFile(”ball.ico”,&type,&xgrid,&ygrid,&nbpp,&ncols);

/* Allocate memory for image file */
nn = xgrid*ygrid;
image = malloc (nn * sizeof(int));
if(image != NULL) {

/* Read in image file */
gGetImageFile(type,”ball.ico”,1,0,0,

&xgrid,&ygrid,nn,image);

347

TEXTURE MAPPING Texture Mapping Data

/* Assign image to texture map */
gDefineTexture(0,xgrid,ygrid,GOFF,3,image);

/* Define Texture mapping mode */
gSetTextureMappingMode(GOVERLAY,0);

}

F90 Code

use gino_f90
integer, dimension(:), allocatable :: image

! Initialize GINO and device
call gOpenGino
call xxxxx

! Enquire image file dimensions
call gEnqImageFile(’ball.ico’,itype,ixgrid,iygrid,nbpp,ncols)

! Allocate memory for image file
nn = ixgrid*iygrid
allocate(image(1:nn),stat=ier)
if(ier.eq.0) then

! Read in image file
call gGetImageFile(itype,’ball.ico’,1,0,0, &

ixgrid,iygrid,nn,image)

! Assign image to texture map
call gDefineTexture(0,ixgrid,iygrid,GOFF,3,image)

! Define Texture mapping mode
call gSetTextureMappingMode(GOVERLAY)

end if

Note that while a texture map is currently defined and either GOVERLAY,

GMODULATE or GBLEND modes are current, texture mapping is applied to

every object (apart from hardware text) that is subsequently drawn. Users should

therefore switch off texture mapping when objects are required to be drawn

without texture mapping applied.

Multiple Texture Maps

GINO provides a facility to define multiple texture map images for an object or

objects, so that when the object is viewed from a distance, a less detailed texture

map may be applied. This feature can give improved image quality and save

display time at the expense of greater memory usage. These are known as

mipmapped textures.

348

Texture Mapping Data TEXTURE MAPPING

In addition to the ‘primary’ texture (level = 0) a series of secondary images need

to be supplied (level = 1, 2, etc.) with each one a power of 2 smaller in each

dimension. Thus if the primary image was 256x128 pixels, the second image

would be 128x64 and the third 64x32 and so on down to a 1x1 image to complete

all the necessary levels.

The mechanism used to determine which image is used when, is controlled by the

routine gSetTextureMappingMode() described below.

Tiling Images

Where a texture map, larger than that supported by GINO is required, it is

necessary to divide the object and texture image into sections so that the larger

object can be dealt with. Taking a simple example of a large flat surface requiring

a texture map of 2048x2048 pixels. It is necessary to divide both the surface and

the texture map into four quarters and deal with each one in turn.

In order to correctly blend the four images together in 3D space, it is also

advisable to add a border to each quarter image, representing the adjacent row or

column from the adjoining image. Where the border represents the border of the

complete image, the last row/column can be repeated in the border for

consistency.

Texture Mapping Coordinates

Irrespective of the dimensions of the texture map data in terms of pixels, the

currently assigned array is given an arbitrary range of 1 unit by 1 unit in what are

known as’ texture coordinates’. Thus the width of the texture map has a range of

0.0 to 1.0 in a locally horizontal direction (referred to as S), and the height of the

texture map in pixels is mapped onto a range of 0.0 to 1.0 in a locally vertical

direction (referred to as T). Note that the origin (0.0,0.0) of a pixel image is in

the top left corner.

In order to map this texture data onto a surface or object, the surface or object is

also assigned texture coordinates (in addition to its physical, 3D space

coordinates and its surface normals (if these are used)). Under normal

circumstances, these surface or object texture coordinates would also lie in the

range 0.0 to 1.0, but this is not obligatory (see page 354). However when the

image and the surface has texture coordinates lying in the range 0.0 to 1.0 there is

obviously a simple 1:1 mapping.

349

TEXTURE MAPPING Texture Mapping Coordinates

An important consideration in the assignment of texture coordinates to any

object, is the possible distortion of the texture map. Mapping a square texture

onto an object twice as high as it is wide will obviously distort the image if the

default range of 0.0 to 1.0 is assigned in both directions.

If an appropriately dimensioned image is not available, texture coordinates

should be assigned to maintain the aspect ratio of the image that is available. This

may mean the setting of texture coordinates that do not extend to the whole range

of 0.0 to 1.0 thus omitting parts of the image, or setting of coordinates that go

outside the range, with the decision as to whether the image is repeated or

clamped (see page 354).

The allocation of texture coordinates for an object can be done in one of two

ways.

• Direct assignment with object definition

• Automatic generation using a transformation of the objects’ physical

coordinates or some other arbitrary system

Direct Assignment

Texture coordinates can be assigned to facets when they are defined using the

optional texture coordinate data, gTextCoords, in the routine gDrawFacet(). The

data is supplied in an array of type GPOINT3, but only the X and Y coordinates

are currently used for mapping the current texture map.

The following code (added to the previous example) defines a rectangle with

texture coordinates in the range 0.0 to 2.0 vertically and 0.0 to 2.5 horizontally.

This means that, by default, the image will be repeated twice vertically and two

and a half times across the rectangle (see Repeating and Clamping Images

below).

C Code

GPOINT3 rect[4] = { 0.0, 0.0,0.0, 75.0, 0.0,0.0,
75.0,60.0,0.0, 0.0,60.0,0.0};

GPOINT3 text[4] = { 0.0, 2.0,0.0, 2.5, 2.0,0.0,
2.5, 0.0,0.0, 0.0, 0.0,0.0};

/* Draw facet with texture coordinates */
gDrawFacet(4,rect,gTextCoords,text,0);

350

Texture Mapping Coordinates TEXTURE MAPPING

F90 Code

type (GPOINT3) :: rect(4) = (/ &
GPOINT3(0.0, 0.0,0.0), GPOINT3(75.0, 0.0,0.0), &
GPOINT3(75.0,60.0,0.0), GPOINT3(0.0,60.0,0.0) /)

type (GPOINT3) :: text(4) = (/ &
GPOINT3(0.0, 2.0,0.0), GPOINT3(2.5, 2.0,0.0), &
GPOINT3(2.5, 0.0,0.0), GPOINT3(0.0, 0.0,0.0) /)

! Draw facet with texture coordinates
call gDrawFacet(4,rect,gTextCoords=text)

Note that the vertices start at the bottom left corner, going anti-clockwise, whilst

the origin of the texture coordinates are at the top left corner. This rectangle

could be viewed from any angle with the texture map correctly adjusted to fit the

skewed surface.

Automatic Generation

The alternative method is to automatically generate texture coordinates by

transforming the objects physical coordinates. The current generation method is

set up and enquired using the following routines:

gSetTextureCoordGeneration(mode,[gSVec, gTVec])

gEnqTextureCoordGeneration(mode,[gSVec, gTVec])

where mode is the coordinate generation mode and may be one of the following:

351

TEXTURE MAPPING Texture Mapping Coordinates

Texture Map

• GOFF - switch texture coordinate generation off (default)

• GOBJECT - use object coordinates

• GSPHERICAL - coordinates are generated in a sphere around the viewing

position

The optional arguments gSVec and gTVec are structures of type GTEXVEC

containing the required modes and multiplication factors to be applied to the

objects coordinates when GOBJECT mode is used. Each argument is used to

automatically calculate the horizontal (S) and vertical (T) texture coordinates

respectively for every vertex of the object based on its transformed (GPICTURE)

or untransformed (GSPACE) coordinates.

S = svec.xfactor * x + svec.yfactor * y + svec.zfactor * z + svec.wfactor * w

T = tvec.xfactor * x + tvec.yfactor * y + tvec.zfactor * z + tvec.wfactor * w

Therefore, to calculate texture coordinates based on a scale factor of 1/30 of the

rectangles untransformed coordinates, the following code is used:

Replacing the above additions with the code below gives the same result.

C Code

GPOINT3 rect[4] = { 0.0, 0.0,0.0, 75.0, 0.0,0.0,
75.0,60.0,0.0, 0.0,60.0,0.0};

GTEXVEC svec = {GSPACE, 0.033, 0.0, 0.0, 0.0},
tvec = {GSPACE, 0.0, -0.033, 0.0, 0.0} ;

/* Define automatic texture coordinate generation */
gSetTextureCoordGeneration(GOBJECT,gSVec=&svec,gTVec=&tvec,0);

/* Draw facet*/
gDrawFacet(4,rect,0);

F90 Code

type (GPOINT3) :: rect(4) = (/ &
GPOINT3(0.0, 0.0,0.0), GPOINT3(75.0, 0.0,0.0), &
GPOINT3(75.0,60.0,0.0), GPOINT3(0.0,60.0,0.0) /)

type (GTEXVEC) :: svec = GTEXVEC(GSPACE,0.033,0.0,0.0,0.0)
type (GTEXVEC) :: tvec = GTEXVEC(GSPACE,0.0,-0.033,0.0,0.0)

! Define automatic texture coordinate generation
call gSetTextureCoordGeneration(GOBJECT,gSVec,svec,gTVec,tvec)

! Draw facet
call gDrawFacet(4,rect)

352

Texture Mapping Coordinates TEXTURE MAPPING

There are several things to note from this example.

Firstly, the value 0.033 represents 1/30 which is the factor needed to scale the

object coordinates so that the vertices map to whole integer values. Thus the

bottom left vertex (at 0,0) has a texture coordinate of (0.0,0.0) and the top right

vertex (at 75,60) has a texture coordinate of (2.5,-2.0). By default the image is

repeated, so the image lies on the rectangle correctly.

Secondly, the value of -0.033 used to calculate the vertical (T) texture coordinate,

is negative to ensure the image is the right way up. Remember that image

coordinates start at the top left and Y +ve is downwards, so the texture

coordinates at the bottom of the rectangle should be higher than the texture

coordinates at the top of the rectangle.

A combination of transformed or untransformed generated coordinates may be

used, by the appropriate setting of gSVec and/or gTVec. In addition, if either

transformation vector is omitted, the corresponding coordinate is taken from

those directly assigned using the gTextCoords argument to gDrawFacet().

Environment Mapping

The texture generation mode GSPHERICAL can be used to wrap the image of a

scene over one of more objects to give the impression that they reflect the

environment in which they lie. In other words, it can be used to display a series

of objects which appear as is they were perfectly reflective of their surroundings.

In order to correctly use this mode, it is necessary to have an appropriate texture

map which ideally should be one taken by a camera with an extremely wide angle

(fish-eye) lens.

3D Objects

In order to ease the task of ‘draping’ textures over GINO’s standard 3D objects,

texture coordinates in the range of 0.0 to 1.0 are automatically generated for each

complete primitive if a texture mapping mode has been set prior to drawing the

object. If a different set of texture coordinates is required, then these must be

generated by calling gSetTextureCoordGeneration() before the object is drawn.

353

TEXTURE MAPPING Texture Mapping Coordinates

Texture Mapping Attributes

In most cases the default texture mapping attributes will be sufficient for the

majority of users. However, some finer controls may be needed by some

applications in which case the optional arguments to the routine

gSetTextureMappingMode() can be used, the full description of which is:

gSetTextureMappingMode(mode, [gBlendCol, gWraps, gWrapt, gMaxfil,

gMinfil, gBorderCol])

The attributes are described in the following sections:

Blending Textures

The optional argument gBlendCol is used in conjunction with GBLEND texture

mapping mode to set a texture environment colour. This can be used for cloud

textures where the constant colour would be off-white.

Repeating and Clamping Images

The arguments gWraps and gWrapt control the effects of supplying or

calculating texture coordinates outside the range 0.0 to 1.0 in the horizontal (S)

and vertical (T) directions respectively. By default, if the texture coordinate range

exceeds these limits, then the image is automatically repeated over the object in

both directions. By setting either gWraps and/or gWraps to GCLAMP the image

is clamped to limits of the texture map. In this case the texture border colour (see

below) is extended to the limits of the facet in the clamped direction.

Modifying the call to gSetTextureMappingMode() in the above example shows

the effect of clamping in the horizontal (S) direction:

C Code

gSetTextureMappingMode(GOVERLAY,gWraps,GCLAMP,0);

F90 Code

call gSetTextureMappingMode(GOVERLAY,gWraps=GCLAMP)

354

Texture Mapping Attributes TEXTURE MAPPING

Filtering Textures

It is fairly obvious that the process of displaying textures over any object

involves a decision as to which pixel of the texture map (or texel) is placed at

which pixel of the screen in relation to the position of the object. This will almost

never be a one-to-one mapping as some form of enlargement or reduction will

almost always be required. The process of selecting which pixel is used is called

filtering.

The optional arguments gMaxfil and gMinfil control the selection of which texel

is displayed when this enlargement or reduction, respectively, occurs. By default

both filters are set to GNEAREST which means that the texel with its centre

nearest the required pixel is displayed. This option is quick but can result in

aliasing artifacts in the image.

The alternative option, GLINEAR uses a weighted average of a 2x2 square of

texels that lie nearest the screen pixel, often giving much improved results. Note

that the 2x2 square will include texels that lie outside the actual texture map

when dealing with the edges. When the texture map is repeated (gWraps or

gWrapt = GREPEAT), the 2x2 square includes texels from the opposite edge of

the texture map, whereas when the texture map is clamped (gWraps or gWrapt

= GCLAMP), the 2x2 square includes the border colour as described below.

Changing the filters to GLINEAR in the previous example (without setting a

border colour) causes the clamped edge to be merged with the default

background grey causing the following effect:

355

TEXTURE MAPPING Texture Mapping Attributes

Clamping a Texture

C Code

gSetTextureMappingMode(GOVERLAY,gWraps,GCLAMP,
gMaxfil,GLINEAR,gMinfil=GLINEAR,0);

F90 Code

call gSetTextureMappingMode(GOVERLAY,gWraps=GCLAMP, &
gMaxfil=GLINEAR,gMinfil=GLINEAR)

Where a texture map has additional mipmaps supplied with it (see Multiple

Texture Maps above), four additional options for gMinfil are used to determine

which mipmap and which texel is used when reducing the texture map to wrap

ever smaller copies of the object. These are:

• GNEARESTNEAREST - Nearest mipmap using nearest texel filter

• GNEARESTLINEAR - Nearest mipmap using linear texel filter

• GLINEARNEAREST - Linear interpolated mipmap using nearest texel

filter

• GLINEARLINEAR- Linear interpolated mipmap using linear texel filter

The smoothest results are obtained using the GLINEARLINEAR method, but at

the expense of greater computational requirements.

Note that all mipmaps are ignored if gMinfil is set to GNEAREST or GLINEAR.

356

Texture Mapping Attributes TEXTURE MAPPING

Use of GLINEAR Filter

Texture Border Colour

When a texture map is clamped and the reduction or enlargement texture filter is

set to GLINEAR, or linear texel filtering is used with mipmaps, the weighted

linear average of 2x2 texels will include texels outside the actual texture map

when calculating values at the edges. In these cases the border colour of the

texture map is significant in these calculations.

The border colour is set in one of two ways; either the texture map can have an

extra row/column of pixels along all its four edges (see page 346), or a fixed

colour can be assigned using the optional argument gBorderCol to the routine

gSetTextureMappingMode(). This value may be a colour index or a 24bit RGB

triplet returned from the gTrueCol() function.

Setting the border colour to white in the above example gives the following

effect:

C Code

gSetTextureMappingMode(GOVERLAY,gWraps,GCLAMP,
gMaxfil,GLINEAR,gMinfil=GLINEAR,gBorderCol=GWHITE,0);

F90 Code

call gSetTextureMappingMode(GOVERLAY,gWraps=GCLAMP, &
gMaxfil=GLINEAR,gMinfil=GLINEAR,gBorderCol=GWHITE)

357

TEXTURE MAPPING Texture Mapping Attributes

Texture Border Colour

Texture Mapping Enquiry

The current setting of the texture mapping mode and all its attributes can be

enquired using the routine:

gEnqTextureMappingMode(attribs)

where attribs is a structure of type GTEXATT containing the current texture

mode and each of the elements described above.

358

Texture Mapping Enquiry TEXTURE MAPPING

Chapter 21
3D TRANSFORMATIONS

3D Transformations Introduction

As with 2D, routines are also provided in GINO to enable 3D geometric

transformations: shift, rotate, scale and shear to be applied to definitions of lines

and objects. These are commonly called modelling transformations as they are

used to position and/or place various components of a complex model.

Modelling transformations are distinct from defining the overall ‘view’ of the

mode which might apply perspective or non-perspective transformations (see

page 385).

When a transformation routine is called, a new axis system (termed ‘space axes’)

is created and subsequent drawing and positioning coordinates are considered in

relation to this new axis system. When transformations are being combined, each

transformation is relative to the axis system set up by the previous

transformation.

To apply transformation to an object, the transformation routines must be called

before the drawing routines. Once a transformation routine is called, the

transformation that has been set up affects all subsequent drawing. Transforming

can be switched on or off at any stage in a program or can be reset or modified

(see page 371).

Great care should be exercised when using compounded transformations. Users

are recommended to avoid mixing 2-D and 3-D routines, as this leaves the

Z-plane undefined.

359

To illustrate transformations a routine man(), which defines a gingerbread man, is

used. The original axes are drawn as solid lines and denoted X and Y. The space

axes set up as a result of the transformations are denoted in the diagrams by X1,

Y1 and Z1 and are shown as dashed lines.

Current Transformation

When using transformations, each point drawn is operated on by the total

combined effect of previously called transformation routines. This effect is

termed the current transformation. It is updated each time a transformation

routine is called. A mathematical explanation of the transformation mechanism is

given in Technical Information.

Simple 3D Transformations

3D Shifting

Shifting specifies the vector increments through which the origin is shifted from

the origin of the previous axis system.

Shifting enables objects to be repositioned anywhere in the drawing area. The

routine for shifting is:

gShift3D(dx, dy, dz)

For example - to draw an object shifted by 50.0mm in the X direction, 30.0mm in

the Y direction and 60.0mm in the Z direction:

gShift3D(50.0,30.0,60.0);
object();

call gShift3D(50.0,30.0,60.0)
call object

3D Rotation

The routine for 3-D rotation is:

gRotate3D(axis, angle)

The first argument specifies the axis about which the other two are rotated. The

angle is specified in degrees and positive rotation is as shown below. (This is

best remembered using the right-hand rule as follows. Holding out your right

hand, palm towards you and the thumb extended, your thumb points in the

direction of positive X, your fingers in positive Y, and your palm pushes along

positive Z).

360

Simple 3D Transformations 3D TRANSFORMATIONS

Example:

• To draw a gingerbread man rotated through 120� about the X axis:

/* Rotate XY plane about X axis*/
gRotate3D(GXAXIS,120.0);
man();

! Rotate XY plane about X axis
call gRotate3D(GXAXIS,120.0)
call man

• Then negatively rotate about the Y axis by 10�. Note the new Y axis is

where the original Z axis was before any transformations (compare the

examples in the figure below):

gRotate3D(GYAXIS,-10.0);
man();

call gRotate3D(GYAXIS,-10.0)
call man

361

3D TRANSFORMATIONS Simple 3D Transformations

X

Y

Z

3-D Right-hand rule

Permutating the Axes

The user can specify the axes which are to be vertical and horizontal. The

routine is:

gSetViewAxis(nh, nv)

The arguments specify which two axes are to be horizontal and vertical.

Example:

• To specify that the Z axis is to be horizontal and the Y axis is to be vertical:

gSetViewAxis(GZAXIS, GYAXIS); call gSetViewAxis(GZAXIS, GYAXIS)

362

Simple 3D Transformations 3D TRANSFORMATIONS

Rotation

The resulting axis system is shown below:

The position of the third axis is such that a right-handed system is preserved.

3D Scaling

The routine for scaling is:

gScale3D(sx, sy, sz)

The arguments specify the amount by which the axes are to be scaled. Values of

greater than 1.0 give magnification and values between 0.0 and 1.0 give

reduction. If one or more arguments are negative, then a mirror image is

produced.

Examples:

• To draw a gingerbread man uniformly scaled by 0.5 in all directions:

/* Scale all axes */
gScale3D(0.5,0.5,0.5);
man();

! Scale all axes
call gScale3D(0.5,0.5,0.5)
call man

363

3D TRANSFORMATIONS Simple 3D Transformations

Modified Axis system

• To draw a fat gingerbread man scaled in X by 2:

gScale3D(2.0,1.0,1.0);
man();

call gScale3D(2.0,1.0,1.0)
call man

3D Shearing

The routine for shearing is:

gShear3D(dep, dir, a)

The value of dep and dir can be GXAXIS, GYAXIS or GZAXIS where dep

indicates which of the X,Y or Z axes is to be sheared (the dependent axis)

parallel to the axis dir, the third axis being unaffected.

The argument a gives the tangent of the angle through which the axis dep is

sheared.

Example:

• To draw a sheared gingerbread man such that the shear factor is 1.0 along

the X axis parallel to the Y axis:

gShear3D(GXAXIS,GYAXIS,1.0);
man();

call gShear3D(GXAXIS,GYAXIS,1.0)
call man

Combining 3D Transformations

Using the Same 3D Transformation Type

When combining transformations of the same type, the general result is not

dependent on the order in which the routines are called.

Example:

gScale3D(10.0,10.0,10.0);
gScale3D(3.0,3.0,3.0);

call gScale3D(10.0,10.0,10.0)
call gScale3D(3.0,3.0,3.0)

364

Combining 3D Transformations 3D TRANSFORMATIONS

has the same effect as:

gScale3D(3.0,3.0,3.0);
gScale3D(10.0,10.0,10.0);

call gScale3D(3.0,3.0,3.0)
call gScale3D(10.0,10.0,10.0)

The above sequence of routines is equivalent to a single call to the routine with

an arguments of 30.0, i.e. the combined effect is obtained by multiplying the

arguments. In the case of transformation routines other than the scale routines,

the cumulative effect is obtained by adding the arguments.

Example:

gRotate3D(GXAXIS,alpha);
gRotate3D(GXAXIS,beta);

call gRotate3D(GXAXIS,alpha)
call gRotate3D(GXAXIS,beta)

is equivalent to:

gRotate3D(GXAXIS,alpha+beta); call gRotate3D(GXAXIS,alpha+beta)

Combining 3-D Rotations

3-D rotations about different axes are the exception to the above generalization.

Example:

gRotate3D(GXAXIS,70.0);
man();

call gRotate3D(GXAXIS,70.0)
call man

365

3D TRANSFORMATIONS Combining 3D Transformations

/* Make man edge on */
gRotate3D(GXAXIS,20.0);

/* Rotate through Y 90 degrees */
gRotate3D(GYAXIS,90.0);
gRotate3D(GXAXIS,-10.0);
man();

! Make man edge on
call gRotate3D(GXAXIS,20.0)

! Rotate through Y 90 degrees
call gRotate3D(GYAXIS,90.0)
call gRotate3D(GXAXIS,-10.0)
call man

whereas:

gRotate3D(GYAXIS,70.0);
man();

call gRotate3D(GYAXIS,70.0)
call man

366

Combining 3D Transformations 3D TRANSFORMATIONS

/* Make man sideways on */
gRotate3D(GYAXIS,20.0);

/* Rotate though X 90 degrees */
gRotate3D(GXAXIS,90.0);
gRotate3D(GYAXIS,10.0);
man();

! Make man sideways on
call gRotate3D(GYAXIS,20.0)

! Rotate though X 90 degrees
call gRotate3D(GXAXIS,90.0)
call gRotate3D(GYAXIS,10.0)
call man

Using Different 3D Transformation Types

When combining transformations of different types, the effect obtained depends

on the order in which the routines are called. Examples are shown in the chapter

on 2D Transformations which show the principles that apply (see page 227).

Again, the order in which transformations should be used to set up

straightforward effects is:

Shift

367

3D TRANSFORMATIONS Combining 3D Transformations

Rotate

Scale

3D Transformation Enquiry

Finding the Current Drawing Position

The position of the pen at any given time can be described in terms of its

coordinates relative to the origin of the drawing area; these are termed ‘picture

coordinates’. The pen position can also be given in terms of its coordinates

relative to the current local axis system; these are the space coordinates. In

general, objects are specified in terms of space coordinates and are drawn in

terms of picture coordinates; that is space coordinates are transformed into

picture coordinates.

At any stage in a program, the pen position can be obtained (in either picture or

space coordinates) by using one of the following routines:

gEnqPicturePos(point)

gEnqSpacePos(point)

Each of which returns a structure of type GPOINT3 structure, the elements of

which are set to the current X,Y,Z coordinates expressed in current units.

3D Untransforming

The space coordinates of any point of which the picture coordinates are known,

can be obtained using routine:

gUntransformPoint3D(xp, yp, zp, point)

where all elements of point are set to zero if the transformation contains

perspective.

The routine gUntransformHomogPoint3D() is provided to convert from

four-dimensional homogeneous coordinates to space coordinates:

gUntransformHomogPoint3D(xh, yh, zh, wh, point)

Homogeneous coordinates are normally obtained by calling

gTransformHomogPoint3D(). They are related to picture coordinates in the

following way:

368

3D Transformation Enquiry 3D TRANSFORMATIONS

xp = xh/wh

yp = yh/wh

zp = zh/wh

If the current transformation contains perspective,

gUntransformHomogPoint3D() checks to see that the supplied position is

consistent with the transformation and if not, outputs a warning message.

Point Testing of Current 3D Transformation

The routine gTransformPoint3D() enables the user to see what would happen to a

point if it were subject to the current transformation.

gTransformPoint3D(xs, ys, zs, point)

transforms the space coordinate position (xs, ys, zs) into picture coordinates and

returns the value of the picture coordinates in (point.x, point.y, point.z).

In the case where no current transformation exists, (xs, ys, zs) and (point.x,

point.y, point.z) will have the same value.

When a perspective transformation is current, gTransformPoint3D() may not

always be able to produce a valid result and in this case it would output GINO

warning 15 - point lies behind the eye plane and does not transform.

gTransformHomogPoint3D() is provided to cater for this sort of situation:

gTransformHomogPoint3D(xs, ys, zs, point, wh)

The transformed position is returned in four-dimensional homogeneous

coordinates which are related to picture coordinates in the following way:

xp = xh/wh

yp = yh/wh

zp = zh/wh

The relationship obviously breaks down when wh = 0.0. This occurs when the

point lies on the eye plane. When wh is less than zero, the point lies behind the

eye plane. In both cases, the point (xs,ys,zs) does not project onto the view plane

in any meaningful way. Note that wh = 1.0 when the point lies on the view plane.

369

3D TRANSFORMATIONS 3D Transformation Enquiry

Chapter 22
TRANSFORMATION CONTROL

Transformation Control Introduction

To enable transformations to be used effectively and to facilitate the organization

of programs using them, routines are provided for:

• Setting transformation modes

• Switching transformations off and on

• Reinitializing

• Saving and re-using transformation sequences

View Transform Mode

GINO will, by default, use the most efficient method of defining the required

transformation state to the currently nominated device. On 3D devices, this

means that transformation and viewing information will be passed to the device

allowing 3D Space coordinates to be handled directly through the devices 3D

pipeline. On 2D devices, 3D Space coordinates are transformed through the

current transformation, viewing and viewport settings to 2D Device Coordinates

through the GINO pipeline (see page 36).

There may be instances where an application may wish to use a consistent

method across 2D and 3D devices or switch off the 3D hardware pipeline for a

particular operation. Two routines are provided to set and enquire the current

view transform mode:

gSetViewTransformMode(mode)

gEnqViewTransformMode(mode)

371

where mode is either GHARDWARE or GSOFTWARE as appropriate. It is

obviously not possible to switch 2D devices to use a hardware view transform

mode.

Transformation State

The current transformation state can be switched off and on again by using the

routine:

gSetTransform(sw)

When sw is GOFF or GRESET, transformations previously set up have no effect

on subsequent drawing. If sw is GOFF, the state of the current transformation is

preserved and can be restored by a call to gSetTransform(GON). The ability to

switch transformations off enables items, such as the title of a drawing, to be

positioned directly on the drawing area, i.e. in terms of the original (picture)

axes.

Transformations are automatically switched off when a device nomination

routine is called. They are switched on by the first transformation routine that is

executed after a device has been nominated or when transformations have been

switched off.

Reinitializing

The current transformation may be reset to its original, null state by calling

gSetTransform() with sw=GINIT or GRESET. Until another transformation is set

up, (after a call to gSetTransform(GINIT)) subsequent drawing is operated on by

a null transformation. However, it is more efficient to draw with transforming

switched off, although the result is the same.

For example the following program draws the picture shown in the figure below

and illustrates the use of the transformation control routines:

372

Transformation State TRANSFORMATION CONTROL

C code

#include <gino-c.h>
main()
{
void box(void);

gOpenGino();
/* Nominate device */

xxxxx();
gNewDrawing();
gShift2D(10.0,30.0);
gScale2D(4.0,-2.0);

/* Draw walls */
box();

/* Reinitialize */
gSetTransform(GRESET);

/* Draw roof */
gDrawLineTo2D(30.0,40.0);
gDrawLineTo2D(50.0,30.0);
gShift2D(30.0,20.0);
gScale2D(0.5,0.5);

/* Draw LH window */
box();

/* Shift in scaled system */
gShift2D(20.0,0.0);

/* Draw RH window */
box();

/* Reinitialize */
gSetTransform(GINIT);
gShift2D(15.0,10.0);
gScale2D(1.0,1.5);

/* Draw door */
box();

/* Select picture axes */
gSetTransform(GOFF);
gMoveTo2D(10.0,5.0);
gDisplayStr(“HOUSE”);

/* Select space axes - ie.(shift (15.0,10.0),
scale (1.0,1.5)) */

gSetTransform(GON);
gScale2D(0.5,0.5);
gShift2D(40.0,100.0/3.0);

/* Draw chimney */
box();

gCloseGino();
}

void box(void)
{
GLIMIT rect = {0.0,10.0,0.0,10.0)};

gFillRect(-1,0,&rect);
}

373

TRANSFORMATION CONTROL Transformation State

F90 code

program house
use gino_f90

call gOpenGino
! Nominate device

call xxxxx
call gNewDrawing
call gShift2D(10.0,30.0)
call gScale2D(4.0,-2.0)

! Draw walls
call box

! Reinitialize
call gSetTransform(GRESET)

! Draw roof
call gDrawLineTo2D(30.0,40.0)
call gDrawLineTo2D(50.0,30.0)
call gShift2D(30.0,20.0)
call gScale2D(0.5,0.5)

! Draw LH window
call box

! Shift in scaled system
call gShift2D(20.0,0.0)

! Draw RH window
call box

! Reinitialize
call gSetTransform(GINIT)
call gShift2D(15.0,10.0)
call gScale2D(1.0,1.5)

! Draw door
call box

! Select picture axes
call gSetTransform(GOFF)
call gMoveTo2D(10.0,5.0)
call gDisplayStr(‘HOUSE’)

! Select space axes - ie.(shift (15.0,10.0),
! scale (1.0,1.5))

call gSetTransform(GON)
call gScale2D(0.5,0.5)
call gShift2D(40.0,100.0/3.0)

! Draw chimney
call box

call gCloseGino
stop

end
subroutine box
use gino_f90
type (GLIMIT) :: rect = GLIMIT(0.0,10.0,0.0,10.0)

call gFillRect(-1,0,rect)
end

374

Transformation State TRANSFORMATION CONTROL

Transformations Matrix Control

The data representing the current transformation is held internally as an array

which can be copied, reset and modified using the following sets of routines:

gPushTransform()

gPopTransform()

gSaveTransform()

gRestoreTransform()

gGetTransform2D()

gSetTransform2D()

gModifyTransform2D()

gGetTransform3D()

gSetTransform3D()

gModifyTransform3D()

Routines from different sets are not compatible with each other, e.g.

gPopTransform() can only restore the effect saved by gPushTransform().

375

TRANSFORMATION CONTROL Transformations Matrix Control

Push and Pop Transformation Matrix

These routines provide the easiest and most convenient way of saving and

restoring a sequence of transformations.

gPushTransform()

gPopTransform()

The routine gPushTransform() has no effect on the current transformation itself;

thus copies made in this way are stored internally. Up to ten different

transformation sequences can be held simultaneously by successive calls to

gPushTransform(). A sequence that has been saved using gPushTransform() is

retrieved by a matching call to gPopTransform(). This causes the current

transformation to be reset and the saved copy to be removed; thus each copy can

only be used once.

It is only possible to restore copies in the order in which they were saved. In

addition to saving and restoring transformations, gPushTransform() and

gPopTransform() can be used on entry to, and exit from, a routine in which

transformations are used locally. This ensures that the state of the current

transformation in the calling program is unchanged by the routine.

Saving and Restoring Transformation Matrix

The routines gSaveTransform()/gRestoreTransform() make a copy (in an internal

storage area) of the total state of transformation.

gSaveTransform()

gRestoreTransform()

That is the space axis system together with the indication of whether or not it is

current. Since the picture axis system never changes, the information saved by

gSaveTransform() is sufficient to enable gRestoreTransform() to reset the state at

a subsequent point in the program. Any modifications made by calling a

transformation routine or by calling gSetTransform() between the call to

gSaveTransform() and the call to gRestoreTransform() will be lost when

gRestoreTransform() is called. Only one copy of the axis system may be stored,

and so a call to gSaveTransform() will overwrite information stored by any

previous calls to the routine.

376

Transformations Matrix Control TRANSFORMATION CONTROL

Getting and Setting Transformation Matrix

gGetTransform2D(a)

gGetTransform3D(b)

gSetTransform2D(a)

gSetTransform3D(b)

These routines perform the same routine as gPushTransform() and

gPopTransform(), but give the user more control. The basic difference is that

sequences of transformations are saved by gGetTransform2D() and

gGetTransform3D() in user arrays, instead of in internal GINO arrays. In 2-D

applications only the part of the array representing the current transformation is

used. Any number of transformation sequences can be stored by giving different

structures as arguments. These may be recalled any number of times and in any

order using gSetTransform2D() or gSetTransform3D(), which set the current

transformation (or part of it) to the state represented by the specified array.

Modify Transformation Matrix

gModifyTransform2D(a)

gModifyTransform3D(b)

Using these routines, transformation matrices that have been saved by

gGetTransform2D() and gGetTransform3D() can be updated instead of replaced.

For example - the following statements show how gSetTransform2D() and

gModifyTransform2D() can be used to reproduce an effect (saved in structure t)

in different circumstances:

377

TRANSFORMATION CONTROL Transformations Matrix Control

#include <gino-c.h>
GMAT2D t;

gSetCharTransformMode(GSOFT);
.........

/* Set up effect */
gScale2D(3.0,3.0);
gShear2D(GYAXIS,0.5);

/* Save effect */
gGetTransform2D(&t);
.........

/* Switch transformation off */
gSetTransform(GOFF);
gMoveTo2D(15.0,30.0);

/* Restore */
gSetTransform2D(&t);
gDisplayStr(“PUSH”);
.........

/* Reinitialize */
gSetTransform(GINIT);

/* Apply transformations */
gShift2D(45.0,10.0);
gScale2D(-1.0,1.0);

/* Add effect */
gModifyTransform2D(&t);
gMoveTo2D(0.0,0.0);
gDisplayStr(“PULL”);

use gino_f90
type (GMAT2D) :: t

gSetCharTransformMode(GSOFT)
.........

! Set up effect
gScale2D(3.0,3.0)
gShear2D(GYAXIS,0.5)

! Save effect
gGetTransform2D(t)
.........

! Switch transformation off
gSetTransform(GOFF)
gMoveTo2D(15.0,30.0)

! Restore
gSetTransform2D(t)
gDisplayStr(‘PUSH’)
.........

! Reinitialize
gSetTransform(GINIT)

! Apply transformations
gShift2D(45.0,10.0)
gScale2D(-1.0,1.0)

! Add effect
gModifyTransform2D(t)
gMoveTo2D(0.0,0.0)
gDisplayStr(‘PULL’)

Transformation Matrix Building

The following routines are available for creating and storing transformation

sequences without affecting the current transformation set up.

gBuildMatrix2D(x0, y0, dx, dy, angle, sx, sy, t)

gBuildMatrix3D(x0, y0, z0, dx, dy, dz, angx, angy, angz, sx, sy, sz, t)

gCombineMatrix2D(a, x0, y0, dx, dy, angle, sx, sy, t)

gCombineMatrix3D(a, x0, y0, z0, dx, dy, dz, angx, angy, angz, sx, sy, sz, t)

378

Transformation Matrix Building TRANSFORMATION CONTROL

The routines gBuildMatrix2D() and gBuildMatrix3D() create a new

transformation matrix as a combination of scaling factors, a rotation and

translation in that order about a fixed point. The variables determining these

values are as follows :

2D Matrix 3D Matrix

Scaling Factors: sx,sy sx,sy,sz

Rotation: angle angx,angy,angz

Translation: dx,dy dx,dy,dz

Fixed Point: x0,y0 x0,y0,z0

The routines gBuildMatrix2D() and gBuildMatrix3D() create a new

transformation matrix and return it as t.

An existing transformation matrix array may have further transformations applied

to it using the routines gCombineMatrix2D() and gCombineMatrix3D(). A

combination of a shift followed by the application of scaling factors and a

rotation about a fixed point may be combined with the input matrix array.

The existing transformation matrix is passed to the routines

gCombineMatrix2D() and gCombineMatrix3D() as the parameter a. The new

transformations are combined with a in accordance with the current

transformation mode (as set gSetTransformMode()), the resulting transformations

are returned as t.

The resulting sequence, stored in the transformation matrix array t, may be

implemented using gSetTransform2D() or gSetTransform3D() depending on

whether two or three dimensions are used.

Example showing Building and Combining Transformation matrices

The following program outputs the shape of a house as shown previously by

calling the routine ‘house’ three times, the first without any transformations, the

second with a shift and rotation, and the third with a scale, shift and rotation. The

routine ‘house’ draws a house of width 400.0 and height 300.0 with the origin at

the bottom left-hand corner.

C code

#include <gino-c.h>
main()
{

void house(int number);
GMAT2D a,t;

379

TRANSFORMATION CONTROL Transformation Matrix Building

/* Build first transformation in a */
gBuildMatrix2D(0.,0.,350.,250.,30.,1.,1.,&a);

/* Draw house number 1 - No transformations */
house(1);

/* Set first transformation and draw house number 2 */
gSetTransform2D(&a);
house(2);

/* Add second transformation to first
and draw house number 3 */
gCombineMatrix2D(&a,200.,100.,300.,0.,270.,0.5,1.,&t);
gSetTransform2D(&t);
house(3);

}

void house(int number)
{

gMoveTo2D(0., 0.);
gDrawLineTo2D(400., 0.);
gDrawLineTo2D(400.,200.);
gDrawLineTo2D(0.,200.);
gDrawLineTo2D(0., 0.);
gDrawLineTo2D(400.,200.);
gDrawLineTo2D(200.,300.);
gDrawLineTo2D(0.,200.);
gDrawLineTo2D(400., 0.);

gMoveTo2D(190.,230.);
gDisplayInteger(number,1);

}

F90 code

program build_house
use gino_f90

type (GMAT2D) :: a,t

! Build first transformation in a
call gBuildMatrix2D(0.,0.,350.,250.,30.,1.,1.,a)

! Draw house number 1 - No transformations
call house(1)

! Set first transformation and draw house number 2
call gSetTransform2D(a)
call house(2)

! Add second transformation to first
! and draw house number 3

call gCombineMatrix2D(a,200.,100.,300.,0.,270.,0.5,1.,t)
call gSetTransform2D(t)
call house(3)
stop
end

380

Transformation Matrix Building TRANSFORMATION CONTROL

subroutine house(number)
integer number

call gMoveTo2D(0., 0.)
call gDrawLineTo2D(400., 0.)
call gDrawLineTo2D(400.,200.)
call gDrawLineTo2D(0.,200.)
call gDrawLineTo2D(0., 0.)
call gDrawLineTo2D(400.,200.)
call gDrawLineTo2D(200.,300.)
call gDrawLineTo2D(0.,200.)
call gDrawLineTo2D(400., 0.)

call gMoveTo2D(190.,230.)
call gDisplayInteger(number,1)
end

The first transformation shifts the origin (bottom left hand corner) of the house

by (350.0, 250.0) in the current units. The house is then rotated about the fixed

point (0.0,0.0) by 30.0� and drawn without any scaling.

The second transformation shifts the house by 300.0 along the line of the current

rotation angle. Using the fixed point as the centre of the house (200.0,100.0) the

house is rotated by 270.0�. The house is scaled by 0.5 parallel to the floor of the

house; the scaling is relative to the fixed point position, and therefore reduces the

width of the house towards the centre.

Transformation Enquiry

To enquire about the state of transformation the user should use the

transformation enquiry routine:

gEnqTransformState(ntran, dim, mode)

where:

381

Chapter 22:TRANSFORMATION CONTROL Transformation Enquiry

ntran indicates transformations off (= GOFF) or on (= GON)

dim indicates transformations off (= GOFF)

2-D transformations (= GON2D)

3-D transformations (= GON3D) with no perspective

3-D transformations (= -3) with perspective

and mode indicates space mode (GSPACE) or picture mode (GPICTURE).

Settings of mode are described below. The default when transformations are

switched off is: ntran= GOFF, dim= GON2D and mode= GSPACE.

Transformation Mode

There are two possible methods of using transformations in GINO:

• In picture mode

• In space mode

Space mode is the default.

In space mode, each transformation is relative to the current space axis, that is it

is executed with reference to the previously set up transformation. In picture

mode, transformations are always relative to the original axis system - the picture

axis. This is useful when viewing whole pictures since the whole picture can be

shifted or rotated with reference to the original axis.

The routine for switching from one mode to the other is:

gSetTransformMode(mode)

The argument mode may take the value GSPACE or GPICTURE. The value

GSPACE switches to space mode and GPICTURE switches to picture mode.

When working in picture mode, transformations must be applied in reverse order

to that followed in space mode if the same effect is to be achieved. To produce,

for example, the transformed gingerbread man in the figure below in picture

mode, it would be necessary to call the routines in the following order:

gRotate2D(20.0);
gShift2D(50.0,0.0);
man();

call gRotate2D(20.0)
call gShift2D(50.0,0.0)
call man

382

Transformation Mode Chapter 22:TRANSFORMATION CONTROL

However, in space mode the order must be:

gShift2D(50.0,0.0);
gRotate2D(20.0);
man();

call gShift2D(50.0,0.0)
call gRotate2D(20.0)
call man

If the sequence gShift2D(), gRotate2D() were used in picture mode the result

would be as shown below. This would produce the same result as the sequence

gRotate2D(), gShift2D() when used in space mode.

383

TRANSFORMATION CONTROL Transformation Mode

384

Transformation Mode TRANSFORMATION CONTROL

Chapter 23
VIEWING

Viewing Introduction

Models drawn in 3-D in GINO exist in a user-defined world with its own axes

and dimensions. The viewing routines provide a window into that world and offer

extensive control over the images ultimately seen. A model in the 3-D world is

mapped onto a 2-D plane. Parallel or perspective views of the model can be set

up. The routines allow a user to change his point of view of a model in respect of

direction and distance. When the resulting image is displayed, it often appears as

if a rotation or positioning has occurred. This is useful for many types of

visualization, from engineering drawings to stereoscopic projection.

Parallel (isometric) views are suitable for technical work where dimensions may

need to be attached to, or read from, a drawing. Perspective views give a better

impression of how the model will actually appear. The figure below illustrates

the difference.

385

Comparison of Parallel and Perspective

Views

Useful Concepts

Viewing essentially involves taking a model’s three dimensional coordinates and

operating on them in some way to produce a two dimensional image on a screen

or piece of paper. If perspective is involved, the routines need to know three

things:

• The point from which the object is viewed - the eye position

• The direction of viewing - the line of sight

• The position of a plane in the model’s world onto which the coordinates are

to be projected. This plane is known as the view plane. Points on the view

plane can be mapped directly onto a screen or paper.

The view plane is perpendicular to the line of sight. The distance between the eye

and the view plane is known as the perspective distance. The point where the

line of sight meets the view plane is the view centre.

386

Useful Concepts VIEWING

Definitions for Viewing Routines

The previous diagram illustrates these definitions, while the effects of different

eye positions are illustrated in the next figure.

From View Plane to Paper

The two-dimensional image projected onto the view plane is closely related to

what appears on the screen. The mapping of points may be controlled by using

the routines described later in the section, however, GINO assumes sensible

defaults. For example, by default the view centre is positioned at the centre of the

current window or drawing area. If no window has been explicitly defined the

device limits are used.

Similarly, the image is oriented to make the Y-axis of the model’s world parallel

with that of the drawing device. In the exceptional case where the line of sight is

parallel to the Y axis, world and picture X axes are aligned.

387

VIEWING From View Plane to Paper

Varying Eye Position and Viewing Directions

The Basic Viewing Routines

Initially viewing parameters are supplied to one of three routines,

gDefinePerspView(), gDefineSphericalView() or gDefineParallelView(). One of

these must be set up before the model can be viewed. The first two deal with

perspective drawing, while gDefineParallelView() establishes a parallel view.

The viewing transformation itself is then created by a call to the routine:

gUpdateView()

The following sections describe the three basic routines in full and show exactly

how to use them. In each case, one of the objects drawn is a box with sides 30, 40

and 50mm with one vertex at the origin of the world space (a listing of the

routine CUBOID appears later).

Relating what happens on the output device to what is happening in world space

may require some thought - working through the examples and altering the

parameters will shed more light on the whole subject.

Perspective Views of a Volume

Routine gDefineSphericalView() provides a straightforward means of drawing an

object whose coordinates are readily available. gDefineSphericalView() uses the

fact that a sphere viewed from any direction is circular.

The user describes a sphere which completely encloses his model, and defines a

viewing direction and a perspective distance (see the figure below). GINO can

then calculate an eye point which causes the circular projection to fill the current

window or drawing area as completely as possible.

gDefineSphericalView(xc, yc, zc, r, dx, dy, dz, d)

The sphere’s centre is at a point (xc, yc, zc) in space coordinates and its radius on

the view plane in picture coordinates is r. The line of sight is in direction (dx, dy,

dz) and the perspective distance is d.

Thus to use gDefineSphericalView(), the statements:

gDefineSphericalView(xc,yc,zc,r,
dx,dy,dz,d);

gUpdateView();

call gDefineSphericalView(&
xc,yc,zc,r,dx,dy,dz,d)

call gUpdateView

388

The Basic Viewing Routines VIEWING

are all that is required.

The figure below illustrates the use of gDefineSphericalView() by looking at a

box, using the device limits as a window.

Notice that the line of sight is always towards the view centre; to look from a

point in positive X, Y and Z towards a point near the origin, the direction vector

requires negative components. The line of sight passes through the enclosing

sphere’s centre.

Code for a box viewed using a spherical view, as shown in the figure below,

follows:

C code

#include <math.h>
#include <gino-c.h>
#include “subs.h”
main ()
{

GLIMIT window = {0.0, 180.0, 0.0, 140.0};
float xmin,xmax,ymin,ymax,zmin,zmax;
float xc,yc,zc,delx,dely,delz,radius,dpersp;

gOpenGino();
gMwin();

gSetWindow2D(&window);

389

VIEWING Perspective Views of a Volume

The Viewing Sphere

/* Define Max dimensions for the volume to be viewed */
xmax=50.0;
ymax=40.0;
zmax=30.0;
xmin=0.0;
ymin=0.0;
zmin=0.0;

/* Calculate coordinates of volume’s centre */
xc=0.5*(xmax+xmin);
yc=0.5*(ymax+ymin);
zc=0.5*(zmax+zmin);

/* Find radius of sphere */
delx=xmax-xc;
dely=ymax-yc;
delz=zmax-zc;
radius=sqrt(delx*delx+dely*dely+delz*delz);
dpersp=200.0;

/* Establish view */
gDefineSphericalView(xc,yc,zc,radius,

-1.0,-1.0,-0.9,dpersp);
gUpdateView();

/* Draw box */
cuboid(xmax,ymax,zmax);
gSuspendDevice();
gCloseGino();

}
#include “subs.c”

F90 code

program fig12_5
use gino_f90
TYPE (GLIMIT) :: window = GLIMIT(0.0, 180.0, 0.0, 140.0)
real xmin,xmax,ymin,ymax,zmin,zmax
real xc,yc,zc,delx,dely,delz,radius,dpersp

call gOpenGino
call gMwin
call gSetWindow2D(window)

! Define Maximum dimensions for the volume to be viewed
xmax=50.0
ymax=40.0
zmax=30.0
xmin=0.0
ymin=0.0
zmin=0.0

! Calculate coordinates of volume’s centre
xc=0.5*(xmax+xmin)
yc=0.5*(ymax+ymin)
zc=0.5*(zmax+zmin)

! Find radius of sphere
delx=xmax-xc
dely=ymax-yc
delz=zmax-zc
radius=sqrt(delx*delx+dely*dely+delz*delz)
dpersp=200.0

! Establish view
call gDefineSphericalView(xc,yc,zc,radius, &

-1.0,-1.0,-0.9,dpersp)
call gUpdateView

390

Perspective Views of a Volume VIEWING

! Draw box
call cuboid(xmax,ymax,zmax)
call gSuspendDevice
call gCloseGino

stop
end
include ‘subs.f90’

The figure below shows two different views of a large letter ‘G’ in user-defined

windows. This object is drawn inside a box (in effect a three-dimensional

window) of defined dimensions. The routine biggee() is listed later in the section.

Code for the figure below follows:

#include <math.h>
#include <gino-c.h>
#include “subs.h”
main ()
{

GLIMIT window1 =
{ 0.0, 90.0, 0.0, 140.0},
window2 =
{90.0,180.0, 0.0, 140.0};

float xmin,xmax,ymin,ymax;
float zmin,zmax,xc,yc,zc,delx;
float dely,delz,radius,dpersp;

gOpenGino();
gMwin();

gSetWindow2D(&window1);

program fig12_6
use gino_f90

type (GLIMIT) :: window1 = &
GLIMIT(0.0, 90.0, 0.0, 140.0)

type (GLIMIT) :: window2 = &
GLIMIT(90.0,180.0, 0.0, 140.0)

real xmin,xmax,ymin,ymax
real zmin,zmax,xc,yc,zc
real delx,dely,delz,radius,dpersp

call gOpenGino
call gMwin

call gSetWindow2D(window1)

(As precious code up to the comment line ‘/* Establish view’ */’

391

VIEWING Perspective Views of a Volume

A box viewed using a Spherical View

/* Establish view */
gDefineSphericalView(

xc,yc,zc,radius,
-1.0,-1.0,-0.9,dpersp);

gUpdateView();
/* Draw letter G */

biggee(xmax,ymax,zmax);
/* Set up new window */

gSetWindow2D(&window2);
dpersp=150.0;

/* Establish new view */
gSetTransform(GRESET);
gDefineSphericalView(

xc,yc,zc,radius,
1.5,-1.2,-0.9,dpersp);

gUpdateView();
/* Draw letter G */

biggee(xmax,ymax,zmax);
gSuspendDevice();
gCloseGino();

}
#include “subs.c”

! Establish view */
call gDefineSphericalView(&

xc,yc,zc,radius, &
-1.0,-1.0,-0.9,dpersp)

call gUpdateView
! Draw letter G

call biggee(xmax,ymax,zmax)
! Set up new window

call gSetWindow2D(window2)
dpersp=150.0

! Establish new view
call gSetTransform(GRESET)
call gDefineSphericalView(&

xc,yc,zc,radius, &
1.5,-1.2,-0.9,dpersp)

call gUpdateView
! Draw letter G

call biggee(xmax,ymax,zmax)
call gSuspendDevice
call gCloseGino

stop
end
include “subs.f90"

In the general case, given the coordinates of a box which could surround a

particular object, the details of an enclosing sphere can be calculated easily. The

code for the original box shows this happening. If the ‘most negative’ corner is

(xmin,ymin,zmin), and the ‘most positive’ corner is (xmax,ymax,zmax), as in the

figure below, the centre of the sphere is (xc,yc,zc) where:

xc = (xmax+xmin)/2.0

yc = (ymax+ymin)/2.0

xc = (zmax+zmin)/2.0

392

Perspective Views of a Volume VIEWING

Spherical Views with user defined windows

and its radius is:

r = sqrt((xmax-xc)**2 +(ymax-yc)**2 +(zmax-zc)**2)

Perspective View from a Point

Routine gDefinePerspView() offers an alternative approach to perspective

viewing. Here, the user chooses an eye position, a viewing direction and the

perspective distance.

gDefinePerspView(xe, ye, ze, dx, dy, dz, d)

Selecting an eye position seems quite natural, but it is not always easy to make

full use of the current window, something at which gDefineSphericalView() is

very good. However, for visualization purposes gDefinePerspView() is more

appropriate than gDefineSphericalView(). For example, it can be used to create a

view of a model of an oil refinery as though standing on a particular walkway.

The figure below illustrates the parameters supplied to gDefinePerspView(). The

eye is at (xe,ye,ze) and the viewing direction is along a vector (dx,dy,dz). The

perspective distance is D.

gDefinePerspView(xe,ye,ze,
dx,dy,dz,d);

gUpdateView();

call gDefinePerspView(xe,ye,ze, &
dx,dy,dz,d)

call gUpdateView

393

VIEWING Perspective View from a Point

Calculating viewing sphere from enclosing box

In the following examples, the first of the figures below shows the familiar box,

and the second shows the large letter ‘G’.

The code for the box shown below follows:

gDefinePerspView(
100.0,90.0,80.0,
-10.0,-9.0,-8.0,150.0);

gUpdateView();
cuboid(50.0,40.0,30.0);

call gDefinePerspView(&
100.0,90.0,80.0, &
-10.0,-9.0,-8.0,150.0)

call gUpdateView
call cuboid(50.0,40.0,30.0)

394

Perspective View from a Point VIEWING

Perspective Viewing from a Point

Code for the big ‘G’ is shown here:

gDefinePerspView(
120.0,90.0,80.0,
-12.0,-9.0,-12.0,150.0);

gUpdateView();
biggee(60.0,80.0,20.0);

call gDefinePerspView(&
120.0,90.0,80.0, &
-12.0,-9.0,-12.0,150.0)

all gUpdateView
all biggee(60.0,80.0,20.0)

395

VIEWING Perspective View from a Point

Perspective View of G

A Box viewed using Perspective View

In the common case where a point on the line of sight is known, e.g. the centre of

the object, the viewing direction is straightforward to calculate. If the view centre

is also chosen to be this point the perspective distance can be easily calculated.

Thus, given a point (xp,yp,zp) on the line of sight, the direction is given by:

dx=xp-xe

dy=yp-ye

dz=zp-ze

If the view plane is to pass through this point, the perspective distance, is given

by:

d = sqrt(dx**2 + dy**2 + dz**2)

Parallel Projection

For parallel projection the eye position is irrelevant. All that needs to be supplied

is a view direction and a view centre. (In this case the view centre is simply a

point in the model’s world which is mapped to the centre of the drawing

window). Thus routine gDefineParallelView() is easy to use. The figure below

shows what is involved.

gDefineParallelView(dx, dy, dz, xv, yv, zv)

If the viewing direction is a vector (dx,dy,dz) and the view centre (xv,yv,zv)

then:

gDefineParallelView(dx,dy,dz,
xv,yv,zv);

gUpdateView()

call gDefineParallelView(&
dx,dy,dz,xv,yv,zv)

call gUpdateView

396

Parallel Projection VIEWING

sets up the required view.

The figure below illustrates a parallel view of a box, the code for which follows:

gDefineParallelView(
-1.0,-1.0,-0.9,0.0,0.0,0.0);

gUpdateView();
cuboid(50.0,40.0,30.0);

call gDefineParallelView(&
-1.0,-1.0,-0.9,0.0,0.0,0.0)

call gUpdateView
call cuboid(50.0,40.0,30.0)

The figure below illustrates the big ‘G’, the code for which follows:

As above, but:

biggee (45.0,60.0,15.0); call biggee (45.0,60.0,15.0)

397

VIEWING Parallel Projection

Box Viewed using Parallel Projection

Parallel Viewing

Setting Viewing Transformations

Viewing involves taking coordinates from a model’s world and operating on them

in some way to produce a two-dimensional image.

The operations depend on factors such as eye position, viewing direction and

where the view plane falls. The three basic routines gDefineSphericalView(),

gDefinePerspView() and gDefineParallelView() are a means of supplying these

parameters. To create the final viewing transformation, gUpdateView() is then

called.

If gSetTransform() is called with GRESET as its argument the current

transformation is initialized. To re-establish a view, one of the three basic

routines must be called prior to a call to gUpdateView(). However, if

gSetTransform() is called with GOFF, GON or GINIT as an argument, the view

parameters remain unaltered and the viewing transformation can be recreated by

calling gUpdateView() only.

398

Setting Viewing Transformations VIEWING

Parallel view of G

If one model is drawn which involves modelling transformations, e.g. rotations, a

second can be drawn with the same view after a call to gSetTransform(GINIT).

gSetTransform(GINIT) resets the transformation matrix but leaves the view

parameters intact. The next call to gUpdateView() can then build a view from a

known state rather than from an evolved, and therefore possibly unknown, state.

e.g:

/* Set up a perspective view */
gDefinePerspView(...);
gUpdateView();

/* Draw first model */
model1();

/* Throw this view away */
gSetTransform(GRESET);

/* Set up parallel view */
gDefineParallelView(...);
gUpdateView();

/* Redraw first model with
the new view */
model1();

/* Reinitialize transformation
but leave view parameters
intact */
gSetTransform(GINIT);

/* Regenerate view transform */
gUpdateView();

/* Draw a second model */
model2();

! Set up a perspective view
call gDefinePerspView(...)
call gUpdateView

! Draw first model
call model1

! Throw this view away
call gSetTransform(GRESET)

! Set up parallel view
call gDefineParallelView(...)
call gUpdateView

! Redraw first model with
! the new view

call model1
! Reinitialize transformation
! but leave view parameters
! intact

call gSetTransform(GINIT)
! Regenerate view transform

call gUpdateView
! Draw a second model

call model2

To reset the viewing parameters but leave the current transformation intact, use

gInitView(). This has the converse effect to gSetTransform(GINIT).

gInitView()

Use of Superseded Routine

The user should be warned about successive calls to gGenerateView() without

resetting the GINO transformation as explained above. It is stressed that each

time gGenerateView() is called, the viewing parameters are added to the

CURRENT transformation matrix to create a new matrix; thus a second call to

gGenerateView() without resetting the matrix will effectively add the viewing

parameters twice, with unpredictable results.

gGenerateView()

399

VIEWING Setting Viewing Transformations

Modifying the Drawing

The image of the user model (i.e. that image which is projected onto the screen or

paper etc.) may be modified by changing the viewing transformation. The model

itself need not be redefined.

Re-specifying the View

The most obvious means of changing the view parameters is to re-specify the

view completely, separating calls to gDefinePerspView(),

gDefineSphericalView(), or gDefineParallelView() and gUpdateView() by

nullifying calls to gSetTransform(GRESET). The code example for the next

figure shows this. However, it is often more economical to adjust a parameter

individually. If transforming is switched on, and the user wishes to preserve the

current transformation outside of reinitializing the view parameters, then a call to

gInitView() would effect this, as opposed to gSetTransform(GRESET) which

would discard it.

C code

GLIMIT top_left = {0.0,90.0,70.0,140.0},
top_right = {90.0,180.0,70.0,140.0},
bottom_right = {90.0,180.0,0.0,70.0},
bottom_left = {0.0,90.0,0.0,70.0};

/* Top left view */
gSetWindow2D(&top_left);
gDefineParallelView(1.0,0.0,0.0,25.0,30.0,15.0);
gUpdateView();
biggee(50.0,60.0,30.0);
gSetTransform(GRESET);

/* Top right view */
gSetWindow2D(&top_right);
gDefineParallelView(0.0,-1.0,0.0,25.0,30.0,15.0);
gUpdateView();
biggee(50.0,60.0,30.0);
gSetTransform(GRESET);

/* Bottom right view */
gSetWindow2D(&bottom_right);
gDefineParallelView(0.0,-1.0,0.0,25.0,30.0,15.0);
gUpdateView();
biggee(50.0,60.0,30.0);
gSetTransform(GRESET);

/* Bottom left view (perspective) */
gSetWindow2D(&bottom_left);
r=sqrt(25.0*25.0+30.0+15.0*15.0);
gDefineSphericalView(25.0,30.0,15.0,r,

-1.0,-1.0,-0.9,200.0);
gUpdateView();
biggee(50.0,60.0,30.0);

400

Modifying the Drawing VIEWING

F90 code

type (GLIMIT) :: top_left = GLIMIT(0.0,90.0,70.0,140.0), &
top_right = GLIMIT(90.0,180.0,70.0,140.0), &
bottom_right = GLIMIT(90.0,180.0,0.0,70.0), &
bottom_left = GLIMIT(0.0,90.0,0.0,70.0)

! Top left view
call gSetWindow2D(top_left)
call gDefineParallelView(1.0,0.0,0.0,25.0,30.0,15.0)
call gUpdateView
call biggee(50.0,60.0,30.0)
call gSetTransform(GRESET)

! Top right view
call gSetWindow2D(top_right)
call gDefineParallelView(0.0,-1.0,0.0,25.0,30.0,15.0)
call gUpdateView
call biggee(50.0,60.0,30.0)
call gSetTransform(GRESET)

! Bottom right view
call gSetWindow2D(bottom_right)
call gDefineParallelView(0.0,-1.0,0.0,25.0,30.0,15.0)
call gUpdateView
call biggee(50.0,60.0,30.0)
call gSetTransform(GRESET)

! Bottom left view (perspective)
call gSetWindow2D(bottom_left)
r=sqrt(25.0*25.0+30.0+15.0*15.0)
call gDefineSphericalView(25.0,30.0,15.0,r, &

-1.0,-1.0,-0.9,200.0)
call gUpdateView
call biggee(50.0,60.0,30.0)

401

VIEWING Modifying the Drawing

Re-specifying Views

Positioning the Image

By default, the image is positioned so that the view centre and the centre of the

current window coincide. A call to:

gPosViewCentre(xp, yp)

maps the view centre onto the point (xp, yp) which is supplied in picture (screen)

coordinates. The next figure, and its code, illustrates the use of

gPosViewCentre(). Notice that one of the basic routines is called first, followed

by any qualifying routines, such as gPosViewCentre(). Finally the transformation

is defined by a call to gUpdateView().

Orientation of the Image

The default orientation, which aligns world and picture Y axes, can be changed

using routine

gSetViewUpDirection(dx, dy, dz)

Where (dx, dy, dz) specify a vector direction in the model’s world which will be

mapped as parallel to the picture Y axis. The figure below shows how

gSetViewUpDirection() can be used to change the orientation of a cube. Like

gPosViewCentre() it is called after one of the basic routines and before

gUpdateView().

C code

GLIMIT window = {0.0,180.0,0.0,140.0};

gSetWindow2D(&window);
cside=40.0;
sside=38.0;

/* Enable gSetTransform() characters */
gSetCharTransformMode(GON);

/* First perspective view */
gDefineSphericalView(0.0,0.0,0.0,60.0,

-1.0,-0.9,-0.7,100.0);
/* Position using gPosViewCentre() */

gPosViewCentre(60.0,70.0);
gUpdateView();
cube(cside,sside,0.0,0.0,0.0);
gSetTransform(GRESET);

/* Respecify view */
gDefineSphericalView(0.0,0.0,0.0,60.0,

-1.0,-0.9,-0.7,100.0);
gPosViewCentre(120.0,70.0);

/* Re-orientate view */
gSetViewUpDirection(0.0,0.0,1.0);
gUpdateView();
cube(cside,sside,0.0,0.0,0.0);

402

Modifying the Drawing VIEWING

F90 code

type (GLIMIT) :: window = GLIMIT(0.0,180.0,0.0,140.0)

call gSetWindow2D(window)
cside=40.0
sside=38.0

! Enable gSetTransform() characters
call gSetCharTransformMode(GON)

! First perspective view
call gDefineSphericalView(0.0,0.0,0.0,60.0, &

-1.0,-0.9,-0.7,100.0)
! Position using gPosViewCentre

call gPosViewCentre(60.0,70.0)
call gUpdateView
call cube(cside,sside,0.0,0.0,0.0)
call gSetTransform(GRESET)

! Respecify view
call gDefineSphericalView(0.0,0.0,0.0,60.0, &

-1.0,-0.9,-0.7,100.0)
call gPosViewCentre(120.0,70.0)

! Re-orientate view
call gSetViewUpDirection(0.0,0.0,1.0)
call gUpdateView
call cube(cside,sside,0.0,0.0,0.0)

403

VIEWING Modifying the Drawing

Changing Position and Orientation of View

Moving Eye, View Plane or both

This section describes three routines:

gSetViewPlaneDistance(d)

gMoveViewCentre(s)

gSetViewEyeDistance(d)

A clear mental picture of the spatial relationship between eye, object and view

plane is useful in understanding their effects. A quick glance at the following

figure will suggest what is involved. Note the changes in image size with respect

to changes in the perspective distance.

A more detailed description of each routine follows.

Zooming

Zooming changes the size of the image without affecting the extent to which it is

distorted by perspective. The figure below illustrates what happens; the view

plane alone moves and thus the perspective distance changes. Routine

gSetViewPlaneDistance() alters this distance to d. The size of the image changes

proportionally with d.

404

Moving Eye, View Plane or both VIEWING

Zooming by Setting View Plane Distance

Moving Eye and View Plane

If both eye and view plane are moved, so as to keep the perspective distance

fixed, the image size changes. The effect is as if you are moving in relation to the

object and thus the perspective distortion changes due to the alteration of the

viewing angle. Routine gMoveViewCentre() is used to achieve this, where s is

the distance moved along the line of sight.

The figure above illustrates this point, and the figure below with its associated

code offers an example:

C code

/* Set up initial view
gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,100.0);
gUpdateView();

/* Draw object */
cuboid(50.0,40.0,30.0);
gSetTransform(GRESET);

/* Re-establish view */
gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,100.0);

/* Move eye and view plane 50mm closer to object */
gMoveViewCentre(50.0);
gUpdateView();

/* Redraw */
cuboid(50.0,40.0,30.0);

405

VIEWING Moving Eye, View Plane or both

Effect of Moving View Centre

F90 code

! Set up initial view
call gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,100.0)
call gUpdateView

! Draw object
call cuboid(50.0,40.0,30.0)
call gSetTransform(GRESET)

! Re-establish view
call gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,100.0)

! Move eye and view plane 50mm closer to object
call gMoveViewCentre(50.0)
call gUpdateView

! Redraw */
call cuboid(50.0,40.0,30.0)

406

Moving Eye, View Plane or both VIEWING

Example of Moving View Centre

Moving the Eye Alone

Moving the eye without moving the view plane changes the perspective distance.

The figure below illustrates this. The routine used is gSetViewEyeDistance()

where d is the new perspective distance.

The figure below shows gSetViewEyeDistance() in use. (Note that if a negative

value for d is supplied the viewing direction is reversed).

C code

/* Original view - note perspective distance is
chosen to position view plane through the
origin */
gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0);
gPosViewCentre(45.0,105.0);
gUpdateView();
cuboid(25.0,20.0,15.0);
gSetTransform(GRESET);
gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0);

/* Change perspective distance to 65mm */
gSetViewEyeDistance(65.0);
gPosViewCentre(135.0,105.0);
gUpdateView();
cuboid(25.0,20.0,15.0);
gSetTransform(GRESET);
gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0);

/* Reduce perspective distance to 45mm
note the view plane is fixed - only the
eye position can be varied using gSetViewEyeDistance() */
gSetViewEyeDistance(45.0);
gPosViewCentre(85.0,50.0);
gUpdateView();
cuboid(25.0,20.0,15.0);

407

VIEWING Moving Eye, View Plane or both

Effect of Setting New Eye Distance

F90 code

! Original view - note perspective distance is
! chosen to position view plane through the
! origin

call gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0)
call gPosViewCentre(45.0,105.0)
call gUpdateView
call cuboid(25.0,20.0,15.0)
call gSetTransform(GRESET)
call gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0)

! Change perspective distance to 65mm
call gSetViewEyeDistance(65.0)
call gPosViewCentre(135.0,105.0)
call gUpdateView
call cuboid(25.0,20.0,15.0)
call gSetTransform(GRESET)
call gDefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0)

! Reduce perspective distance to 45mm
! note the view plane is fixed - only the
! eye position can be varied using gSetViewEyeDistance

call gSetViewEyeDistance(45.0)
call gPosViewCentre(85.0,50.0)
call gUpdateView
call cuboid(25.0,20.0,15.0)

408

Moving Eye, View Plane or both VIEWING

Example of Altering Eye Position

The figure below compares the effects of gMoveViewCentre(),

gSetViewEyeDistance() and gSetViewPlaneDistance():

The routine gSetViewEyeDistance() is a tricky routine to use because both

viewing angle and the distance from the object change, and without some

forethought the effects may be surprising. Generally gSetViewPlaneDistance() or

gMoveViewCentre() are to be recommended instead, except in two particular

circumstances.

Firstly if the view plane passes through or near the object it is possible to adjust

the extent to which a drawing is distorted by perspective. Reducing the

perspective distance D increases the distortion. The earlier example shows this.

409

VIEWING Moving Eye, View Plane or both

Comparison of Altering Eye/Plane positions

A second use of gSetViewEyeDistance() is to provide a perspective distance after

setting up a parallel view. Remember that gDefineParallelView() takes the view

centre and view direction as arguments. If gSetViewEyeDistance() is then called,

enough information is available to draw a perspective view. In particular, if the

view centre is a point within the object then the view plane will intersect the

model and the situation described above arises.

This approach has all the advantages of using gDefineSphericalView() but

without being tied to the current window. The figure below illustrates this point,

but the user should experiment with this technique.

gDefineParallelView(
-1.0,-0.9,-0.8,0.0,0.0,0.0);

gSetViewEyeDistance(100.0);
gUpdateView();
cuboid(50.0,40.0,30.0);

call gDefineParallelView(&
-1.0,-0.9,-0.8,0.0,0.0,0.0)

call gSetViewEyeDistance(100.0)
call gUpdateView
call cuboid(50.0,40.0,30.0)

Changing the Line of Sight

The line of sight can be shifted using gViewShift(), rotated using gViewRotate()

or for parallel views gViewTurn() can be used.

gViewTurn(xr, yr, zr, dx, dy, dz, angle)

The routine gViewShift() moves the line of sight incrementally, and thus both

view centre and eye position change (see below).

gViewShift(dx, dy, dz)

410

Changing the Line of Sight VIEWING

Setting Eye position with Parallel View

Generally the effect is as if the model were moved in space along a vector

(-dx,-dy,-dz).

The figure below illustrates this and demonstrates the usefulness of gViewShift().

gSetCharTransformMode(GSOFT);
for (i=1; i<=5; i++) {

gSetTransform(GRESET);
gDefineSphericalView(

0.0,0.0,0.0,40.0,
-1.0,-0.9,-0.6,150.0);

delta = (float) i * 1.5;
gViewShift(0.3*delta,0.0,

delta);
gUpdateView();
cube(40.0,40.0,0.0,0.0,0.0);

}

call gSetCharTransformMode(GSOFT)
do i=1,5

call gSetTransform(GRESET)
call gDefineSphericalView(&

0.0,0.0,0.0,40.0, &
-1.0,-0.9,-0.6,150.0)

delta = real(i) * 1.5
call gViewShift(0.3*delta, &

0.0, delta)
call gUpdateView
call cube(40.0,40.0,0.,0.,0.)

end do

The routine:

gViewRotate(plane, angle, dist)

411

VIEWING Changing the Line of Sight

Example of Shifting View

Effect of a View Shift

allows the line of sight to be rotated such that the angle it makes with a plane is

constant. The rotation is about a point dist current units from the eye, along the

line of sight. It is often difficult to maintain an accurate mental picture of what is

happening with gViewRotate(). The figure immediately below shows the basic

idea and the figure following that illustrates the numbering and sign conventions.

The axes and planes are right handed. Plane number 1 is orthogonal to the X axis,

plane 2 to the Y axis and plane 3 to the Z axis.

Looking from the positive side of a plane anti-clockwise rotation is positive. (If

plane 1 passes through the origin and is viewed from a position 100 units along

the X axis, then the view point is on the plane’s positive side).

412

Changing the Line of Sight VIEWING

Effect of Rotating View

Plane Numbering Convention

The routine gViewRotate() can be very useful. If the view centre is defined to lie

within the model and the distance S is set equal to the perspective distance then

the effect is as if the model were being rotated in space. The next figure shows

this.

for (i=1; i<=6; i++) {
gSetTransform(GRESET);

/* Perspective distance is chosen
to put view c plane
through the origin */
gDefinePerspView(

100.0,100.0,100.0,
-1.0,-1.0,-1.0,173.2);

delta = (float)(i-3)*5.0;
gViewRotate(2,delta,173.2);
gUpdateView();
cuboid(40.0,40.0,40.0);

}

do i=1,6
call gSetTransform(GRESET)

! Perspective distance is chosen
! to put view c plane
! through the origin

call gDefinePerspView(&
100.0,100.0,100.0, &

-1.0,-1.0,-1.0,173.2)
delta = real(i-3)*5.0
call gViewRotate(2,delta,173.2)
call gUpdateView
call cuboid(40.0,40.0,40.0)

end do

Note that the distance about which the view is rotated is equal to the distance

between the eye and the back edge of the cube.

i.e. dist = sqrt(xeye*xeye + yeye*yeye + zeye*zeye)

Other values can be used if the view is required to be rotated about a different

point.

The next figure shows two projections of a lettered cube, one drawn using

gViewRotate(). They are a stereoscopic pair and the figure following them shows

how to look at them. It may take a while to bring the 3-D image into focus.

413

VIEWING Changing the Line of Sight

Example of Rotating View

gSetCharTransformMode(GSOFT);
gDefinePerspView(0.0,0.0,70.0,

0.0,0.0,-1.0,70.0);
gPosViewCentre(55.0,70.0);
gUpdateView();
cube(40.0,40.0,0.0,0.0,0.0);
gSetTransform(GRESET);
gDefinePerspView(0.0,0.0,70.0,

0.0,0.0,-1.0,70.0);
gPosViewCentre(125.0,70.0);
gViewRotate(2,3.0,70.0);
gUpdateView();
cube(40.0,40.0,0.0,0.0,0.0);

call gSetCharTransformMode(GSOFT)
call gDefinePerspView(0.0,0.0, &

70.0,0.0,0.0,-1.0,70.0)
call gPosViewCentre(55.0,70.0)
call gUpdateView
call cube3(40.0,40.0,0.0,0.0,0.0)
call gSetTransform(GRESET)
call gDefinePerspView(0.0,0.0, &

70.0,0.0,0.0,-1.0,70.0)
call gPosViewCentre(125.0,70.0)
call gViewRotate(2,3.0,70.0)
call gUpdateView
call cube3(40.0,40.0,0.0,0.0,0.0)

414

Changing the Line of Sight VIEWING

Stereoscopic Pair

How to View Previous Figure

Projections onto an Oblique Plane

By definition, the line of sight is orthogonal to the view plane. Nevertheless

projections onto angled planes can be set up. The following figure illustrates how

this is done. Although the line of sight does not pass through the object, an image

is generated on the view plane which can be brought into the current window

using gPosViewCentre().

The figure below shows an oblique projection. Notice that gPosViewCentre()

positions the view centre, which is defined to be on a line orthogonal to the view

plane - some calculation may be necessary to place the drawing exactly where it

is required.

gDefinePerspView(
100.0,100.0,100.0,
-1.0,-1.0,0.0,125.0);

/* gPosViewCentre() places the
view centre at the quoted
point */

gPosViewCentre(0.0,70.0);
gUpdateView();
cuboid(50.0,40.0,30.0);

call gDefinePerspView(&
100.0,100.0,100.0, &

-1.0,-1.0,0.0,125.0)
! gPosViewCentre() places the
! view centre at the
! quoted point
call gPosViewCentre(0.0,70.0)
call gUpdateView
call cuboid(50.0,40.0,30.0)

415

VIEWING Projections onto an Oblique Plane

Oblique Viewing

Saving and Restoring View Parameters

There are two pairs of routines for saving and setting the view parameters. These

are:

gGetViewParams(vdata)

gGetViewState(vstate)

gSetViewParams(vdata)

gSetViewState(vstate)

where vdata is an array of 15 values and vstate is a structure of type

GVIEWSTATE. Both contain the same data, but the structure is more accessible

through its various elements as described in the reference section.

These routines can be used to extract information about the current view, save

and restore a particular view setting, or even modify the current viewing

parameters. Note that after calling either of gSetViewParams() or

gSetViewState(), the actual values passed are not activated until the current view

is updated using gUpdateView().

416

Saving and Restoring View Parameters VIEWING

Example of an Oblique View

These routines do not affect the current modelling transformation which can be

saved and reset independently of the viewing parameters using

gGetTransform3D() and gSetTransform3D(), gSaveTransform() and

gRestoreTransform() or gPushTransform() and gPopTransform() (see page 371).

Modifying the View Matrix

The following routine can be used to modify the current view by applying a

modification matrix:

gModifyView(a)

where a is a 16 element (4x4) real array containing the modification matrix. This

routine is useful for advanced applications including the generation of shadows

(see page 342).

Listings of the Routines used in this Chapter

C code

void cube3(float cside,float sside,
float x,float y,float z)

{
/* Characters , y, z, , , x */

int i,asc[6] = {32,89,90,32,32,88};

gPushTransform();
gShift3D(x,y,z);
for (i=0; i<=3; i++) {

squar3(sside,cside,asc[i]);
gRotate3D(GXAXIS,90.0);

}
gRotate3D(GYAXIS,90.0);
squar3(sside,cside,asc[4]);
gRotate3D(GYAXIS,180.0);
squar3(sside,cside,asc[5]);
gPopTransform();

}

void squar3(float a,float cside,int nlettr)
{

float del;

del=a/2.0;
gMoveTo3D(del,del,cside/2.0);
gDrawLineBy3D(0.0,-a,0.0);
gDrawLineBy3D(-a,0.0,0.0);
gDrawLineBy3D(0.0,a,0.0);
gDrawLineBy3D(a,0.0,0.0);
gMoveTo3D(-0.6*del,-0.6*del,-cside/2.0);
gSetCharSize(a*0.82,0.6*a);
gDisplayAsciiChar(nlettr);

}

417

VIEWING Modifying the View Matrix

void biggee(float gwide,float ghigh,float gdeep)
/* Draw a 3D letter G which fits in a box

gwide by ghigh by gdeep */
{

float thickn,gbarht,gbarwd;

gSaveTransform();
/* Thickness of bars arbitrary multiple of depth

thickn=0.25*gdeep;
/* Lower horizontal bar */

cuboid((gwide-2.0*thickn),thickn,gdeep);
/* Upper horizontal bar */

gShift2D(0.0,ghigh-thickn);
cuboid((gwide-thickn),thickn,gdeep);

/* Left hand vertical bar */
gShift2D(-thickn,0.0);
gRotate2D(-90.0);
cuboid((ghigh-2.0*thickn),thickn,gdeep);
gRestoreTransform();

/* Horizontal insert */
gbarht=(9.0/20.0)*ghigh;
gbarwd=0.8*gbarht;
gShift2D((gwide-2.0*thickn),gbarht-thickn);
cuboid(-(gbarwd-2.0*thickn),thickn,gdeep);

/* Vertical insert */
gRotate2D(-90.0);
cuboid((gbarht-2.0*thickn),thickn,gdeep);
gRestoreTransform();

/* Bottom left corner */
gShift2D(-thickn,0.0);
filler(thickn,gdeep);

/* Top left corner */
gShift2D(0.0,ghigh);
gRotate2D(-90.0);
filler(thickn,gdeep);

/* Bottom right */
gShift2D(ghigh,gwide);
gRotate2D(180.0);
filler(thickn,gdeep);

/* Corner of insert */
gShift2D(gbarht,0.0);
gRotate2D(90.0);
filler(thickn,gdeep);
gRestoreTransform();

}

void filler(float fwidth,float fdepth)

/* Draw a quarter cylinder radius fwidth,
depth fdepth */

{

gMoveTo3D(0.0,fwidth,fdepth);
gDrawArcTo2D(fwidth,fwidth,fwidth,0.0,GANTICLOCKWISE);
gMoveBy3D(0.0,0.0,-fdepth);
gDrawArcTo2D(fwidth,fwidth,0.0,fwidth,GCLOCKWISE);

}

418

Listings of the Routines used in this Chapter VIEWING

void cuboid(float alengt,float height,float depth)

/* Draw box of dimensions alengt,height,depth in xyz */
{

gMoveTo3D(alengt,height,depth);
/* Front edges */

gDrawLineBy3D(-alengt,0.0,0.0);
gDrawLineBy3D(0.0,-height,0.0);
gDrawLineBy3D(alengt,0.0,0.0);
gDrawLineBy3D(0.0,height,0.0);

/* Side edges */
gDrawLineBy3D(0.0,0.0,-depth);
gDrawLineBy3D(0.0,-height,0.0);
gDrawLineBy3D(0.0,0.0,depth);

/* Top edges */
gMoveTo2D(0.0,height);
gDrawLineBy3D(0.0,0.0,-depth);
gDrawLineBy3D(alengt,0.0,0.0);
gMoveBy3D(-alengt,0.0,0.0);

/* Rear edges */
gDrawLineBy3D(0.0,-height,0.0);
gDrawLineBy3D(0.0,0.0,depth);
gMoveBy3D(0.0,0.0,-depth);
gDrawLineBy3D(alengt,0.0,0.0);

}

file : subs.h

void cube3(float cside,float sside,float x,float y,float z);
void squar3(float a,float cside,int nlettr);
void biggee(float gwide,float ghigh,float gdeep);
void filler(float fwidth,float fdepth);
void cuboid(float alengt,float height,float depth);

F90 code

subroutine cube3(cside,sside,x,y,z)
use gino_f90
real cside,sside,x,y,z
! Characters , y, z, , , x

integer :: asc(6) = (/ 32,89,90,32,32,88 /)

call gPushTransform
call gShift3D(x,y,z)
do i=1,4

call squar3(sside,cside,asc(i))
call gRotate3D(GXAXIS,90.0)

end do
call gRotate3D(GYAXIS,90.0)
call squar3(sside,cside,asc(5))
call gRotate3D(GYAXIS,180.0)
call squar3(sside,cside,asc(6))
call gPopTransform

return
end

419

VIEWING Listings of the Routines used in this Chapter

subroutine squar3(a,cside,nlettr)
use gino_f90
real a,cside
integer nlettr

real del

del=a/2.0
call gMoveTo3D(del,del,cside/2.0)
call gDrawLineBy3D(0.0,-a,0.0)
call gDrawLineBy3D(-a,0.0,0.0)
call gDrawLineBy3D(0.0,a,0.0)
call gDrawLineBy3D(a,0.0,0.0)
call gMoveTo3D(-0.6*del,-0.6*del,-cside/2.0)
call gSetCharSize(a*0.82,0.6*a)
call gDisplayAsciiChar(nlettr)

return
end

subroutine biggee(gwide,ghight,gdeep)
use gino_f90
real gwide,ghigh,gdeep
! Draw a 3D letter G which fits in a box
! gwide by ghigh by gdeep

real thickn,gbarht,gbarwd

call gSaveTransform
! Thickness of bars arbitrary multiple of depth

thickn=0.25*gdeep
! Lower horizontal bar

call cuboid((gwide-2.0*thickn),thickn,gdeep)
! Upper horizontal bar

call gShift2D(0.0,ghigh-thickn)
call cuboid((gwide-thickn),thickn,gdeep)

! Left hand vertical bar
call gShift2D(-thickn,0.0)
call gRotate2D(-90.0)
call cuboid((ghight-2.0*thickn),thickn,gdeep)
call gRestoreTransform

! Horizontal insert
gbarht=(9.0/20.0)*ghight
gbarwd=0.8*gbarht
call gShift2D((gwide-2.0*thickn),gbarht-thickn)
call cuboid(-(gbarwd-2.0*thickn),thickn,gdeep)

! Vertical insert
call gRotate2D(-90.0)
call cuboid((gbarht-2.0*thickn),thickn,gdeep)
call gRestoreTransform

! Bottom left corner
call gShift2D(-thickn,0.0)
call filler(thickn,gdeep)

! Top left corner
call gShift2D(0.0,ghight)
call gRotate2D(-90.0)
call filler(thickn,gdeep)

420

Listings of the Routines used in this Chapter VIEWING

! Bottom right
call gShift2D(ghight,gwide)
call gRotate2D(180.0)
call filler(thickn,gdeep)

! Corner of insert
call gShift2D(gbarht,0.0)
call gRotate2D(90.0)
call filler(thickn,gdeep)
call gRestoreTransform

return
end

subroutine filler(fwidth,fdepth)
use gino_f90
real fwidth,fdepth
! Draw a quarter cylinder radius fwidth,
! depth fdepth

call gMoveTo3D(0.0,fwidth,fdepth)
call gDrawArcTo2D(fwidth,fwidth,fwidth,0.0,GANTICLOCKWISE)
call gMoveBy3D(0.0,0.0,-fdepth)
call gDrawArcTo2D(fwidth,fwidth,0.0,fwidth,GCLOCKWISE)

return
end

subroutine cuboid(alengt,height,depth)
use gino_f90
real alengt,height,depth
! Draw box of dimensions alengt,height,depth in xyz

call gMoveTo3D(alengt,height,depth)
! Front edges

call gDrawLineBy3D(-alengt,0.0,0.0)
call gDrawLineBy3D(0.0,-height,0.0)
call gDrawLineBy3D(alengt,0.0,0.0)
call gDrawLineBy3D(0.0,height,0.0)

! Side edges
call gDrawLineBy3D(0.0,0.0,-depth)
call gDrawLineBy3D(0.0,-height,0.0)
call gDrawLineBy3D(0.0,0.0,depth)

! Top edges */
call gMoveTo2D(0.0,height)
call gDrawLineBy3D(0.0,0.0,-depth)
call gDrawLineBy3D(alengt,0.0,0.0)
call gMoveBy3D(-alengt,0.0,0.0)

! Rear edges
call gDrawLineBy3D(0.0,-height,0.0)
call gDrawLineBy3D(0.0,0.0,depth)
call gMoveBy3D(0.0,0.0,-depth)
call gDrawLineBy3D(alengt,0.0,0.0)

return
end

421

VIEWING Listings of the Routines used in this Chapter

Chapter 24
PICTURE SEGMENTS

Picture Segments Introduction

Picture Segments provide a means of ‘labelling’ parts of a picture as well as

building structures that can be manipulated in their entirety without redrawing

the elements that make them up. Their use is very varied, but the following types

of application can take advantage of segment facilities:

• Creating designs from components

• Component or menu option selection

• 3D hierarchical structure creation and manipulation

• Hardcopy of drawing to printer or plotter

• Progressive interactive design package

GINO provides the following segment facilities:

• Hardware and/or software segment operation

• Segment creation, extension, deletion, rename

• Visibility, Sensitivity, Highlighting attributes

• Segment transformation at device level

• Segment structures; copies, references and groups

• Editing of modelling transformations within segments

• Light pen simulation

• Archiving and restoring segment store

423

In the development of graphics devices, segment facilities were not initially

provided in the terminal as it required an on-board processor and memory to

control and store the information. Later on, some devices did add these facilities

and GINO was one of the first packages to provide access through its segment

routines. With the development of workstations, again different models exist with

and without segment facilities. Some segment facilities are included with the

GINO OpenGL drivers (WOGL and GLX) but note that these drivers do not

provide all the facilities documented below (see page 271 and Appendix B).

GINO provides the facility to use segments whether or not the device has its own

hardware segment facilities by providing a store of segment information which is

maintained on the host computer. (In the case of workstations the host is the

workstation itself). This file is called the Software Display File or SDF and it can

be held in memory or on disk at the discretion of the user.

In spite of GINO’s philosophy of emulating hardware facilities in software, the

complexity of segments and the wide variation of hardware facilities that are

available, means that a slightly different approach has been adopted in this area.

Where an application is run on a device without segment facilities, a warning

message will be output when the first segment is opened, and GINO will open a

disk based Software Display File to handle all segment facilities in software.

However, it is advisable, where an application uses segments to study the

following sections carefully and specifically set up segment handling as required

by the application. This will remove the warning message being generated.

The main routine used to control the segment handling mode is:

gSetSegMode(sw)

sw=GHARDWARE (default) disables software emulation and segment handling

will be done by the hardware only, if the device has segment facilities. The user

should check in Appendix B under the required device to see if such facilities

exist.

sw=GMIXWARE switches on software emulation and a display file is maintained

by GINO. GINO will attempt to use hardware facilities wherever possible to

ensure optimum speed of operation, however, all segment information is stored in

the display file. Where a particular segment facility is not available in the

hardware, the software display file will be used.

sw=GSOFTWARE switches on software emulation and ignores any hardware

segment facilities.

424

Picture Segments Introduction PICTURE SEGMENTS

It should be noted that hardware segment facilities may differ from those

provided through GINO’s software display file. This is largely due to the

evolving nature and complexity of segment facilities and where no standard

hardware method exists.

In order to cater for the widest possible scope of segment facilities, GINO has

adopted the highest level of sophistication with regard to its display file by

storing untransformed, unclipped 3D coordinates together with user changes to

modelling transformations. However, most of the graphics devices that provide

hardware segment facilities store only 2D picture coordinates after

transformations and clipping to device limits. In addition, some segment facilities

listed above such as references and editing may not be provided in hardware.

Therefore, when developing an application using segments the following

suggestions should be taken into consideration:

• If hardware segments are available, check which facilities are actually

provided against those required by the application. If all the required

facilities are provided on all the devices on which the application is to be

run then the most efficient operation will be provided using

sw=GHARDWARE (the default).

• If the application is to be used on a variety of devices, some with hardware

segment facilities and some without, or the application requires some

facilities not provided by the hardware, it is advisable to set

sw=GMIXWARE. The setting of sw can, of course, be made dependent on

the device selected.

• Where segment facilities provided by hardware are inconsistent with those

provided by GINO, for example where the application requires segment

structures defined in a 3D coordinate system and the hardware segment

facilities are only at the 2D level, it is necessary to use sw=GSOFTWARE.

• If segment information is required to be carried over to a secondary output

device for hard copy purposes or required for archiving and restoring, sw

should normally be set to GSOFTWARE to ensure a copy of the

information is held by GINO and any hardware segment facilities are not

used.

425

PICTURE SEGMENTS Picture Segments Introduction

Software Display File Storage

The software display file (SDF) maintained by GINO can be held in program

memory or on a direct-access scratch file according to available resources. The

routine to declare a workspace area in memory is gDefineSegWorkspace(), which

is described below. If no such area is declared, GINO will open and use a disk

file when the first segment is opened. The amount of space required for such a

display file is very difficult to establish but it can very easily be extensive.

gDefineSegWorkspace(nw)

The routine gDefineSegWorkspace() declares an area within the total workspace

area and therefore must be preceded by a call to gSetWorkspaceLimit() (see page

33). The total workspace area must obviously include at least sufficient space for

the requirements of gDefineSegWorkspace.

gOpenGino();
gSetWorkspaceLimit(10000);
gDefineSegWorkspace(10000);

call gOpenGino
call gSetWorkspaceLimit(1,10000)
call gDefineSegWorkspace(10000)

Note that the workspace is freed with the routine gCloseGino(). The routine

gEnqSegWorkspace() can be used to enquire how much space has been allocated

for segment storage within the total workspace area and how much free space is

left.

gEnqSegWorkspace(nw, nfree)

Segment Building

Picture segments are opened and closed using the following routines:

gOpenSeg(nseg)

gCloseSeg()

Picture segments are created by calls to gOpenSeg() with different values of

nseg. Segment names are defined by the positive integer number nseg between

the range 1 and 32767. All drawing between a gOpenSeg()/gCloseSeg() pair is

included within the named picture segment. If gOpenSeg() is called from within a

picture segment, this first segment is automatically closed by GINO with a call to

gCloseSeg(). If gOpenSeg() is called with an existing segment number, the

segment is first deleted before a new one is opened.

426

Segment Building PICTURE SEGMENTS

If any drawing routines are called outside a picture segment, GINO extends

segment 0 (the same as gOpenSeg(0)). Segment 0 is a dustbin segment for

everything that is drawn and not sent to a specific segment. It cannot be

manipulated, redrawn or retained in any way.

The routine gExtendSeg() reopens nseg so that more drawing can be added to it.

gExtendSeg(nseg)

The routine gEnqOpenSeg() can be used to enquire which segment number is

currently opened for drawing. This may return zero indicating that the dustbin

segment is open.

gEnqOpenSeg(nseg)

A segment can be renamed using the routine gRenameSeg(), where the segment

nseg becomes newseg. If a segment called newseg already exists, it is deleted

from the display file before nseg is renamed.

gRenameSeg(nseg, newseg)

Segments can be removed from the display file and screen using gDeleteSeg().

Where software segments are being used, segments are removed from the screen

by re-drawing them in the current background colour. This may leave holes in

other segments which may need to be repaired by the application at a suitable

time as described in ‘Segment Redrawing and Repairing’.

gDeleteSeg(nseg)

Note that while the routine gNewDrawing() may clear the screen of segments as

part of its operation, segments are not actually deleted from any software or

hardware display file by this routine, but are simply marked as invisible. If all

current segments are required to be deleted, gDeleteSeg(GALL) should be called.

Segment Anchor

The segment anchor is a reference point from which all segment elements can be

seen as relative to. It is important to set the correct anchor point when segment

transformations are required (see page 431). If the first drawing statement within

a segment is visible, the segment anchor will be at the pen position when

gOpenSeg() is called;

For example:

427

PICTURE SEGMENTS Segment Building

/* DRAW CIRCLE WITH ANCHOR AT
(0.0,0.0) */

xanc=0.0;
yanc=0.0;
rad=20.0;
gMoveTo2D(xanc,yanc);
gOpenSeg(100);
gDrawArcBy2D(0.0,rad,0.0,0.0,0);
gCloseSeg();

! DRAW CIRCLE WITH ANCHOR AT
! (0.0,0.0)
xanc=0.0
yanc=0.0
rad=20.0
call gMoveTo2D(xanc,yanc)
call gOpenSeg(100)
call gDrawArcBy2D(0.,rad,0.,0.,0)
call gCloseSeg

Otherwise, the segment anchor is fixed to the end of the first invisible vector

within the picture segment:

/* DRAW CIRCLE WITH ANCHOR AT
(40.0,40.0) */

xanc=40.0;
yanc=40.0;
rad=20.0;
gMoveTo2D(0.0,0.0);
gOpenSeg(100);
gMoveTo2D(xanc,yanc);
gDrawArcBy2D(0.0,rad,0.0,0.0,0);
gCloseSeg();

! DRAW CIRCLE WITH ANCHOR AT
! (40.0,40.0)
xanc=40.0
yanc=40.0
rad=20.0
call gMoveTo2D(0.0,0.0)
call gOpenSeg(100)
call gMoveTo2D(xanc,yanc)
call gDrawArcBy2D(0.,rad,0.,0.,0)
call gCloseSeg

428

Segment Building PICTURE SEGMENTS

An additional move can be included in order to start the visible part of the

segment away from the anchor.

/* DRAW CIRCLE WITH ANCHOR AT
CENTRE OF CIRCLE */

xanc=40.0;
yanc=40.0;
rad=20.0;
gMoveTo2D(0.0,0.0);
gOpenSeg(100);
gMoveTo2D(xanc,yanc);
gMoveBy2D(0.0,-rad);
gDrawArcBy2D(0.0,rad,0.0,0.0,0);
gCloseSeg();

! DRAW CIRCLE WITH ANCHOR AT
! CENTRE OF CIRCLE
xanc=40.0
yanc=40.0
rad=20.0
call gMoveTo2D(0.0,0.0)
call gOpenSeg(100)
call gMoveTo2D(xanc,yanc)
call gMoveBy2D(0.0,-rad)
call gDrawArcBy2D(0.,rad,0.,0.,0)
call gCloseSeg

429

PICTURE SEGMENTS Segment Building

Picture Segment Body

Picture segments contain all drawing elements that are generated between calls to

gOpenSeg() (or gExtendSeg()) and gCloseSeg(). These include all lines, arcs,

characters, polygons and filling elements as well as the selection of attributes

associated with these elements. Changes to modelling transformations are also

stored.

The picture segment does not include changes to line, filling and colour tables or

windowing and masking information.

If polygon definition and picture segments are used together, the user should

remember that a polygon definition is fixed in picture space, whereas picture

segments, given suitable output hardware (see page 447), may be dragged. The

dragging operation does not modify the definition. Thus subsequent output based

on the polygon, e.g. boundary drawing or area fill, will be drawn where it was

originally defined in picture space.

In addition, in order to ensure that a polygon definition does not cross a picture

segment boundary, gCloseSeg() forces an internal call to gEndPolygon(). This

closes any polygon definition that may be open.

Segment Manipulation

Picture segments have a number of attributes. When first created a segment is

visible, but not sensitive or highlighted (flashing). Any of the following picture

segment attributes can be altered by using the routines below.

When a change is made to a segment using the routines in this section its effect is

immediate. If the software emulation of segments is active and the device is

unable to effect the change, GINO will update the display possibly by erasing the

segment and redrawing it according to its new attribute settings.

Visibility:

gSetSegVis(nseg, vis)

Visibility can be switched off (vis=GINVISIBLE) or on (vis=GVISIBLE),

without deleting the segment from the display file. The software emulation of

this action is to redraw the segment in colour zero (background colour) to make

the segment invisible and in its correct colours when making it visible. Making a

segment invisible may leave holes in underlying graphics which can be repaired

using the routine gDrawSeg().

430

Segment Manipulation PICTURE SEGMENTS

Sensitivity:

gSetSegHit(nseg, sens)

Hit-sensitivity is the capacity of a segment to be detected in any search of the

display file. Such searches are carried out by gEnqSegHit() (see page 439) or

events utilizing light-pens or cursor selection (see page 447). As the default

setting of this attribute is for a segment not to be sensitive, the user must make

the segments that are to be detected sensitive with this routine.

Highlighting:

gMarkSeg(nseg, mark)

Highlighting of a segment can be switched on or off (mark=GUNMARK or

GMARK). The highlighting of a segment can take the form of flashing between

two colours, increasing the colour intensity or other means.

The software emulation of this action is to draw the whole segment using a single

colour index. By default this is the highest colour index available on the current

device but can be changed by calling:

gSetSegMarkColour(col)

The actual colour used can be set using gDefineRGB() etc. (see page 205). When

highlighting is switched off the segment is redrawn in its correct colours.

Picture Segment Transformations

Picture segments also contain a segment transformation matrix as part of their

attributes. By default this contains a shift to the segment anchor and default scale

and rotation values of 1.0 and 0.0 respectively.

The following routines can be used to alter the segment transformation:

gMoveSegTo2D(nseg, x, y)

gMoveSegBy2D(nseg, dx, dy)

gSetSegTransform(nseg, xsca, ysca, ang, xpos, ypos)

gSetSegTransform2D(nseg, a)

The routines gMoveSegTo2D() and gMoveSegBy2D() re-position the segment

anchor, absolutely (x,y) or relatively (dx,dy).

431

PICTURE SEGMENTS Segment Manipulation

The routines gSetSegTransform() and gSetSegTransform2D() change the

complete segment transformation. In the case of gSetSegTransform(), the

changes are passed as separate elements, the scale and rotation are applied about

the anchor position and the anchor is then re-positioned at xpos, ypos. For

gSetSegTransform2D(), the change is passed in a 3x2 transformation matrix

which contains the required scale, rotation and shift values with respect to the

original position of the segment. Thus a unit matrix will reset the segment to be

displayed at the original position it was created. The routines gBuildMatrix2D()

and gCombineMatrix2D() can be used to build or compose a suitable matrix for

gSetSegTransform2D() (see page 371).

All changes to a segment transformation are in picture coordinates and affect the

representation of the segment on the display screen, ie. after any modelling or

viewing transformation has taken place.

Segment Enquiry

The attributes of a segment may be enquired if SDF is being used or the hardware

is able to make such an enquiry. If SDF is able to provide information that the

hardware is unable to provide, it will add information in order to provide the

settings of all the segment attributes.

gEnqSegAttribs(nseg, att)

where nseg is the segment’s name and the structure att will contain the segment

attributes. If att.exist=0 the segment has not been found in the display file or no

information can be returned. If att.exist=1 then the segment exists and if

att.exist=2, it exists and it is a member of a segment group (see page 437).

att.vis, att.sens and att.mark return the current setting for visibility,

hit-sensitivity and highlighting. att.anchor is itself a structure of type GPOINT3

containing the x,y and z coordinates of the segment anchor in picture space

(att.anchor.z will always = 0.0).

The picture segment transformation can be enquired either separately or as a

matrix using the following routines:

gEnqSegTransform(nseg, xsca, ysca, ang, anchor)

gEnqSegTransform2D(nseg, a)

432

Segment Enquiry PICTURE SEGMENTS

The routines gEnqSegTransform() and gEnqSegTransform2D() complement

gSetSegTransform() and gSetSegTransform2D() respectively and if hardware

segments are being used the correct enquiry routine should be used. If SDF is

active it is always possible to enquire the complete matrix using

gEnqSegTransform2D() but gEnqSegTransform() can only be used if

gSetSegTransform() has been called.

Segment Redrawing and Repairing

All changes made to the state of a picture segment are carried out immediately on

request. Where hardware segments are being used, this will result in a visible

change on the display screen, for example in the form of the removal or

re-positioning of a segment. Where software segments are being used, most

changes of a segment state will require the deletion of the segment in its old state

and re-display in its new state. This is carried out by drawing the segment in the

current background colour (using the GINO state when the segment was created),

thus removing it from the screen, and re-displaying the segment in the new state.

These operations may leave gaps in other segments, particularly where solid

areas of colour are present. GINO provides two solutions to this problem:

Firstly, one or more segments may be re-drawn in their current state by using the

routine:

gDrawSeg(nseg)

where nseg is the segment to be redrawn. In fact, the entire display file may be

‘refreshed’ by calling gDrawSeg(GALL).

Secondly, segments may be defined in XOR mode. Under these circumstances,

GINO does not remove the segment by drawing it in the current background

colour, but by drawing it in its own colour (thus removing it from the display).

Note that the use of XOR mode may result in the segment being displayed in

different colours over different colour backgrounds. A segment may be defined in

XOR mode by calling gSetPenType(GXOR) immediately after opening the

segment.

eg.

gOpenSeg(10);
gSetPenType(GXOR);
gSetLineColour(GWHITE);

call gOpenSeg(10)
call gSetPenType(GXOR)
call gSetLineColour(GWHITE)

433

PICTURE SEGMENTS Segment Redrawing and Repairing

Segments may also need to be redrawn after any modification to the environment

in which the segment may exist and which it is subject to. Such examples are

where line or hatch attribute tables have been changed or modelling and/or

viewing transformations have been altered.

Segment Structures

More sophisticated segment structures may be built by combining drawing

elements from more than one segment into a single segment. This can take place

in one of three forms: Copying, Hierarchical Structures and Segment Groups.

Copying

The complete contents of one segment may be copied into the current segment

with the routine:

gCopySeg(nseg, pos)

This routine appends a copy of the specified segment into the current segment,

and can therefore be used for duplicating or for merging a number of segments

together. The copied segment may either be positioned at the current pen position

or at the original position of the copied segment depending on the value of pos.

A copied segment will always appear in the same form as it was defined as all the

information for the segment is inserted, element by element into the current

segment. After copying has taken place the current segment is usually redrawn to

reflect its new contents.

Hierarchical Segment Structures

A segment hierarchy is useful when an object being drawn also has a hierarchical

structure or different components are repeated and so may be referred to more

than once but need only defining once. There are however, two forms of

hierarchical segment structure that exist and it is important to be aware which is

being used as this will affect the methodology of constructing such hierarchical

structures and output obtained from using them.

Firstly, there is the stack based system where referencing a segment is like calling

a routine such that the graphical state is stored whilst the segment is being drawn,

and restored at the end of this process. Alternatively there is the list based system

where no such stack is maintained. In both cases the current graphical state will

affect a referenced segment (line colour etc.), but in the first, the graphical state

is restored at the end of the reference, whereas in the second, the graphical state

at the end of the referenced segment is carried back into the calling segment.

434

Segment Structures PICTURE SEGMENTS

GINO’s SDF uses the stack based system which is in turn based on the PHIGS

model, but OpenGL (and hence GINO’s WOGL driver) uses the second model.

In either case, hierarchical segment structures are built using the routine:

gInsertSegRef(nseg)

where a reference to nseg is placed in the current segment using this routine. The

segment nseg is not copied but a pointer to it is maintained in the display file.

In most systems, the segment nseg need not exist at the time the reference is

made or it may be replaced or extended at any time in the future. If such changes

are made to referenced segments it is necessary to redraw the parent segment

(with gDrawSeg()) to bring the structure up-to-date. SDF permits a structure of

up to 10 depths of references. This is not true of OpenGL where the referenced

segment MUST exist before referencing it.

As stated above, the referenced segment always inherits segment attributes,

drawing attributes and modelling transformations from its parent, therefore its

form and orientation can be altered for each reference made to it. If however, the

referenced segment contains changes to the current output state, on a stack based

system these are activated but only until the end of the reference when the state is

returned to that at the start of the reference, whereas on a list based system these

are carried back into the parent.

Use of Modelling Transformations within Segments

As well as inheriting drawing attributes, a referenced segment also inherits the

current modelling transformation from its parent. This allows a single referenced

segment to appear in different positions and orientations within one structure.

For example:

gOpenSeg(10);
gInsertSegRef(2);
gShift2D(100.0,0.0);
gInsertSegRef(2);
gCloseSeg();

call gOpenSeg(10)
call gInsertSegRef(2)
call gShift2D(100.0,0.0)
call gInsertSegRef(2)
call gCloseSeg

435

PICTURE SEGMENTS Segment Structures

This will position segment 2 at two different positions as part of segment 10.

Whenever a 2D or 3D transformation routine or transformation control routine

(see page 371) is called, which changes the current transformation, a complete

matrix is stored in the body of the segment and its application to future drawing

elements is subject to the current transformation mode. The same principles of

altering the current state and restoring the state on exit apply to modelling

transformations as for drawing attributes.

GINO also provides a facility to modify the copy of the transformation matrix

stored within a segment allowing local segment editing. This is achieved by

placing a TAG in the segment prior to the transformation and using the segment

editing routines to change the transformation matrix. Note that although TAGs

can be placed anywhere within a segment, only modelling transformation

matrices can be edited within the body of a segment.

gInsertSegTag(tag)

gEditSeg2D(nseg, tag, t, swi)

gEditSeg3D(nseg, tag, t, swi)

The routine gInsertSegTag() places a tag element within the current segment,

with the user defining the meaning of the tag value. The routines gEditSeg2D()

and gEditSeg3D() replace the modelling transformation within nseg which is

positioned immediately after the tag named tag. The structure t contains the

required transformation matrix and swi determines if the matrix is to be applied

according to the current transformation mode (see page 371) or replace the

current modelling transformation when the segment is redrawn.

For example, if we add a tag just before the change of transformation in the

previous example, it would be possible to replace the SHIFT by some other

transformation using gEditSeg2D():

436

Segment Structures PICTURE SEGMENTS

GMAT2D t;
/* Create segment with two

references */
itag1=1;
gOpenSeg(10);
gInsertSegRef(2);
gInsertSegTag(itag1);
gShift2D(100.0,0.0);
gInsertSegRef(2);
gCloseSeg();

/* Generate new matrix and edit
segment */
gCombineMatrix2D(0.0,0.0,

50.0,0.0,0.0,2.0,2.0,&t);
gSetSegVis(10,GINVISIBLE);
gEditSeg2D(10,itag1,&t,0);
gSetSegVis(10,GVISIBLE);

real t(16) t
! Create segment with two
! references

itag1=1
call gOpenSeg(10)
call gInsertSegRef(2)
call gInsertSegTag(itag1)
call gShift2D(100.0,0.0)
call gInsertSegRef(2)
call gCloseSeg

! Generate new matrix and edit
! segment

call gCombineMatrix2D(0.0,&
0.0,50.0,0.0,0.0,2.0,2.0,t)

call gSetSegVis(10,GINVISIBLE)
call gEditSeg2D(10,itag1,t,0)
call gSetSegVis(10,GVISIBLE)

Here the shift in ‘x’ of 100.0 is replaced by a matrix containing a shift of 50.0 in

‘x’ and a scale of 2.0 in both ‘x’ and ‘y’. The segment has to be redrawn to see

the effect of the change of transformation and this is done with the use of

gSetSegVis() making the segment invisible, and then visible after the new

transformation has taken place.

Segment Groups

In addition to segment hierarchies, GINO provides the means to manipulate

groups of segments in a similar way to a single segment. This facility is useful

for sets of discrete items such as menu items which need individual identifiers as

well as being manipulated as a group. Segment groups are also identified by a

positive integer number but this number should not conflict with existing

individual segment numbers.

Segment groups are created using the routine:

gDefineSegGroup(ngrp, nsega, nsegb)

The group of segments, the name of which is ngrp, will consist of all the

segments between nsega and nsegb inclusive. (Note that nsegb must be greater

than nsega).

Segments can be ‘degrouped’ using the routine:

gRemoveSegGroup(ngrp)

437

PICTURE SEGMENTS Segment Structures

The group name can be any valid segment number within the permissible range.

The default range is 1-32767 but this can be restricted by calling the routine:

gDefineGroupRange(ngrpa, ngrpb)

Following calls to this routine, segment groups cannot be created with names

outside the range ngrpa-ngrpb.

At any stage in the program, the range of the segments which constitute a

particular group can be obtained using the routine:

gEnqSegGroup(ngrp, nsega, nsegb)

Once a group has been created it can be referenced by the segment manipulation

routines described in ‘Segment Manipulation’. When a call to one of these

routines is executed, GINO checks the segment number for a group name. If a

group exists with that name, the routine will be carried out for the group,

otherwise the routine will be executed for a single segment.

For example:

Set range of group gDefineGroupRange(100,199)

Create group number 103 consisting of segments 20-29 gDefineSegGroup(103,20,29)

Make segment 25 invisible gSetSegVis(25,GINVISIBLE)

Make all segments in group 103 hit-sensitive gSetSegHit(103,GSENSITIVE)

Make single segment 104 hit-sensitive gSetSegHit(104,GSENSITIVE)

Error -out of range - no group created (206 subsequently

treated as single segment)

gDefineSegGroup(206,30,39)

It should be noted that in addition to setting the range of segment group numbers,

the routine gDefineGroupRange() resets all the group information and ‘degroups’

any existing groups.

Note: The segment group table is maintained entirely by GINO and not through

any hardware segment facilities. The maximum number of segment groups that

can be defined at any one time is 50.

438

Segment Structures PICTURE SEGMENTS

Implicit Segment Groups

By using negative values for the picture segment number, manipulation routines

can be carried out on implicit groups defined by ‘all but’ the segment number. If

the segment number refers to a group, then the routine acts upon all segments

outside that group. If the segment number refers to a single segment the routine

acts on all segments except that specified.

For example:

Create group gDefineSegGroup(200,64,91)

Make group invisible gSetSegVis(200,GINVISIBLE)

Make segment 84 visible gSetSegVis(84,GVISIBLE)

Make all segments outside range 64-91

hit-sensitive

gSetSegHit(-200,GSENSITIVE)

For individual segments:

Make all segments except 84 marked gMarkSeg(-84,GMARK)

Delete all segments except 84 gDeleteSeg(-84)

Delete all segments gDeleteSeg(-1)

There is an exception to the last example where the argument (-1) is equivalent to

GALL which means all segments. If picture segment 1 exists and any of the

segment routines mentioned in ‘Segment Manipulation’ (including gDeleteSeg())

are called with the argument (GALL), then the action upon segment 1 will

include segment 1.

Light Pen Simulation

The following routine may be used to simulate a light pen hit on a hit-sensitive

picture segment.

gEnqSegHit(nseg, x, y, radius)

returns in nseg the hit-sensitive picture segment identifier closest to the hit centre

(x, y) within the radius of the hit area radius. If none are found nseg is set to -1.

439

PICTURE SEGMENTS Light Pen Simulation

When using hardware segment facilities, the action of gEnqSegHit() will depend

on the device being used and users should refer to the Appendix B document for

that device.

When software segment facilities are being used, gEnqSegHit() will search the

entire display file searching for the closest output primitive within the specified

tolerance and return the segment number in which it resides.

Dragging

The user program can set a suitable terminal to dragging mode by using the

routine:

gDragSeg(nseg)

The terminal will allow segment nseg to be dragged (i.e. follow the cursor) until

a key is pressed. Information is returned by gGetEventRecord() (see page 447).

event.key is set to the integer identifier of the key, as in gWaitForEvent().

event.pos is set to the picture coordinates of the anchor of the segment being

dragged. All segments except segment 0 can be dragged. In general, dragging

would follow an event which returned a segment number.

Software Display Files Across Devices

Normally, when a drawing is created on a graphics device and a copy is required

on a printer or plotter for hard copy purposes, it is necessary to re-create the

complete drawing from the user’s application. However, if drawings are stored in

the Software Display File by placing them in one or more segments, the graphics

information can be carried over to another device because the Software Display

File is NOT deleted on a call to gCloseDevice() when the current device is closed

down. (The segment group table is also maintained across device nominations.)

This facility can also be taken advantage of, by composing picture segments

while the gDummy() device is active, ie. their generation cannot be seen, and

utilizing them when required on the required output device.

The following points should be noted when carrying over segment information

from one device to another:

440

Dragging PICTURE SEGMENTS

• When generating the initial segments, the value of sw in the call to

gSetSegMode() must be set to GMIXWARE or GSOFTWARE to ensure a

copy of segment information is stored in GINO’s Software Display File

(see page 423). Although sw=GMIXWARE can be used in these

circumstances, it is advisable to use sw=GSOFTWARE to ensure that

hardware segment facilities are not used. The reason for this is that any

hardware segment store may get out of step with GINO’s Software Display

File with unpredictable results. (sw=GMIXWARE can be used where the

application generates segments on an interactive device and limits itself to

segment drawing on a secondary output device which does not have

segment facilities).

• Remember that all information outside calls to gOpenSeg()/gExtendSeg()

and gCloseSeg() will NOT be stored, and therefore will not be available

across devices.

• Changes to colour, line and hatch tables are not stored in SDF. This means

that they must be set for each output device as required. (This allows the

possibility of different colour and broken line settings for different devices

taking advantage of various hardware facilities, without affecting the

segment information itself).

• Changes to window and mask settings are not stored in SDF.

• The routine gDefinePictureUnits() and Viewports do not affect the

coordinate values stored by SDF so if either are being used, remember to

call the same routine again for the second device.

• If relying on defaults such as colour and line thickness in the creation part

of the program, SDF will interrogate the current device and insert the

relevant values for that device into the storage area. If initially drawing to a

screen, this would result in colour 10 and line thickness of approx. 0.3mm

being stored. When replaying to a printer such as Postscript, this will result

in vectors being invisible (white) and possibly too thick. To avoid this

problem, try to set known defaults or values in the creation program such

as gSetLineColour(GBLACK) and gSetLineWidth(0.0).

The Software display file can be carried across from one device to another as

many times as required and new segments may be added or existing ones

modified throughout this process. The segment store (and group table) is

however, initialized when the routine gOpenGino() is called and is therefore only

available between calls to gOpenGino() and gCloseGino().

The following example illustrates an automatic hard-copy generation of a picture:

441

PICTURE SEGMENTS Software Display Files Across Devices

#include <gino-c.h>
main ()
{
/* Initialize GINO and nominate

X windows device */
gOpenGino();
gXwin();

/* Set up storage for display
file in memory */
gSetWorkspaceLimit(5000);
gDefineSegWorkspace(5000);
gSetSegMode(GSOFTWARE);

/* Open Segment for subsequent
picture */
gOpenSeg(1);
picture();
gCloseSeg();
gCloseDevice();

/* Nominate plotter device */
gHp7475();

/* Redraw all segments from
display file */
gDrawSeg(-1);
gCloseDevice();

/* Free memory used for Software
Display File */
gCloseGino();

}

Program main

use gino_f90
! Initialize GINO and nominate
! X windows device

call gOpenGino
call gXwin

! Set up storage for display
! file in memory

call gSetWorkspaceLimit(5000)
call gDefineSegWorkspace(5000)
call gSetSegMode(GSOFTWARE)

! Open Segment for subsequent
! picture

call gOpenSeg(1)
call picture
call gCloseSeg
call gCloseDevice

! Nominate plotter device
call gHp7475

! Redraw all segments from
! display file

call gDrawSeg(-1)
call gCloseDevice

! Free memory used for Software
! Display File

call gCloseGino
stop

Note that hardware segments cannot be used across different devices and they

have to be recreated on the second device in such circumstances. This includes

segments created on an OpenGL screen device and then required to be drawn on

a printer as each device has a different device context and therefore different

segment store. The segments have to be recreated after switching to the printer

device before being redrawn.

Archiving and Restoring Software Display File

The complete contents of the Software Display File can be archived to a disk file

and restored later within the same program or a different one using the following

routines:

gArchiveSegs(file)

gRetrieveSegs(file)

In each case file is a file pointer or unit returned from the function gFopen()

which references a file to or from which the Software Display is archived.

442

Archiving and Restoring Software Display File PICTURE SEGMENTS

The routine gArchiveSegs() copies the contents of the Software Display File

from either memory or the current scratch file to a permanent file while

gRetrieveSegs() copies a previously archived file into memory or scratch file for

subsequent use on the current graphics device. The routine gRetrieveSegs() will

remove all currently existing segments before restoring the contents of the

archived file.

It is necessary to call gSetSegMode() with sw = GMIXWARE or GSOFTWARE

before calling gArchiveSegs() or gRetrieveSegs() to ensure the Software Display

File is active (see page 423). It is also advisable to call

gSetSegMode(GSOFTWARE) before calling gRetrieveSegs() to prevent

hardware segment facilities being used as these will not be in step with GINO’s

software display file.

The following example illustrates the use of archiving and restoring the Software

Display File over two separate programs:

C code

#include <gino-c.h>
main ()
{
/* PROGRAM ONE */

GFILE *file;

/* OPEN GRAPHICS DEVICE */
gOpenGino();
xxxxx();

/* INITIALIZE SDF IN MEMORY */
gSetWorkspaceLimit(10000);
gDefineSegWorkspace(10000);
gSetSegMode(GSOFTWARE);

/* CREATE SEGMENT STRUCTURES */
gOpenSeg(10);

...

...

...
gCloseSeg();

/* ARCHIVE SEGMENT STORE */
file = gFopen(“SDFFILE”,"w");
gArchiveSegs(file);
gFclose(file);

/* CLOSE GRAPHICS DEVICE AND GINO */
gCloseDevice();
gCloseGino();

}

443

PICTURE SEGMENTS Archiving and Restoring Software Display File

#include <gino-c.h>
main ()
{
/* PROGRAM TWO */

GFILE *file;

/* OPEN GRAPHICS DEVICE */
gOpenGino();
xxxxx();

/* INITIALIZE DISPLAY FILE */
gSetSegMode(GSOFTWARE);

/* RESTORE SEGMENT STORE INTO SDF SCRATCH FILE
(gDefineSegWorkspace() NOT CALLED) */
file = gFopen(“SDFFILE”,"r");
gRetrieveSegs(file);
gFclose(file);

/* DRAW ALL STORED SEGMENTS */
gDrawSeg(-1);

...

...

...
gCloseDevice();
gCloseGino();

}

F90 code

program one
use gino_f90
common rbuf(10000)
! PROGRAM ONE

integer file
!
! OPEN GRAPHICS DEVICE
!

call gOpenGino
xxxxx

!
! INITIALIZE SDF IN MEMORY
!

call gSetWorkspaceLimit(1,10000)
call gDefineSegWorkspace(10000)
call gSetSegMode(GSOFTWARE)

!
! CREATE SEGMENT STRUCTURES
!

call gOpenSeg(10)
...
...
...

call gCloseSeg
!
! ARCHIVE SEGMENT STORE
!

file=gFopen(’SDFFILE’,GWRITE)
call gArchiveSegs(file)
call gFclose(file)

444

Archiving and Restoring Software Display File PICTURE SEGMENTS

!
! CLOSE GRAPHICS DEVICE AND GINO
!

call gCloseDevice
call gCloseGino
stop
end

program two
use gino_f90

! PROGRAM TWO
integer file

!
! OPEN GRAPHICS DEVICE
!

call gOpenGino
call xxxxx

!
! INITIALIZE DISPLAY FILE
!

call gSetSegMode(GSOFTWARE)
!
! RESTORE SEGMENT STORE INTO SDF SCRATCH FILE
! (gDefineSegWorkspace() NOT CALLED)
!

file=gFopen(’SDFFILE’,GREAD)
call gRetrieveSegs(file)
call gFclose(file)

!
! DRAW ALL STORED SEGMENTS
!

call gDrawSeg(-1)
...
...

call gCloseDevice
call gCloseGino()
stop
end

445

PICTURE SEGMENTS Archiving and Restoring Software Display File

Chapter 25
ADVANCED INTERACTION

Advanced Interaction Introduction

GINO enables information to be input from any type of graphics terminal from

raster and refresh displays to window based workstations and PCs. The following

section describes advanced input facilities available on devices and workstations

that cater for several types of input and maintain event queues. These facilities

also enable programmers to write event based applications on X window

workstations and terminals. Users should refer to Appendix B to see if these

facilities are available on the requested device.

In general, when using intelligent displays, the terminal is connected as a satellite

or server to a host computer or application client. The GINO program is resident

in the host computer and data is being transmitted to and from the terminal or

workstation. Before reaching the input stage, the application will prepare the

display by creating menu buttons, hit sensitive picture segments or prompt

messages. During this stage, some terminals will remain idle whereas highly

interactive terminals or workstations may be generating input events from other

windows all of which are thrown away, as the GINO application is not ready for

them.

When the application reaches the input phase of the program, it is necessary to

tell the terminal which input events the application is going to be interested in.

The typical mode of working would then be as follows:

447

Events are generated from input devices such as keyboards, function boxes, light

pens, mouse movements etc. An event is generated when the state of an input

device is changed. This is usually done by the program user depressing a key,

moving the mouse or executing a similar external action. If the event is of a type

requested by the application, it will be placed in a queue, otherwise it will be

thrown away. Meanwhile the application program needs to fetch the events from

the queue and process them accordingly.

Thus two processes are going on at the same time: the terminal is generating

events from the user’s actions and the application program is processing them as

and when they arrive on the queue. When writing such an application it is

advisable to program around an event loop. Further information on this is given

in ‘Queues’.

Associated with any event there may be additional data which is returned with it.

This may include the key pressed, or a screen coordinate or a series of values

from a digitizer. This information is passed back with the event and is available

to the GINO programmer.

448

Advanced Interaction Introduction ADVANCED INTERACTION

Programming in a windowing environment

In a window environment there are many other types of events that can take

place, some of which the application is interested in. These include resize events,

where the user has decided to change the window size or a change of focus event

when the pointer enters or leaves the window. These are also catered for with

these advanced input facilities.

Several other event types are taken care of automatically by the window driver

and the GINO programmer need not be concerned with them. These include

expose and iconize events where an area of the window or the whole window are

exposed after having been hidden. It must be remembered however, that these

events can only be acted upon if the application program is frequently re-entering

the driver. This can either be for graphics output or input such as the event loop

described above.

Event Types

The following event types are catered for within GINO:

GNULL Null event Indicates that the event queue is to be

sampled and/or no valid event has

occurred.

GKEYPRESS Key or function button press A single key on a keyboard or button on

a mouse.

GSEGMENT Picture segment number (no

key)

Returned when using an input device

such as a light pen.

GSEGMENTANDKEY Picture segment number and

key or function button

Returned when using the cursor or

mouse such that a key is required to

generate the event.

GLOCATOR Screen position and key or

function button

Returned when the cursor/pointer is

being used to indicate the screen

position. The event is returned when a

key or function button is pressed.

GSTRING Text string One or more keys from a keyboard

terminated by a record terminator

(carriage return etc.).

GREALS Real values A stream of real values returned from a

coordinate system not associated with

the screen. i.e. A tablet or data logger.

GINTEGERS Integer values A stream of integer values returned from

a coordinate system not associated with

the screen. i.e. A tablet or data logger.

449

ADVANCED INTERACTION Event Types

GMOVEMENT Pointer, mouse or tablet

movement

Returned if any pointer, mouse or tablet

movement has taken place.

GKEYRELEASE Key or function button

release and screen position

If a single key or mouse button is

released.

GRESIZE Window resize If the application user has changed the

size of the window in which the

application is running.

GPOINTERLEAVING Pointer leaving window If the pointer has left the window.

GPOINTERENTERING Pointer entering window If the pointer enters the window.

GMOUSEWHEEL Movement of mouse wheel(s) If mouse wheel(s) are moved

Requesting Event Types

In order to process an event of a given type, the device must be set to place such

event in its event queue. This may be done using the routine:

gAddEventType(intype)

This can be called repeatedly to generate a list of possible event types. An

example of setting the terminal to generate several event types is where the

application may wish to know about all button/key presses and pointer

movements in order to drag a picture across the screen while a button is pressed:

gAddEventType(GKEYPRESS);
gAddEventType(GMOVEMENT);
gAddEventType(GKEYRELEASE);

call gAddEventType(GKEYPRESS)
call gAddEventType(GMOVEMENT)
call gAddEventType(GKEYRELEASE)

Some devices can only enable one data type at a time and, in this case, the one

that is enabled is the one that was requested last.

When the device has any event type set, it is placed in input mode and a special

cursor or pointer shape is displayed to indicate to the user that the mode has

changed. Where the terminal can display different cursor or pointer shapes the

routine gSetCursorType() can be used to set the shape required.

Deleting Event Types

An event type previously requested may be deleted from the list using the

routine:

gRemoveEventType(intype)

450

Requesting Event Types ADVANCED INTERACTION

All event types may be removed from the list by setting intype to GALL. If

gRemoveEventType() is called to delete the event type for which the terminal is

currently set, then the terminal assumes that none are set and it comes out of

input mode. Under these circumstances, any graphics cursor is removed or

special pointer shape is reverted to its default.

Getting Next Event

The GINO program may process the next event using the routine:

gWaitForEvent(intype)

where intype returns the type of the event that has been processed (i.e. that which

was at the head of the input queue when gWaitForEvent() was called).

If there were no events in the queue, either because none have been generated or

none of the requested types have been generated, then gWaitForEvent() will wait

for an event of a requested type to be placed in the input queue and then return.

The exception to this is if the GNULL event type has been requested, in which

case, gWaitForEvent() will return with intype set to GNULL if there are no other

events happening. This passes control back to the application rather than locked

inside the routine gWaitForEvent().

Reading Event Data

All information associated with an event can be obtained using the routine:

gGetEventRecord(intype,everec)

where everec is a structure of type GEVEREC containing the following

elements:

int key code of any key/mouse button pressed or released

int impkey implement number that generated the key code

int impdat implement number of the device that generated the data values

int nseg segment number from events GSEGMENT and GSEGMENTANDKEY

GPOINT pos screen coordinates associated with any of the events

int nargs gives the number of data values returned in event.args or event.iargs

float args[80] array of length 80 containing real values from event types GREALS

and GRESIZE

int iargs[80] array of length 80 containing integer values from event types

GSTRING, GINTEGERS and GMOUSEWHEEL

451

ADVANCED INTERACTION Getting Next Event

Event GSTRING returns the ASCII codes of the text string in everec.iargs, and

event GRESIZE returns the width and height of the resized window in the first

two elements of the array everec.args.

Event GMOUSEWHEEL caters for the movement of the PC Intellipoint mouse

wheel(s). Values are returned in the everec.iargs array (±120 equates to one

notch in either direction).

It is recommended that gGetEventRecord() is called immediately after

gWaitForEvent() as it is possible that some of the event information can be

changed by other GINO routines.

Keys

The key value returned by gGetEventRecord() (or gGetCursorEvent()) represents

the ASCII code of the key pressed or being pressed as part of the event. The key

value may have been generated from the keyboard, mouse or other implement as

indicted by the impkey setting (see page 454).

As well as standard ASCII values being returned GINO returns non-ASCII

values to indicate the action of special mouse and keyboard keys as follows:

key Keyboard Key

0-127 Standard 7-bit ASCII characters

76 Left mouse button

77 Middle mouse button

82 Right mouse button

513-532 Function keys 1-20 (i.e. function key n + 512)

533 Left arrow

534 Right arrow

535 Up arrow

536 Down arrow

537 Prior/Page Up

538 Next/Page Down

539 Insert

540 Home

452

Keys ADVANCED INTERACTION

541 End

542 Shift/TAB

544 Numerical key pad /

545 Numerical key pad *

546 Numerical key pad -

547 Numerical key pad +

548 Numerical key pad ‘Enter’

549 Numerical key pad .

550-559 Numerical key pad 0-9

560 Print Screen

561 Pause

562 Select

563 Execute

564 Help

The following keyboard combinations are also returned by gGetEventRecord(),

but where the required combination is not catered for it is suggested that the

function gEnqKeyState() is used (see page 457).

key Keyboard Key

X + 64 SHIFT + special key > 511 (i.e. SHIFT F1 = 577)

X - 64 CTRL + special key > 511 (i.e. CTRL F1 = 449)

X + 1024 ALT + any key (i.e. ALT P = 1104, ALT F1 = 1537)

If no key was typed, everec.key= 0.

453

ADVANCED INTERACTION Keys

Event Generating Implements

In general, it is not necessary for the GINO program to be aware of the

implement on which an event was generated since the main interest is in the type

of data returned and not in how the input was generated. However, some

terminals may have more than one implement type and the program may need to

distinguish between them. This is particularly the case for the key or button

press, in that it could be generated from the keyboard, function keys, mouse or

tablet. When an event is generated, the information is obtained by calling

gGetEventRecord(). this includes the identification of the implement on which

the key was pressed and that of the implement which generated the data (in

everec.impkey and everec.impdat). A list of implement types is given below:

0 Screen

100 Keyboard

200 Function box

300 Light pen

400 Joystick/arrow keys/thumb wheels/mouse

500 Tablet/digitizer

600 Valuator

Event Programming

In order to program an event loop as suggested in ‘Introduction’, the following

code template can be used:

C code

#include <gino-c.h>
GEVEREC event;
int event_type;

/* Set up event types */
gAddEventType(GKEYPRESS);
gAddEventType(GMOVEMENT);
gAddEventType(GKEYRELEASE);
gAddEventType(GRESIZE);

/* Enter event loop */
for (;;) {

gWaitForEvent(&event_type);
if(event_type == 0) continue;

gGetEventRecord(event_type, &event);

454

Event Generating Implements ADVANCED INTERACTION

switch (event_type) {
case GKEYPRESS: {

/* Process key/button press */
if(event.key == 113) break;

...

... }
case GMOVEMENT: {

/* Process mouse movement */
...
... }

case GKEYRELEASE: {
/* Process key/button release */
...
... }

case GRESIZE: {
/* Process resize event */
...
... }

default : continue;
}

}

F90 code

use gino_f90
type (GEVEREC) event
integer event_type

! Set up event types
call gAddEventType(GKEYPRESS)
call gAddEventType(GMOVEMENT)
call gAddEventType(GKEYRELEASE)
call gAddEventType(GRESIZE)

! Enter event loop
do

call gWaitForEvent(event_type)
if(event_type == 0) cycle

call gGetEventRecord(event_type, event)
select case (event_type)

case (GKEYPRESS)
! Process key/button press

if(event%key == 113) goto 999
...
…

case (GMOVEMENT)
! Process mouse movement
...
…

case (GKEYRELEASE)
! Process key/button release
...
…

case (GRESIZE)
! Process resize event
...
…

case default
end select

end do
999

455

ADVANCED INTERACTION Event Programming

Queues

Events may be queued by the intelligent terminal. The user program may

interrogate the state of the queue, or delete the queue by using the routines:

gEnqQueueLength(len)

gDeleteEventQueue()

The information returned in len depends on the terminal. In some cases the actual

number of waiting events may be returned, but the terminal may only be able to

indicate that there are at least len events waiting.

For example, to interrogate the event queue and read an event when there is an

event waiting:

/* Interrogate length of queue */
gEnqQueueLength(&len);

/* Enter loop if some events */
while (len > 0) {

/* Read event and process */
gWaitForEvent(&event_type);
:
:

/* Interrogate length of queue
again */

gEnqQueueLength(&len);
}

! Interrogate length of queue
call gEnqQueueLength(len)

! Enter loop if some events
do while (len > 0)

! Read event and process
gWaitForEvent(event_type)
:
:

! Interrogate length of queue
! again

call gEnqQueueLength(len)
end do

Consult the device driver Appendix B for information on whether queues are

supported.

Mouse Position

Two routines are provided to set and enquire the current position of the mouse

pointer:

gSetMousePos(env,xpos,ypos)

gEnqMousePos(env,point)

456

Queues ADVANCED INTERACTION

where env is the environment of the request. This can be either GSCREEN where

the mouse position is relative to the complete screen or GDRAWINGAREA

where the mouse position is relative to the current drawing area or window. In

both cases the mouse position is measured in pixels relative to the top left corner

of the particular environment.

The routine gEnqMousePos() returns the mouse position in a structure of type

GPIXEL containing both the x and y coordinates.

Users should note that it is the convention of GUI programs that the mouse

position is moved only in very rare cases, so the routine gSetMousePos() should

be used sparingly.

Keyboard State

In addition to the value of the key pressed as part of an event, the current state of

any key on the keyboard of the current device may be enquired at any point in a

graphics application using the following function:

state = gEnqKeyState(key)

where key is the keycode of the key being enquired. The function returns a value

of 0 if the key is not pressed and a value 1 if the key is pressed at the time the call

on the function is made.

The key code table used by gEnqKeyState() is the same as the everec.key values

returned by gGetEventRecord() (see above) with the following additions:

key Special Key Description

-1 Left mouse button

-2 Middle mouse button

-3 Right mouse button

-20 Shift

-21 Ctrl

-22 Alt

-30 Caps Lock

-31 Num Lock

-32 Scroll Lock

457

ADVANCED INTERACTION Keyboard State

Therefore, the code to test whether both the Ctrl and ‘A’ keys are currently

pressed down is as follows:

/* Check for Ctrl A */
if(gEnqKeyState(-21) &&

gEnqKeyState(65)) {

}

! Check for Ctrl A
if(gEnqKeyState(-21) .and.

gEnqKeyState(65)) then

endif

458

Keyboard State ADVANCED INTERACTION

Chapter 26
SYSTEM UTILITIES

System Utilities Introduction

Within any graphics application there is often a need to access system utilities not

provided as part of the programming language in which the application is written.

Some of these utilities may be provided as extensions to the programming

language or as additional libraries associated with the language or as part of the

operating system. In any event, by their very nature, there is no common

interface to these utilities, and so any attempt to use them would render the

graphics application implementation dependent.

This section of the document describes a number of routines that have shown to

be commonly required by graphical applications, and have been included in the

GINO library to offer a common interface to such utilities. The utilities are

grouped in the following sub-sections:

• Directory handling

• Time and date utilities

• Other system utilities

• Random number generation

• String handling

459

File and Directory Handling

GINO provides a number of file and directory handling utilities. While the

interface to these routines is the same for any implementation of GINO, the

structure of directory and file names vary from system to system so it becomes

quite difficult to use these routines in a way that is independent of the system in

which the application is running.

Under the most common GINO implementations, directory and file names occur

in the following forms:

Operating System Disk or Node Directory Filename Wild

Chars

UNIX node /dir1/dir2/ file.ext (n.n) * or ? or []

OpenVMS DISK: [DIR1.DIR2] FILE.EXT (n.n) * or %

DOS DISK: \DIR1\DIR2\ FILE.EXT (8.3) *

MS WINDOWS DISK: \DIR1\DIR2\ file.ext (n.n) *

The two routines to enquire and set the current working directory are as follows:

gEnqWorkingDir(directory [,slen])

err=gSetWorkingDir(directory)

The former returns the current working directory in the string directory (in

C/C++ this may alternatively be as a pointer to a malloc’ed character string,

which should be freed after use) and the latter is a function returning an error

code if the setting operation is unsuccessful. eg.

char *dir;
/* Enquire current working dir */

dir=gEnqWorkingDir(NULL,0);
/* Set working directory */

err=gSetWorkingDir(dir);
free(dir);

character*80 dir
! Enquire current working dir

call gEnqWorkingDir(dir)
! Set working directory

ierr=gSetWorkingDir(dir)

The string passed to gSetWorkingDir() must conform to the correct format for a

directory name under the operating system being used as will the string returned

by gEnqWorkingDir().

460

File and Directory Handling SYSTEM UTILITIES

The two functions provided to return a list of file names are gGetDirList() and

gGetFullDirList(), with the former simply returning a list of file names in the

current directory, while gGetFullDirList() will return a list of files matching any

permitted directory search pattern together with their associated attributes.

err=gGetDirList(n, files [,flen])

err=gGetFullDirList(pattern, n, files, types, dirdates, sizes [,flen])

In both cases the user must pass addresses to the appropriate arrays which should

be of length n. Assuming there are files in the current directory or that match the

search pattern, at most n file names (and their associated attributes) will be

returned in those arrays. n is set to the actual number of entries returned by each

routine. If the arrays are not large enough to hold all the entries in the directory,

some of the names will not be returned and n will remain unchanged on exit.

An extra argument, flen, is required in the C/C++ binding of these routines to

inform the GINO function how much space has been allocated for the list of file

names. This should equate to the maximum length required for each file name,

effectively the width of the array of character strings.

The search pattern passed to gGetFullDirList() is the string pattern which must

conform to that permitted under the implementation being used and may include

disk and directory name and/or wild characters. In addition to the file names,

gGetFullDirList() returns the file type (as a bit pattern), the date last modified (or

created) and the file size in bytes.

The following functions provide utilities for creating, copying, renaming and

deleting files and or directories:

err=gCreateDir(directory)

err=gCopyFile(filea, fileb)

err=gRenameFile(filea, fileb)

err=gRemoveDir(directory)

err=gRemoveFile(file)

Where each argument is a character string and each function returns a value of

zero if the operation is successful. System dependent error codes are returned if

unsuccessful.

461

SYSTEM UTILITIES File and Directory Handling

The following example shows a usage of the above routines in an implementation

independent way:

C code

FILE *fp;
char dir[80];

/* Enquire current working dir */
gEnqWorkingDir(dir,80);

/* Create new temp directory */
if(gCreateDir(”temp”) == 0) {

if(gSetWorkingDir(”temp”) == 0) {
/* Create file */

if((fp=fopen(”temp.txt”,”w”)) != NULL) {
fprintf(fp,”A new file\n”);
fclose(fp);

/* Rename file */
if(gRenameFile(”temp.txt”,”new.txt”) == 0)

/* Remove file */
gRemoveFile(”new.txt”);

else
gRemoveFile(”temp.txt”);

}
/* Reset current directory */

gSetWorkingDir(dir);
}

/* Remove temporary directory */
gRemoveDir(”temp”);

}
F90 code

character*80 dir

! Enquire current working dir
call gEnqWorkingDir(dir)

! Create new temp directory
if(gCreateDir(’temp’).eq.0) then

! Change to temp directory
if(gSetWorkingDir(’temp’).eq.0) then

! Create file
open(unit=10,file=’temp.txt’,status=’new’,iostat=ier)
if(ier.eq.0) then

write(10,*) ‘A new file’
close(10)

! Rename file
if(gRenameFile(’temp.txt’,’new.txt’).eq.0) then

! Remove file
ier=gRemoveFile(’new.txt’)

else
ier=gRemoveFile(’temp.txt’)

end if
end if

! Reset current directory
ier=gSetWorkingDir(dir)

end if
! Remove temp directory

ier=gRemoveDir(’temp’)
end if

462

File and Directory Handling SYSTEM UTILITIES

Time and Date Utilities

The GINO library also provides a common interface to the following date and

time utilities:

Return system date gEnqSysDate(date)

Return system time gEnqSysTime(time)

Return date and time as string gEnqSysDateStr(date [,slen])

Unpack system date/time gReturnDirDate(dir_date, date, time)

Pause gTimeDelay(millisec)

The routine gEnqSysDateStr() returns the current date in the string date (in

C/C++ this may alternatively be as a pointer to a malloc’ed character string,

which should be freed after use). The routine gReturnDirDate() is used solely to

unpack system date and time information returned by the system utility

gGetFullDirList().

Other System Utilities

GINO also provides a number of other miscellaneous utilities which have shown

to be useful in graphics applications.

Command-line arguments

Whilst the standard argc and argv arguments to main() are available to GINO-C

programmers to access the command line arguments, Fortran 90 programmers

need to use the following routine:

gEnqSysArgs(n, args)

This routine returns the command line arguments including the application

program name in the character array args. The variable n is passed as the size of

the array args and is returned with the number of elements filled. Note that the

program name is returned in args(1) and the first command line argument is

returned in args(2) and so on.

The following code shows the equivalent methods of returning command-line

arguments in C and F90:

463

SYSTEM UTILITIES Time and Date Utilities

main(int argc, char *argv[])
{
int nargs;
char name[30];

/* Get number of arguments */
nargs=argc;

/* Get program name */
strcpy(name,argv[0]);

character*30 args(6)
character*30 name
n=6
call gEnqSysArgs(n,args)

! Get number of arguments
nargs=n

/* Get program name
name=args(1)

The format of the application name varies according to the implementation and

may or may not include the complete path or a .exe extension.

Enquire User Name

gEnqSysUsername(uname ,[slen])

The routine gEnqSysUsername() returns a login or access name in most

multi-user implementations, or an implementation dependent string in single user

or PC implementations. The name is returned in the string uname (in C/C++ this

may alternatively be as a pointer to a malloc’ed character string, which should be

freed after use).

char *name;
name=gEnqSysUsername(NULL,0);

character*128 name
call gEnqSysUsername(name)

Environment Variable Settings

The routine gEnqSysEnviron() will return the setting of a system environment

variable as appropriate to the implementation.

gEnqSysEnviron(environ, setting [,slen])

The string is returned in the string setting (in C/C++ this may alternatively be as

a pointer to a malloc’ed character string, which should be freed after use).

char *envname = “PATH”;
char *path;
gEnqSysEnviron(envname,NULL,0);
path=free(path);

character*4 :: envname = ‘PATH’
character*256 :: path
call gEnqSysUsername(envname, &

path)

464

Other System Utilities SYSTEM UTILITIES

The means of setting such variables will vary from system to system but the

following are common examples:

UNIX:

setenv DISPLAY portos:0

OpenVMS:

DEFINE DISPLAY ALPHA2:0

DOS/WINDOWS:

SET TZ=GMT0BST

If the requested variable is not set, or cannot be returned, the gEnqSysEnviron()

returns a NULL or blank string.

System Command Execution

The routine gExecuteSysCommand() provided a means to execute a system

command supplied in the character string command.

err=gExecuteSysCommand(command,[gShow,gSuspend,gHandle])

By default, the requested command will be executed as a separate process on the

host with control being passed back to the calling application immediately. The

optional arguments may however be used to control visible state of the new

process (on Windows platforms), the suspension state of the calling application

and return the new processes’ handle if available.

The function returns an error flag which is set to a system dependent non zero

value if the execution was not possible or failed for some reason. Any output that

is generated from the command will be directed to the standard output stream and

may therefore appear in the application window or display. A common means of

avoiding this (as it may corrupt graphics output at the same location) is to

redirect output to an alternative location or file as shown in the following

examples:

err=gExecuteSysCommand(“ls >/dev/null”) UNIX

err=gExecuteSysCommand(“DIR/OUTPUT=NULL”) OpenVMS

err=gExecuteSysCommand(“DIR >NUL”) DOS

465

SYSTEM UTILITIES Other System Utilities

Task Priority

Two routines are provided to set and enquire the current application task priority:

gSetSysPriority(pri)

gEnqSysPriority(pri)

where the possible settings for pri are:

GREALTIME Sets task priority to highest possible. This should only be done for

very short periods of time as it will prevent any other application

from operating, including mouse operation

GHIGH Sets task priority above normal

GNORMAL Normal

GLOW Sets task priority below normal

GIDLE Sets task to idle state where task is only continued if no other

applications or system processes are running

Sound System Speaker

The routine gPlaySound() attempts to use any sound facilities available to sound

the specified note for the required duration in milliseconds.

gPlaySound(freq, time)

This routine is currently only implemented under Windows and some other DOS

implementations of GINO. Under Windows, the standard ‘beep’ will play for all

positive values of freq, but negative values can be used to access the Windows

alert sounds.

Random Number Generation

Two system utilities are provided to enable both non-repeating and repeated

random number generation.

gSetRandSeed(seed)

gGetRand(rand)

The routine gSetRandSeed() will set an integer seed value to a

compiler-dependent pseudo random number generator, while the routine

gGetRand() will return a random number between 0.0 and 1.0.

466

Other System Utilities SYSTEM UTILITIES

Note that GINO will provide a seed based on some time/date information when

initialized so if an application needs a non-repeating random number sequence

there is no need to call gSetRandSeed().

String Handling

A single function gTrueLen() returns the length of a character string up to the last

non blank character.

len=gTrueLen(string)

This function is useful when examining the contents of a string returned by a

GINO routine or system function.

467

SYSTEM UTILITIES Other System Utilities

Chapter 27
ROUTINE SPECIFICATIONS

An Introduction to Routine Specifications

The following pages provide the routine specifications for all the GINO routines,

in alphabetical order.

Each routine specification provides the following information:

• A syntax of the routine name and its arguments. All C functions are of type

void unless otherwise stated. A list of the arguments follow, with their

associated type and a description. Where certain GINO constants or other

values have special meaning for the argument, these are given with the

description.

• A description of the task the routine performs.

• A reference to the relevant sections of this document (and to any other

appropriate documentation) that discusses the use of the routine.

The use of the routines is discussed in the preceding chapters along with example

programs using these routines and associated output.

469

gAddEventType

Syntax

C/C++: void gAddEventType(int intype);

F90: subroutine gAddEventType(intype)

integer, intent(in) :: intype

Arguments intype
Event type

= GNULL, Null event type

= GKEYPRESS, Key or button press

= GSEGMENT, Picture segment number

= GSEGMENTANDKEY, Picture segment number and key/button

= GLOCATOR, Screen position and key/button press

= GSTRING, Text string

= GREALS, String of real values

= GINTEGERS, String of integer values

= GMOVEMENT, Pointer, mouse or tablet movement

= GKEYRELEASE, Key or button release

= GRESIZE, Window resize event

= GPOINTERLEAVING, Pointer leaving window

= GPOINTERENTERING, Pointer entering window

= GMOUSEWHEEL, Mouse wheel movement

Description The routine gAddEventType() adds an event type to the list of event types which may be

expected in subsequent calls to gWaitForEvent() and sets the preferred event type to intype.

The routine gAddEventType() has the effect of enabling all the implements that may generate

the specified data type and sets the terminal in the mode for sending that data. The terminal

will remain in that mode until:

(a) Another call to gAddEventType() requesting a different event type

(b) A call to gRemoveEventType() deleting the event type

(c) The terminal operator changes the mode by local action

The routine gAddEventType() must be called before any data can be returned from the routine

gWaitForEvent().

See Also Page 450

gRemoveEventType

gWaitForEvent

470

gAddEventType ROUTINE SPECIFICATIONS

gArchiveSegs

Syntax

C/C++: void gArchiveSegs(GFILE *fp);

F90: subroutine gArchiveSegs(unit)

integer, intent(in) :: unit

Arguments fp
GINO-C file pointer to archive Software Display File

unit
Fortran 90 file unit to archive Software Display File

Description The routine gArchiveSegs() archives the complete contents of the Software Display File either

from memory or file into a sequential file. The file may later be restored using gRetrieveSegs().

The file should be opened prior to calling this routine using the function gFopen(), with the file

pointer or unit number passed as appropriate.

If the Software Display File is not active (ie. gSetSegMode() has not been called) an error

message is output and no action is taken. The complete contents of the Software Display File

will be archived except any contents of segment zero (the non-retained segment). If there is a

file open on fp then it will be closed and deleted.

See Also Page 442

gFopen

gRetrieveSegs

gSetSegMode

gBuildMatrix

Syntax

C/C++: void gBuildMatrix2D(float xo, float yo, float dx, float dy, float angz, float sx, float sy,

GMAT2D t2d);

void gBuildMatrix3D(float xo, float yo, float zo, float dx, float dy, float dz, float angx,

float angy, float angz, float sx, float sy, float sz, GMAT3D t3d);

F90: subroutine gBuildMatrix2D(xo,yo,dx,dy,angz,sx,sy,t2d)

subroutine gBuildMatrix3D(xo,yo,zo,dx,dy,dz,angx,angy,angz,sx,sy,sz,t3d)

real, intent(in) :: xo,yo,zo,dx,dy,dz

real, intent(in) :: angx,angy,angz,sx,sy,sz

real, intent(out) :: t2d(6),t3d(16)

Arguments xo,yo,zo
Point about which scaling and rotation take place

471

ROUTINE SPECIFICATIONS gArchiveSegs

dx,dy,dz
Translation distances

angx,angy,angz
Angle of rotation in degrees

sx,sy,sz
Scaling factors

t2d,t3d
Output transformation matrix

Description The routines gBuildMatrix2D() and gBuildMatrix3D() are called to build a transformation

matrix containing a rotation, a translation, and scaling factors. The scaling, rotation, and

translation are all relative to the point xo, yo, (zo).

See Also Page 378

gCombineMatrix

gCGMInterpreter

Syntax

C/C++: void gCGMInterpreter(int code, GFILE *fp, int nseg, int mode, int errlev);

F90: subroutine gCGMInterpreter(code,unit,nseg,mode,errlev)

integer, intent(in) :: code,unit,nseg,mode,errlev

Arguments code
CGM encoding type

= GCGMCHAR, Character encoding

= GCGMBINARY, Binary encoding

fp
GINO-C file pointer

unit
Fortran 90 file unit

nseg
Picture segment number
(reserved for future use)

mode
Interpretation mode

= GABSOLUTE, Metric metafiles drawn the same size that they were
generated

= GMAPPED, Abstract and Metric metafiles scaled to fit the current
window limits

= GTRANSFORMED, Same as GABSOLUTE but subject to current
transformation

errlev
Error checking level

472

gCGMInterpreter ROUTINE SPECIFICATIONS

= GNO, No error checking

= GFAST, Fast error checking

= GFULL, Full error checking

Description The routine gCGMInterpreter() interprets a complete CGM metafile. The metafile may be

either character or binary encoded but the interpreter must be informed of which through the

code argument.

The metafile should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate.

Abstract metafiles are drawn such that one VDC unit = one GINO picture unit (in

GABSOLUTE and GTRANSFORMED modes).

The routine gCGMInterpreter() may alter the current state of GINO in that the colour table may

be changed within a metafile, but all line and character attributes, window and transformation

states are restored at the end of a metafile.

See Also Page 69

gFopen

gClearPolygonWorkspace

Syntax

C/C++: void gClearPolygonWorkspace(void);

F90: subroutine gClearPolygonWorkspace

Arguments None

Description Polygon vertices are always stored at the next available location in the polygon workspace. A

call to gClearPolygonWorkspace() reinitializes the workspace so that vertices are stored

starting from the first location in the workspace. This deletes all existing polygons.

The routine gClearPolygonWorkspace() is ignored if gSetPolygonMode(GOFF) was called

beforehand.

See Also Page 250

gSetPolygonMode

gClearViewport

Syntax

C/C++: void gClearViewport(void);

F90: subroutine gClearViewport

Arguments None

473

ROUTINE SPECIFICATIONS gClearPolygonWorkspace

Description The routine gClearViewport() clears the current viewport area by filling it with the background

colour.

See Also Page 51, 221

gCloseAuxDrawingArea

Syntax

C/C++: void gCloseAuxDrawingArea(int ident);

F90: subroutine gCloseAuxDrawingArea(ident)

integer, intent(in) :: ident

Arguments ident
Auxiliary drawing area identifier (2 to MAXAUX)

Description The routine gCloseAuxDrawingArea() is a device independent routine for closing and deleting

an auxiliary drawing area that has been opened using gOpenAuxDrawingArea(). The drawing

area may have been visible or invisible depending on the value of the identifier. The closure of

a visible drawing area (even number) will also remove its associated invisible drawing area or

backing store.

The identifier (ident) must be in the range 2 to MAXAUX*2+1, where MAXAUX is the

maximum number of auxiliary drawing areas that the currently nominated device can handle.

This value can be obtained through the routine gEnqDeviceState().

If an auxiliary drawing area is closed while output is being directed to it, all further output will

be directed to the default drawing area/window (1).

See Also Page 50

gOpenAuxDrawingArea

gEnqDeviceState

gCloseCGMFile

Syntax

C/C++: void gCloseCGMFile(void);

F90: subroutine gCloseCGMFile

Arguments None

Description Closes CGM metafile that has been opened by gOpenCGMFile().

See Also Page 70

gOpenCGMFile

474

gCloseAuxDrawingArea ROUTINE SPECIFICATIONS

gCloseDevice

Syntax

C/C++: void gCloseDevice(void);

F90: subroutine gCloseDevice

Arguments None

Description The routine gCloseDevice() terminates output to the currently nominated device.

If any further pictures are to be drawn, a device must be nominated prior to calling any further

GINO routines.

If a new device is nominated without a previous call to gCloseDevice() or if gCloseGino() is

called, output to the old device is terminated.

See Also Page 52

gCloseGino

gSuspendDevice

gCloseGino

Syntax

C/C++: void gCloseGino(void);

F90: subroutine gCloseGino

Arguments None

Description The routine gCloseGino() terminates GINO, releasing any graphics device that is nominated

(implicit gCloseDevice()). It may be called in a program when GINO’s facilities are no longer

required. All information and definitions prior to gCloseGino() are discarded. Invoking

gOpenGino() after a call to gCloseGino() reinitializes GINO.

Because gCloseGino() leaves GINO in a known state, starting up GINO after a call to

gCloseGino() does not necessarily require a call to routine gOpenGino() to ensure proper

initialization. Any call to a GINO routine will trigger proper initialization.

See Also Page 26, 40

gCloseDevice

gOpenGino

475

ROUTINE SPECIFICATIONS gCloseDevice

gCloseSeg

Syntax

C/C++: void gCloseSeg(void);

F90: subroutine gCloseSeg

Arguments None

Description The routine gCloseSeg() closes the currently opened picture segment.

If no picture segment is open, an error is generated.

If a new picture segment is opened while a picture segment is open, or if a device is released

while a picture segment is open, an internal call to gCloseSeg() is made by GINO.

See Also Page 64, 426

gCombineMatrix

Syntax

C/C++: void gCombineMatrix2D(GMAT2D a2d, float xo, float yo, float dx, float dy, float angz,

float sx, float sy, GMAT2D t2d);

void gCombineMatrix3D(GMAT3D a3d, float xo, float yo, float zo, float dx, float dy,

float dz, float angx, float angy, float angz, float sx, float sy, float sz, GMAT3D t3d);

F90: subroutine gCombineMatrix2D(a2d, xo, yo, dx, dy, angz, sx, sy, t2d)

subroutine gCombineMatrix3D(a3d, xo, yo, zo, dx, dy, dz, angx, angy, angz, sx, sy,

sz, t3d)

real, intent(in) :: a2d(6),a3d(16),xo,yo,zo,dx,dy,dz

real, intent(in) :: angx,angy,angz,sx,sy,sz

real, intent(out) :: t2d(6),t3d(16)

Arguments a2d,a3d
Input transformation matrix

xo,yo,zo
Point about which scaling and rotation take place

dx,dy,dz
Translation distances

angx,angy,angz
Angle of rotation in degrees

sx,sy,sz
Scaling factors

476

gCloseSeg ROUTINE SPECIFICATIONS

t2d,t3d
Output transformation matrix

Description The routines gCombineMatrix2D() and gCombineMatrix3D() computes a transformation

matrix that is the composition of the input matrix a2d or a3d with a rotation, translation, and

scaling factors.

The scaling, rotation and translation are all relative to the point xo, yo, (zo).

See Also Page 378

gBuildMatrix

gConvertInteger

Syntax

C/C++: void gConvertInteger(int number, int nwidth, char string[]);

F90: subroutine gConvertInteger(number, nwidth, string)

integer, intent(in) :: number,nwidth

character*(*), intent(out) :: string

Arguments number
Integer value

nwidth
Field width

< 0, Left-justified

= 0, No string returned

> 0, Right-justified

string
Character string containing integer value

Description The routine gConvertInteger() returns the integer value number as a decimal character string

in the argument string. The format of the number is in exactly the same format as that output

by gDisplayInteger(). The string starts with a minus sign for values less than zero.

If the number occupies less than nwidth character positions, the string is padded out with

spaces. If the number is longer than nwidth characters, the string is filled with asterisks.

For positive values of nwidth, the number is right-justified. If nwidth is less than zero the

number is left-justified. gConvertInteger() returns nothing if nwidth is zero.

Field width is limited to 32 character positions. If it exceeds this, it is set to 32 characters and a

warning message is output.

See Also Page 140

gDisplayInteger

477

ROUTINE SPECIFICATIONS gConvertInteger

gConvertReal

Syntax

C/C++: void gConvertRealExponent(float value, int nwidth, int nplace, char string[]);

void gConvertRealFixed(float value, int nwidth, int nplace, char string[]);

void gConvertRealFloat(float value, int nwidth, char string[]);

F90: subroutine gConvertRealExponent(value, nwidth ,nplace, string)

subroutine gConvertRealFixed(value, nwidth, nplace, string)

subroutine gConvertRealFloat(value, nwidth, string)

real, intent(in) :: value

integer, intent(in) :: nwidth,nplace

character*(*), intent(out) :: string

Arguments value
Real value

nwidth
Field width

< 0, Left-justified

= 0, No string returned

> 0, Right-justified

nplace
Number of places after the decimal point

string
Character string containing value

Description The gConvertReal set of routines converts the supplied real value into a character string in

three different floating point formats. Either as a decimal floating-point, a decimal fixed point

or a floating point character string in the argument string. The format of the number is exactly

the same as that output by the equivalent gDisplayReal routine.

In all three routines, if the number occupies less than nwidth character positions, the string is

padded out with spaces. On the other hand, if the number is longer than nwidth characters, the

string is filled with asterisks. For positive values of nwidth, the number is right-justified. If

nwidth is less than zero, the number is left-justified. All routines return a blank string if

nwidth is zero. The field width is limited to 32 character positions. If it exceeds this, it is set to

32 characters and a warning message is output.

478

gConvertReal ROUTINE SPECIFICATIONS

In the case of gConvertRealExponent(), the number consists of a mantissa followed by a

decimal exponent. The mantissa consists of a decimal point (preceded by a minus sign if value

is less than zero) followed by the number of digits specified by nplace. If nplace is less than

zero, its absolute value is used and a warning message is output. The number is rounded in the

last decimal place. A zero is output in front of the decimal point if the number is positive and

left-justified or if the number is right-justified and there is room for a leading zero. The

exponent occupies 4 character positions. The first character is the letter ‘E’ and the remaining

characters contain the exponent value, right-justified and preceded by a minus sign for negative

exponents. Any gap after the letter ‘E’ is padded out with spaces. If the exponent is too large,

the string is filled with asterisks.

In the case of gConvertRealFixed() the number consists of an integer part (preceded by a minus

sign if value is less than zero) followed by a decimal point and a fractional part. The number of

digits for the fractional part is specified by nplace. If nplace is less than zero, its absolute

value is used and a warning message is output. The number is rounded in the last decimal

place. If the integer part is zero, a leading zero is output unless value is less than zero and there

is only room for the minus sign before the decimal point.

In the case of gConvertRealFloat() the mantissa consists of a decimal point (preceded by a

minus sign if value is less than zero) followed by (nwidth-6) digits, up to a maximum of 6

digits. If the field width is less than 6, the string is filled with asterisks. The number is rounded

in the last decimal place. A zero is output in front of the decimal point if the number is positive

and left-justified or if the number is right-justified and there is room for a leading zero. The

exponent occupies 4 character positions. The first character is the letter ‘E’ and the remaining

characters contain the exponent value, right-justified and preceded by a minus sign for negative

exponents. Any gap after the letter ‘E’ is padded with spaces. If the exponent is too large, the

string is filled with asterisks.

See Also Page 140

gDisplayRealExponent

gDisplayRealFixed

gDisplayRealFloat

gCopyFile

Syntax

C/C++: int gCopyFile(char filea[], char fileb[]);

F90: integer function gCopyFile(filea, fileb)

character*(*), intent(in) :: filea, fileb

Arguments filea
Name of existing file

fileb
Name of new file

Description The system utility gCopyFile() copies the contents of filea into a new file called fileb. Either or

both file names may be simple file names in the current working directory or full path names.

The function returns an integer value which equal zero if the copy has been successful. A

system dependent error code is returned if the copy fails.

479

ROUTINE SPECIFICATIONS gCopyFile

See Also Page 461

gMakeDir

gRemoveFile

gRenameFile

gCopyPixelArea

Syntax

C/C++: void gCopyPixelArea(int source, int dest, int ix, int iy, int width, int height, int ixd, int

iyd);

F90: subroutine gCopyPixelArea(source, dest, ix, iy, width, height, ixd, iyd)

integer, intent(in) :: source,dest,ix,iy

integer, intent(in) :: width,height,ixd,iyd

Arguments source
Source drawing area identifier

= 0, Screen

= 1, Backing store (default)

> 1, User generated drawing area

dest
Destination drawing area identifier

= 0, Screen

= 1, Backing store (default)

> 1, User generated drawing area

ix,iy
Origin of pixel area to copy

width
Width of pixel area

height
Height of pixel area

ixd,iyd
Destination origin

Description The routine gCopyPixelArea() provides a means to copy a pixel area within the same drawing

area or from one drawing area to another. Multiple drawing areas are available on devices that

either have a backing store or can generate additional drawing areas using the routine

gOpenAuxDrawingArea(). Both the source and destination drawing area identifiers must be

within the range of available identifiers, the maximum number being obtained through the

routine gEnqDeviceState(). Note that the default drawing area for all devices is always 1. If the

device has a backing store can you copy a pixel area to any available drawing area, however if

copied to an even-number drawing area, the area will not be automatically repaired.

480

gCopyPixelArea ROUTINE SPECIFICATIONS

The pixel area to be copied is specified in terms of an origin (ix,iy) relative to the top left of the

drawing area, and a width and height (width,height). The whole area is copied such that the

new origin is positioned at the coordinate ixd,iyd on the destination drawing area, again

relative to the top left corner. If any of the copied area is outside the drawing area limits, it will

be clipped by the hardware.

See Also Page 203

gOpenAuxDrawingArea

gSelectDrawingArea

gEnqDeviceState

gCopySeg

Syntax

C/C++: void gCopySeg(int nseg, int pos);

F90: subroutine gCopySeg(nseg, pos)

integer, intent(in) :: nseg,pos

Arguments nseg
Picture segment or segment group number

> 0, Copy segment(s) specified by segment nseg

= -1, Copy all segments

< -1, Copy all segments except those specified by nseg

pos
Position of copy of segment

= GCURRENT, At the current pen position

= GANCHOR, At the position of nseg

Description The routine gCopySeg() is used to make a copy of the specified segment into the current

segment. The position occupied by the copy of the segment is indicated by position.

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(0), no error message is generated. However, the device may output a local error

message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 434

gSetSegMode

481

ROUTINE SPECIFICATIONS gCopySeg

gCreatePlanarShadowMatrix

Syntax

C/C++: void gCreatePlanarShadowMatrix(GPOINT3 plane[], GPOINT3 *light, GMAT3D a3);

F90: subroutine gCreatePlanarShadowMatrix(plane, light, a3)

type (GPOINT3), intent(in) :: plane(3),light,

real, intent(in) :: a3(16)

Arguments plane
Array of three points representing a planar surface

light
Position of light source

a3
3D viewing transformation matrix

Description The routine gCreatePlanarShadowMatrix() constructs a 4x4 viewing transformation matrix

required to generate a squashed view of a scene as per a shadow on a planar surface. The planar

surface is represented by the three points passed in plane (from which a normal is calculated)

and the position of the light source is passed in the GPOINT3 structure light.

In order to create the shadow, the returned matrix a3 should be passed to the routine

gModifyView(), after which all the objects in the scene should be redrawn in black or a

suitably dark, slightly transparent, material.

See Also Page 342

gModifyView

gDebug

Syntax

C/C++: void gDebug(GFILE *fp, int level);

F90: subroutine gDebug(unit, level)

integer, intent(in) :: unit,level

Arguments fp
GINO-C file pointer

unit
Fortran 90 File unit

level
The level of information to be output

= GSTANDARD, Lists all device driver entries

= GEXTRA, Lists all device driver entries and extra monitoring

482

gCreatePlanarShadowMatrix ROUTINE SPECIFICATIONS

Description The routine gDebug() traces the flow of information in GINO. It sits between GINO and a

device driver and writes to the specified GINO file unit all the information that passes back and

forth. As far as possible, gDebug’s output mirrors the calls to GINO routines in the user’s

program.

The routine gDebug() must be called prior to the call to the device driver’s nomination routine.

Note that gDebug() makes an implicit call to gCloseDevice() and gExtendSeg().

The debug file should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate. The file is neither opened or closed by the

gDebug() routine itself.

Both debug levels monitor the data sent to and received from the currently nominated device

driver, but the GEXTRA level also monitors changes to windowing and masking state as well

as the line mode and state of transformation current at each gOpenSeg() and gCloseSeg().

Control of gDebug() output can be made with gSetDebugSwitch().

See Also Page 31, 42

gSetDebugSwitch

gCloseDevice

gFopen

gDefineBrokenLineStyle

Syntax

C/C++: void gDefineBrokenLineStyle(int brk, GBRKSTY *rep);

F90: subroutine gDefineBrokenLineStyle(brk, rep)

integer, intent(in) :: brk

type (GBRKSTY), intent(in) :: rep

Arguments brk
Broken line index 1 to 256 only

rep.mode
Line mode (which may be one of the following)

= GSOLID

= GCONTDASH

= GCONTCHAIN

= GDISCONTDASH

= GDISCONTCHAIN

rep.repeat
Repeat length in current units

rep.dash
Dash length in current units

rep.dot
Dot length in current units (for chained lines)

483

ROUTINE SPECIFICATIONS gDefineBrokenLineStyle

Description The routine gDefineBrokenLineStyle() allows the user to redefine the line type parameters

associated with a specified index brk in the broken line table. There are 256 entries in the table

and if brk is outside the range of 1 to 256, an error message is output and no further action is

taken.

The new representation is defined in the structure rep which is of type GBRKSTY.

If rep.mode is out of range, a warning message is output and a default value of GSOLID is

assumed. If rep.mode is GSOLID, the line type is solid and the values in rep.repeat, rep.dash

and rep.dot are ignored. Otherwise these values specify the dimensions in current units of the

broken line pattern. If any of rep.repeat, rep.dash or rep.dot is less than zero, a warning

message is output and the absolute value is used. If rep.repeat is less than rep.dash for a

dashed line type or if rep.repeat is less than rep.dash+rep.dot for a chained line type, a

warning message is output and the line type defaults to being solid.

rep.mode also specifies how the broken line pattern is positioned when lines are output. If

rep.mode is either GCONTCHAIN or GCONTDASH (continuous line), the pattern carries on

from one line to the next. If rep.mode is either GDISCONTCHAIN or GDISCONTDASH

(discontinuous line), the pattern is centred along each straight line segment and, if necessary,

scaled down so that each line segment starts and ends with an equal length dash.

When a call to gSetBrokenLine() selects a line type in the range 1 to 256, the corresponding

line type parameters come into effect. If a call to gDefineBrokenLineStyle() redefines the line

type parameters associated with the current line type, i.e. a call to gSetBrokenLine(brk)

precedes the call to gDefineBrokenLineStyle(), the new line type parameters immediately

come into effect.

If the line type cannot be generated by the device exactly as specified, it will be generated by

GINO’s software. Appendix B should be consulted to see whether the device can cope with

broken line types that are specified in terms of the line type parameters.

gSetBrokenLineMode() may be called to force GINO to generate all broken lines, thereby

ensuring that they are output correctly on any device.

When a device is nominated the line type parameters are set to the following set of 16 default

values repeated throughout the table:

brk mode repeat dash dot style

1(GSHORTDASHED) GDISCONTDASH 6.0 4.0 0.0 short dashed
2(GSHORTDOTTED) GDISCONTDASH 4.0 0.8 0.0 short dotted
3(GSHORTCHAINED) GDISCONTCHAIN 10.0 6.0 1.0 short chained
4(GLONGDASHED) GDISCONTDASH 12.0 8.0 0.0 long dashed
5(GLONGDOTTED) GDISCONTDASH 8.0 1.6 0.0 long dotted
6(GLONGDOTTED) GDISCONTCHAIN 20.0 12.0 2.0 long chained
7(GDOTTED) GDISCONTDASH 1.5 0.5 0.0 dotted
8 GDISCONTDASH 2.0 1.0 0.0 dotted
9 GDISCONTDASH 3.0 2.0 0.0 dashed
10 GDISCONTDASH 6.0 5.0 0.0 dashed
11 GDISCONTDASH 10.0 8.0 0.0 dashed
12 GDISCONTDASH 15.0 12.0 0.0 dashed
13 GDISCONTCHAIN 6.0 3.0 0.5 chained
14 GDISCONTCHAIN 8.0 5.0 0.5 chained
15 GDISCONTCHAIN 12.0 8.0 0.5 chained
16 GDISCONTCHAIN 16.0 12.0 1.0 chained

484

gDefineBrokenLineStyle ROUTINE SPECIFICATIONS

See Also Page 124

gSetBrokenLine

gSwitchBrokenLineStyles

gDefineFog

Syntax

C/C++: void gDefineFog(int mode, int colour, ...);

F90: subroutine gDefineFog(mode, colour, gStart, gEnd, gDensity)

integer, intent(in) :: mode,colour

real, optional, intent(in) :: gStart, gEnd, gDensity

Arguments mode
Fog mode

= GNONE, No fog

= GLINEAR, Linear for depth-cueing

= GEXP1, Exponential for cloud and heavy fog

= GEXP2, Exponential for smoke and weather haze

colour
Fog colour (index or 24bit true colour value)

Optional Args gStart
Start depth for linear fog (default = 0.0)

gEnd
End depth for linear fog (default = 3D viewport Z range)

gDensity
Fog density for exponential modes (default = 0.0025)

Description The routine gDefineFog() specifies the current fog mode and colour. When switched on, in

conjunction with depth buffering (see gSetShadingMode()), objects further away from the

viewer are blended into the specified fog colour according to the specified mode.

The optional arguments gStart and gEnd are used for GLINEAR mode, where objects in front

of gStart are displayed normally, objects between gStart and gEnd are linearly blended into

the fog colour and objects behind gEnd are displayed totally in the fog colour. The default

range of values for gStart and gEnd are 0.0 to the 3D viewport Z range which represents the

eye-point to the furthest possible distance of the scene.

The GEXP1 and GEXP2 modes represent more realistic atmospheric fog modes, with the

former using an exponential function of - (gDensity * viewing distance) and the latter using a

function of - (gDensity * viewing distance) squared. Values in the range 0.5 to very small give

realistic effects.

See Also Page 337

gSetShadingMode

gSetViewport3D

485

ROUTINE SPECIFICATIONS gDefineFog

gDefineGroupRange

Syntax

C/C++: void gDefineGroupRange(int ngmin, int ngmax);

F90: subroutine gDefineGroupRange(ngmin, ngmax)

integer, intent(in) :: ngmin,ngmax

Arguments ngmin
The beginning of the range of segment numbers to be used as groups numbers

ngmax
The end of the range of segment numbers to be used as groups numbers

Description The routine gDefineGroupRange() defines a range of numbers to be used for segment groups

and initializes the group table.

Subsequent calls to gDefineSegGroup() may not define any segment group outside the defined

range. When a device is nominated the range is set from 1 to 32767.

If ngmin > ngmax an error message is output and no further action is taken.

See Also Page 438

gDefineSegGroup

gDefineHatchStyle

Syntax

C/C++: void gDefineHatchStyle(int fill, GHATSTY *rep);

F90: subroutine gDefineHatchStyle(fill, rep)

integer, intent(in) :: fill

type (GHATSTY), intent(in) :: rep

Arguments fill
Hatch style index

rep.pitch
Distance between hatch lines in current units

rep.angle
Orientation of hatch lines in degrees measured counterclockwise from the picture X axis

rep.xshift
Displacement of hatch pattern in current units in local X direction

rep.yshift
Displacement of hatch pattern in current units in direction 90� counterclockwise from local X
direction

486

gDefineGroupRange ROUTINE SPECIFICATIONS

rep.xshear
Shear angle of hatch pattern in degrees with shear parallel to local X direction

rep.xhatch
Cross hatch switch

= GOFF, Hatch in one direction only

= GON, Hatch in two directions (cross hatch)

Description GINO maintains a table of 256 hatch styles which are predefined. gDefineHatchStyle() allows

them to be changed, giving complete control over the definition of hatch styles. fill points to

the entry to be changed and therefore identifies a hatch style.

rep.pitch defines the spacing of hatch lines. Note that rep.xshift, rep.yshift and rep.xshear

are defined with respect to local axes. The local axes are defined as the picture axes rotated

through angle rep.angle and shifted by rep.xshift and rep.yshift. The local Y axis is sheared

parallel to the local X axis. Hatch lines are generated parallel to the local X axis. Note,

therefore, that rep.yshift is a displacement perpendicular to the hatch lines.

Cross hatching may be selected (rep.xhatch=GON). In this case a second set of hatch lines

will be drawn across the first set parallel to the local Y axis, when filling an area. When a

broken line type is specified with a continuous pattern in the routine

gDefineBrokenLineStyle(), the second pattern is adjusted so that the dashes intersect. The

effect of rep.xshift and rep.xshear is not apparent when single-hatching (rep.xhatch=GOFF)

with solid lines. The absolute value of rep.pitch is used. GINO will not hatch with a spacing

between lines that is less than the pen width. Therefore rep.pitch=0.0 specifies an efficient

solid fill irrespective of the device.

See Also Page 172

gDefineBrokenLineStyle

gDefineHLS

Syntax

C/C++: void gDefineHLS(int col, float hue, float light, float sat);

F90: subroutine gDefineHLS(col, hue, light, sat)

integer, intent(in) :: col

real, intent(in) :: hue,light,sat

Arguments col
Colour index

< 0, Dummy definition

= 0, Background colour

> 0, Index up to device capability

hue
Hue angle in degrees, 0.0 to 360.0

= 0.0, Red

487

ROUTINE SPECIFICATIONS gDefineHLS

= 120.0, Green

= 240.0, Blue

light
Lightness, 0.0 (Black) to 1.0 (White)

sat
Saturation, 0.0 to 1.0

Description The routine gDefineHLS() redefines the colour and intensity identified by col in terms of hue,

lightness and saturation.

hue specifies the colour’s position in the spectrum, light specifies the intensity of the colour on

a linear scale from black (0.0) to white (1.0) and sat specifies the departure of the colour from

grey. The most saturated colours occur when light is set to 0.5 and as light approaches either

extreme all colours merge into black or white irrespective of the value of saturation. For zero

saturation, lightness defines a grey-scale irrespective of hue. If col is set to zero, it identifies

the background colour. gDefineHLS() has no effect if col is out of range for the device.

The action of gDefineHLS() depends on the colour capabilities of the device and whether

gSetColourInfo() has been called. The default action is for gDefineHLS() to set a colour

definition into a table indexed by col ready for being selected by the routine gSetLineColour().

If the device is operating in 24-bit direct-colour mode however, gDefineHLS() changes the

values of a pseudo palette from which RGB values are extracted if colour indices are used in

gSetLineColour().

light and sat are clipped to the range 0.0 to 1.0. If either value is clipped a warning message is

output.

The HLS coordinates are converted to RGB before being transmitted to the device. Setting col

less than zero stores the RGB values but does not transmit them to the device.

See Also Page 216

gDefineHSV

Syntax

C/C++: void gDefineHSV(int col, float hue, float sat, float value);

F90: subroutine gDefineHSV(col, hue, sat, value)

integer, intent(in) :: col

real, intent(in) :: hue,sat,value

Arguments col
Colour index

< 0, Dummy definition

= 0, Background colour

> 0, Index up to device capability

hue
Hue angle in degrees, 0.0 to 360.0

488

gDefineHSV ROUTINE SPECIFICATIONS

= 0.0, Red

= 120.0, Green

= 240.0, Blue

sat
Saturation, 0.0 to 1.0

value
Value, 0.0 to 1.0

Description The routine gDefineHSV() redefines the colour and intensity identified by col in terms of hue,

saturation and value.

hue specifies the colour’s position in the spectrum, sat specifies the departure of the colour

from grey, and value specifies the departure of the colour from black. For zero saturation, the

value value defines a grey-scale, irrespective of hue. If col is set to zero, it identifies the

background colour. gDefineHSV() has no effect if the device does not allow variations of

colour or intensity or if col is out of range for the device.

The action of gDefineHSV() depends on the colour capabilities of the device and whether

gSetColourInfo() has been called. The default action is for gDefineHSV() to set a colour

definition into a table indexed by col ready for being selected by the routine gSetLineColour().

If the device is operating in 24-bit direct-colour mode however, gDefineHSV() changes the

values of a pseudo palette from which RGB values are extracted if colour indices are used in

gSetLineColour().

The values sat and value are clipped to the range 0.0 to 1.0. If either value is clipped a warning

message is output.

The HSV coordinates are converted to RGB before being transmitted to the device. Setting col

less than zero stores the RGB values but does not transmit them to the device.

See Also Page 214

gSetColourInfo

gDefineLightSource

Syntax

C/C++: void gDefineLightSource(int light, int colour, ...);

F90: subroutine gDefineLightSource(light, colour, gDir, gAtten1, gAtten2, gPos, gConc,

gSpread, gSpec)

integer, intent(in) :: light,colour

type (GPOINT3), optional, intent(in) :: gDir,gPos

real, optional, intent(in) :: gAtten1,gAtten2,gConc,gSpread

integer, optional, intent(in) :: gSpec

Arguments light
Light source number (1-8)

489

ROUTINE SPECIFICATIONS gDefineLightSource

colour
Light colour (index or 24bit true colour value)

Optional Args gDir
Direction vector

gAtten1
Point light constant attenuation factor (default = 1.0)

gAtten2
Point light linear attenuation factor (default = 0.0)

gPos
Spot light position

gConc
Spot light concentration in range 0.0 to 100.0 (default =0.0)

gSpread
Spot light spread angle in range 0.0 to 360.0 (default = 180.0)

gSpec
Specular component colour (index or 24bit true colour value)

Description The routine gDefineLightSource() specifies the attributes of an individual light source, with its

type depending on the number of optional arguments that are defined according to the

following table:

Type Obligatory Optional

Ambient light,colour gSpec
Directional light,colour,gDir gSpec
Point Light light,colour,gPos gAtten1,gAtten2,gSpec
Spot Light light,colour,gPos,gDir gConc,gSpread,gSpec

When defining a directional light source the direction vector gDir points to the source of light,

but when defining a spot light, the direction vector gDir defines the direction in which the light

is shining.

Lights must be switched on to work (see gSetLightSwitch()).

See Also Page 329

gSetLightSwitch

gDefineLineStyle

Syntax

C/C++: void gDefineLineStyle(int line, GLINSTY *rep);

F90: subroutine gDefineLineStyle(line ,rep)

integer, intent(in) :: line

type (GLINSTY), intent(in) :: rep

490

gDefineLineStyle ROUTINE SPECIFICATIONS

Arguments line
Line style index

= GCURRENT, Current line style

= 1 - 256, Stored line style

rep.vis
Line visibility (see gSetLineVis())

rep.brk
Broken line type (see gSetBrokenLine())

rep.col
Colour index (see gSetLineColour())

rep.width
Line width (see gSetLineWidth())

rep.type
Pen type (see gSetPenType())

rep.end
Line end (see gSetLineEnd())

Description GINO keeps a table of line styles in which line attributes may be stored for later use. A call to

gDefineLineStyle() allows definition of all attribute values for table entry line when line equals

1 to 256. When line is zero, the current line attributes are redefined. If line is out of range, an

error message is output and no further action is taken.

The routine gDefineLineStyle() stores the absolute values of rep.brk, rep.col, rep.width,

rep.type, rep.end and outputs a warning message for any negative values.

When a device is nominated (before any calls to gDefineLineStyle()) each table entry is set to

the default for the current line attributes except for the colour index, which is set to the

corresponding line style index (rep.col = line):

vis brk col width type end

1(visible) 0(solid) line 0.2mm 0 0(no ends)
(or device (device
default) default)

See Also Page 129

gSetLineColour

gSetLineEnd

gSetLineVis

gSetLineWidth

gSetPenType

491

ROUTINE SPECIFICATIONS gDefineLineStyle

gDefineMaterial

Syntax

C/C++: void gDefineMaterial(int mat, GMATSTY *rep);

F90: subroutine gDefineMaterial(mat, rep)

integer, intent(in) :: mat

type (GMATSTY), intent(in) :: rep

Arguments mat
Material table index (1-256)

rep.ambient
Ambient reflection coefficient (0.0 -> 1.0)

rep.diffuse
Diffuse reflection coefficient (0.0 -> 1.0)

rep.specular
Specular reflection coefficient (0.0 -> 1.0)

rep.shine
Specular concentration (shininess) (%)

rep.trans
Translucence (filtering) - requires blending to be switched on (0.0 - 1.0)

Description GINO keeps a table of material properties to be used in conjunction with material colours when

setting the effect of lights on the surface of facets or objects. Up to 256 entries may be defined

containing lighting coefficients and values. The current setting for the front and back faces of

facets are set using the routine gSetMaterialIndex().

Initially, the first three entries of the table are set to the following values:

mat ambient diffuse specular shine trans Description

1 0.3 0.6 0.0 30.0 1.0 normal
2 0.3 0.6 1.0 30.0 1.0 plastic
3 0.3 0.6 1.0 100.0 1.0 shiny

The ambient, diffuse and specular coefficients are multiplied by the current colour values (as

set by gSetMaterialColour()) to give the actual material properties of each face.

Translucence values less than 1.0 (opaque) are only utilized if surface blending is switched on

by the gSetShadingMode() routine.

See Also Page 340

gSetMaterialColour

gSetMaterialIndex

gSetShadingMode

492

gDefineMaterial ROUTINE SPECIFICATIONS

gDefineNullChar

Syntax

C/C++: void gDefineNullChar(int nul);

F90: subroutine gDefineNullChar(nul)

integer, intent(in) :: nul

Arguments nul
Switch for representation of 0 (zero) character

= GNOSLASH, Without / (default)

= GSLASH, With /

= GTICK, With tick ‘

Description The routine gDefineNullChar() sets the required representation of the 0 (zero) character for the

default GINO software font.

See Also Page 152

gSetCharFont

gDefineParallelView

Syntax

C/C++: void gDefineParallelView(float dx, float dy, float dz, float xcen, float ycen, float zcen);

F90: subroutine gDefineParallelView(dx, dy, dz, xcen, ycen, zcen)

real, intent(in) :: dx,dy,dz

real, intent(in) :: xcen,ycen,zcen

Arguments dx,dy,dz
Direction of viewing

xcen,ycen,zcen
Position of view centre in space coordinates

Description The routine gDefineParallelView() defines a parallel view along the direction (dx,dy,dz).

The view plane is normal to this direction and cuts the line of sight at the view centre.

If all of dx, dy and dz are zero, an error message is output and no further action is taken.

See Also Page 396

493

ROUTINE SPECIFICATIONS gDefineNullChar

gDefinePerspView

Syntax

C/C++: void gDefinePerspView(float xe, float ye, float ze, float dx, float dy, float dz, float

dist);

F90: subroutine gDefinePerspView(xe, ye, ze, dx, dy, dz, dist)

real, intent(in) :: xe,ye,ze,dx,dy,dz,dist

Arguments xe,ye,ze
Eye position in space coordinates

dx,dy,dz
Direction of viewing

dist
Perspective distance

Description The routine gDefinePerspView() defines a perspective view from the eye position (xe,ye,ze)

along the line specified by the direction vector (dx,dy,dz). The view plane (defined to be

normal to this line) and the view centre are at a distance dist from the eye position. If the

perspective distance dist or all of dx, dy and dz are zero, an error message is output and no

further action is taken.

See Also Page 393

gDefinePictureUnits

Syntax

C/C++: void gDefinePictureUnits(float umils);

F90: subroutine gDefinePictureUnits(umils)

real, intent(in) :: umils

Arguments umils
Number of millimetres which equal one current paper unit

Description When a device is nominated, the default unit of measure is a millimetre. A call to

gDefinePictureUnits() will set the current units so that one new unit of measure is equal to

umils millimetres, e.g. a call to gDefinePictureUnits(25.4) sets the current paper units to

inches. gDefinePictureUnits() must be called before the start of any graphical output. If umils

is less than or equal to zero, an error message is output and the current units are not changed.

Users may, at any time, set up a viewport to map user coordinates of any range onto the current

device or paper limits using the routine gSetViewport2D().

See Also Page 44

gSetViewport2D

494

gDefinePerspView ROUTINE SPECIFICATIONS

gDefinePixelPacking

Syntax

C/C++: void gDefinePixelPacking(int nbp, int nrb, int npw, int ndir, int dir);

F90: subroutine gDefinePixelPacking(nbp, nrb ,npw, ndir, dir)

integer, intent(in) :: nbp,nrb,npw,ndir,dir

Arguments nbp
The number of bits per pixel

nrb
The number of relevant bits

npw
The number of pixels per word

ndir
Pixel order within machine word

= + 1, Normal direction

= -1, Reverse direction

dir
Drawing direction

= 1, Start top left, access horizontally (default)

= 2, Start top left, access vertically

= 3, Start top right, access horizontally

= 4, Start top right, access vertically

= 5, Start bottom left, access horizontally

= 6, Start bottom left, access vertically

= 7, Start bottom right, access horizontally

= 8, Start bottom right, access vertically

Description The routine gDefinePixelPacking() defines the users pixel data characteristics as used by

gDrawPixelArea() and gGetPixelArea(). It defines the form of bit packing or unpacking

between the users data storage and the actual device.

The bit characteristics are those of the integer data stored in the pixel array. In the case of

gDrawPixelArea(), gDefinePixelPacking() defines the format of the pixel information that is

already stored in the pixel array and is required to be unpacked and sent to the device. In the

case of gGetPixelArea(), gDefinePixelPacking() defines the format that is required in the pixel

array after packing the pixel data from the device.

Where more than one pixel is stored in a word, ndir specifies the order. The normal order is for

the first pixel to be stored at the high end and the last pixel to be stored at the low end. If pixels

are stored in the reverse order then ndir should be set negative.

dir specifies the order in which pixel data is stored in the pixel array. This does not effect

packing but the order in which elements of the pixel array are accessed.

495

ROUTINE SPECIFICATIONS gDefinePixelPacking

If nbp, nrb, npw or ndir are zero then no bit packing or unpacking is done and one full integer

word is assumed to carry the information for one pixel on the device.

If any of nbp, nrb, npw are negative or dir is out or range a warning message is output and no

change is made to the current pixel definition.

If the number of relevant bits (nrb) is greater that the number of bits per pixel (nbp) or the

number of pixels per word (npw) * number of bits per pixel (nbp) is greater than 32 then a

warning messages is output and no change is made to the current pixel definition.

See Also Page 194

gDrawPixelArea

gGetPixelArea

gDefinePointWorkspace

Syntax

C/C++: void gDefinePointWorkspace(int nw);

F90: subroutine gDefinePointWorkspace(nw)

integer, intent(in) :: nw

Arguments nw
Number of real words to be set aside for storing internal point vertices.

= 0, Delete point workspace

> 0, Create or change size of point workspace

Description The routine gDefinePointWorkspace() creates a workspace to store internal vertices generated

by all the 2D and 3D drawing routines. Each vertex requires four real words. Allowance must

be made for this amount of space when calling gSetWorkspaceLimit().

To change the size of the point workspace, gDefinePointWorkspace() may be called more than

once. A call to gDefinePointWorkspace(0) deletes the point workspace and frees the space in

the total workspace area. Any value less than zero will generate an error message.

Point storage is switch on and off using the routine gSetPointMode() and points are returned to

the application using either gReturnInternalPoints2D() or gReturnInternalPoints3D().

See Also Page 104, 291

gReturnInternalPoints2D

gReturnInternalPoints3D

gSetPointMode

gSetWorkspaceLimit

496

gDefinePointWorkspace ROUTINE SPECIFICATIONS

gDefinePolygonWorkspace

Syntax

C/C++: void gDefinePolygonWorkspace(int nw);

F90: subroutine gDefinePolygonWorkspace(nw)

integer, intent(in) :: nw

Arguments nw
Number of real words to be set aside for storing polygon vertices

= 0, Delete polygon workspace

> 0, Create or change size of polygon workspace

Description The routine gDefinePolygonWorkspace() creates a workspace to store polygon vertices. Each

vertex requires two real words and each polygon requires a header of eight real words.

Therefore if:

p = Number of polygons

v = Total number of polygon vertices to be stored

Then

nw = 2v+8p.

Allowance must be made for this amount of space when calling gSetWorkspaceLimit().

To change the size of the polygon workspace gDefinePolygonWorkspace() may be called more

than once. A call to gDefinePolygonWorkspace(0) deletes the polygon workspace and frees the

space in the total workspace area. Any value less than zero will generate an error message.

See Also Page 104, 245, 291

gSetWorkspaceLimit

gDefineRGB

Syntax

C/C++: void gDefineRGB(int col, float red, float green, float blue);

F90: subroutine gDefineRGB(col, red, green, blue)

integer, intent(in) :: col

real, intent(in) :: red,green,blue

Arguments col
Colour index

<0, Dummy definition

497

ROUTINE SPECIFICATIONS gDefinePolygonWorkspace

= 0, Background colour

> 0, Index up to device capability

red
Red intensity, 0.0 to 1.0

green
Green intensity, 0.0 to 1.0

blue
Blue intensity, 0.0 to 1.0

Description The routine gDefineRGB() redefines the colour and intensity identified by col in terms of red,

green, blue intensities. col=0 identifies the background colour. gDefineRGB() has no effect if

the device does not allow variations of colour or intensity or if col is out of range for the

device.

red, green and blue are clipped to the range 0.0 to 1.0 If any value is clipped a warning

message is output.

The action of gDefineRGB() depends on the colour capabilities of the device and whether

gSetColourInfo() has been called. The default action is for gDefineRGB() to set a colour

definition into a table indexed by col ready for being selected by the routine gSetLineColour().

If the device is operating in 24-bit direct-colour mode however, gDefineRGB() changes the

values of a pseudo palette from which RGB values are extracted if colour indices are used in

gSetLineColour().

Note that communication of colour values, to all devices, is done using the RGB system. All

other colour coordinate systems are converted to the RGB system. Setting col <0 stores the

red, green and blue values but does not transmit them to the device.

Devices with colour tables set the values in the table to a default set of colours at initialization

(see gSetLineColour()), however gDefineRGB() can be used as a device qualifying routine (i.e.

called before any drawing routine) to change the table before initialization and thus preventing

the screen from flashing when changing from one colour to another.

See Also Page 212

gEnqColourInfo

gSetColourInfo

gSetLineColour

gDefineSegGroup

Syntax

C/C++: void gDefineSegGroup(int ngrp, int ngmin, int ngmax);

F90: subroutine gDefineSegGroup(ngrp, ngmin, ngmax)

integer, intent(in) :: ngrp,ngmin,ngmax

Arguments ngrp
Segment group number

498

gDefineSegGroup ROUTINE SPECIFICATIONS

ngmin
Start segment number

ngmax
End segment number

Description The routine gDefineSegGroup() defines a segment group. The segment group number ngrp

must lie within the range defined by a call to gDefineGroupRange(). If gDefineGroupRange()

has not been called, the range defaults to 1 to 32767.

A segment group consists of all the picture segments that fall within the range, ngmin to

ngmax, which is defined by the call to gDefineSegGroup(). If ngmin or ngmax is out of range

or if ngmin exceeds ngmax, an error message is output and no further action is taken.

Segment groups are maintained across device nomination. Up to 50 segment groups may be

defined. gDefineSegGroup() redefines a segment group corresponding to ngrp that already

exists. If there is no more space in the segment group table, an error message is output and no

further action is taken.

See Also Page 437

gDefineGroupRange

gDefineSegWorkspace

Syntax

C/C++: void gDefineSegWorkspace(int nw);

F90: subroutine gDefineSegWorkspace(nw)

integer, intent(in) :: nw

Arguments nw
Number of real words to be set aside for storing Software Display Files

= 0, Delete software display file

>0, Create or change size of display file

Description If the software emulation of segment facilities is required the user may opt to store this

information either in a scratch file or in a workspace area.

The routine gDefineSegWorkspace() both creates a workspace within the

gSetWorkspaceLimit() workspace and switches storage of segments to that workspace.

As the gDefineSegWorkspace() workspace is part of the gSetWorkspaceLimit() workspace,

gSetWorkspaceLimit() must be called before gDefineSegWorkspace() and include at least as

much space as required by gDefineSegWorkspace().

To change the size of the software display file gDefineSegWorkspace() may be called more

than once. A call to gDefineSegWorkspace(0) deletes the display file and frees the space in the

total workspace area. Any value less than zero will generate an error message.

The gDefineSegWorkspace() workspace is maintained across device nominations along with

any segment information it may contain. This allows segments to be created on one device and

used on any subsequent device within the same program.

499

ROUTINE SPECIFICATIONS gDefineSegWorkspace

See Also Page 426

gSetWorkspaceLimit

gSetSegMode

gDefineSphericalView

Syntax

C/C++: void gDefineSphericalView(float xcen, float ycen, float zcen, float rad, float dx, float

dy, float dz, float dist);

F90: subroutine gDefineSphericalView(xcen, ycen, zcen, rad, dx, dy, dz, dist)

real, intent(in) :: xcen,ycen,zcen,rad

real, intent(in) :: dx,dy,dz,dist

Arguments xcen,ycen,zcen
Position of centre of sphere in space coordinates

rad
Radius of sphere in picture coordinates

dx,dy,dz
Direction of viewing

dist
Perspective distance

Description The routine gDefineSphericalView() sets up a perspective view of the portion of the world

enclosed by the specified sphere. The direction of viewing is defined by the vector (dx,dy,dz)

directed towards the centre of the sphere. The viewpoint and position of the view plane are

calculated so that the image of the sphere fits as closely as possible into the current window -

i.e. the diameter of the sphere when projected onto the view plane equals the minimum window

dimension. The window dimensions are defined by the viewport limits unless a user-defined

window is currently specified (see gSetWindow2D(), gSetWindow3D() or

gSetWindowMode()).

If either dist or rad is zero or all of dx, dy and dz are zero, an error message is output and no

further action is taken.

See Also Page 388

gSetWindow2D

gSetWindow3D

gSetWindowMode

500

gDefineSphericalView ROUTINE SPECIFICATIONS

gDefineTexture

Syntax

C/C++: void gDefineTexture(int level, int xgrid, int ygrid, int border, int nbyte, int *pixbuf);

F90: subroutine gDefineTexture(level, xgrid, ygrid, border, nbyte, pixbuf)

integer, intent(in) :: level,xgrid,ygrid,nbyte,border,pixbuf(*)

Arguments level
Texture map detail level

0 = base level

>0 = mipmap reduction level

xgrid, ygrid
Dimension of pixel array

border
Border switch

GOFF = No border supplied

GON= Border of 1 pixel on each side supplied with data

nbyte
Number of relevant bytes in texture map data (default = 3)

pixbuf
Pixel array used to define texture

Description The routine gDefineTexture() defines the current texture map, of which only one can exist at

any defined level.

The texture map detail level is set in level, where a value of zero implies that the base level

(largest) texture map is being defined. Levels greater than zero can be used to define smaller

mipmapped images for the same texture. Each level must be smaller in both directions by a

power of 2 than the preceding level.

The dimensions of the texture map are defined in xgrid and ygrid. Both must be 2**n (or

2**n+2 if border is switched on) but not necessarily equal. The maximum size of a texture

map is limited to the equivalent of 1024x1024 pixels.

The value of nbyte is in the range 1-4 with the following interpretation of data supplied in

pixbuf

nbyte Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

1 1 - - Luminance
2 1 - Alpha Luminance
3(Default) 1 Red Green Blue
4 Alpha OR 1 Red Green Blue

501

ROUTINE SPECIFICATIONS gDefineTexture

The data supplied in pixbuf comprises xgrid * ygrid integer values in one of four forms; a) an

array of colour index values with RGB settings being interpreted from the current GINO colour

table, b) an array of 24bit packed RGB triplets as returned by the function gTrueCol, c)

external image data read in by the routine gGetImageFile() or d) manually constructed data.

For types a) - c) nbyte should be set to 3, for type d) bit 24 of all array values should be set to

1.

See Also Page 346

gGetImageFile

gSetTextureMappingMode

gDeleteEventQueue

Syntax

C/C++: void gDeleteEventQueue(void);

F90: subroutine gDeleteEventQueue

Arguments None

Description On devices where events can be queued for processing by routine gWaitForEvent(), the queue

may be deleted by calling gDeleteEventQueue(). All events waiting in the queue will be lost.

See Also Page 456

gWaitForEvent

gDeleteSeg

Syntax

C/C++: void gDeleteSeg(int nseg);

F90: subroutine gDeleteSeg(nseg)

integer, intent(in) :: nseg

Arguments nseg
Picture segment or segment group number

> 0, Segment specified by nseg is deleted from the display
file

= 0, The dustbin segment

= GALL, All segments are deleted

< -1, All segments except those specified by nseg are deleted
from the display file

Description The routine gDeleteSeg() is called to delete a picture segment.

It deletes the specified segment from the display file, which may involve redrawing the

segment in the background colour in order to remove it from the device. If gDeleteSeg() is

called while segment nseg is open, then a call to gCloseSeg() is automatically executed.

502

gDeleteEventQueue ROUTINE SPECIFICATIONS

If gDeleteSeg(GALL) is called and segment 1 exists then it is deleted.

If gDeleteSeg(0) is called, the screen is cleared and any existing picture segments are

redisplayed.

If nseg specifies a segment group, then all the members of that group are deleted.

See Also Page 427

gDisplayAsciiChar

Syntax

C/C++: void gDisplayAsciiChar(int asc);

F90: subroutine gDisplayAsciiChar(asc)

integer, intent(in) :: asc

Arguments asc
Represents the ASCII code of a character

Description The routine gDisplayAsciiChar() outputs a single character whose ASCII code is asc.

The American Standard Code for Information Interchange (ASCII) is an integer numerical

code (from 0 to 127). Each integer represents either an upper or lower case alphabetic

character, digit, or special character.

The bottom left-hand corner of the character will be at the current drawing point. The end point

is the bottom right-hand corner of that character.

The characters are drawn subject to the font representation, font weight, character size,

orientation, italics and underline settings, and are transformed if GINO transformable

characters are currently selected.

See Also Page 137

gSetCharTransformMode

Appendix C - Character font tables

gDisplayInteger

Syntax

C/C++: void gDisplayInteger(int number, int nwidth);

F90: subroutine gDisplayInteger(number, nwidth)

integer, intent(in) :: number,nwidth

Arguments number
Integer value

nwidth
Field width

503

ROUTINE SPECIFICATIONS gDisplayAsciiChar

< 0, Left-justified

= 0, No output

> 0, Right-justified

Description The routine gDisplayInteger() outputs the integer value number as a decimal character string.

The number starts with a minus sign for values less than zero.

If the number occupies less than nwidth character positions, the string is padded out with

spaces. If the number is longer than nwidth characters, the string is filled with asterisks.

For positive values of nwidth, the number is right-justified. If nwidth is less than zero the

number is left-justified. gDisplayInteger() does nothing if nwidth is zero.

Field width is limited to 32 character positions. If it exceeds this, it is set to 32 characters and a

warning message is output.

The start point of the string is the current drawing position and will be at the bottom left-hand

corner of the first character. The end point is the bottom right-hand corner of the string.

The characters are drawn subject to the font representation, font weight, character size,

orientation, justification, italics and underline settings and are transformed if GINO

transformable characters are currently selected.

See Also Page 138

gDisplayReal

Syntax

C/C++: void gDisplayRealExponent(float value, int nwidth, int nplace);

void gDisplayRealFixed(float value, int nwidth, int nplace);

void gDisplayRealFloat(float value, int nwidth);

F90: subroutine gDisplayRealExponent(value, nwidth, nplace)

subroutine gDisplayRealFixed(value, nwidth, nplace)

subroutine gDisplayRealFloat(value, nwidth)

real, intent(in) :: value

integer, intent(in) :: nwidth,nplace

Arguments value
Real value

nwidth
Field width

< 0, Left-justified

= 0, No output

> 0, Right-justified

nplace
Number of places after the decimal point

504

gDisplayReal ROUTINE SPECIFICATIONS

Description The gDisplayReal set of routines outputs the supplied real value as a character string in three

different floating point formats. Either as a decimal floating-point, a decimal fixed point or a

floating point character string. The start point of the string is the current drawing position

which will be at the bottom left-hand corner of the numeric field. The end point is the bottom

right-hand corner of the numeric field. The characters are drawn subject to the font

representation, font weight, character size, orientation, justification, italics and underline

settings and are transformed if GINO transformable characters are currently selected.

In all three routines, if the number occupies less than nwidth character positions, the string is

padded out with spaces. On the other hand, if the number is longer than nwidth characters, a

string of asterisks is output. For positive values of nwidth, the number is right-justified. If

nwidth is less than zero, the number is left-justified. The field width is limited to 32 character

positions. If it exceeds this, it is set to 32 characters and a warning message is output.

In the case of gDisplayRealExponent(), the number consists of a mantissa followed by a

decimal exponent. The mantissa consists of a decimal point (preceded by a minus sign if value

is less than zero) followed by the number of digits specified by nplace. If nplace is less than

zero, its absolute value is used and a warning message is output. The number is rounded in the

last decimal place. A zero is output in front of the decimal point if the number is positive and

left-justified or if the number is right-justified and there is room for a leading zero. The

exponent occupies 4 character positions. The first character is the letter ‘E’ and the remaining

characters contain the exponent value, right-justified and preceded by a minus sign for negative

exponents. Any gap after the letter ‘E’ is padded out with spaces. If the exponent is too large,

the string is filled with asterisks.

In the case of gDisplayRealFixed() the number consists of an integer part (preceded by a minus

sign if value is less than zero) followed by a decimal point and a fractional part. The number of

digits for the fractional part is specified by nplace. If nplace is less than zero, its absolute

value is used and a warning message is output. The number is rounded in the last decimal

place. If the integer part is zero, a leading zero is output unless value is less than zero and there

is only room for the minus sign before the decimal point.

In the case of gDisplayRealFloat() the mantissa consists of a decimal point (preceded by a

minus sign if value is less than zero) followed by (nwidth-6) digits, up to a maximum of 6

digits. If the field width is less than 6, the string is filled with asterisks. The number is rounded

in the last decimal place. A zero is output in front of the decimal point if the number is positive

and left-justified or if the number is right-justified and there is room for a leading zero. The

exponent occupies 4 character positions. The first character is the letter ‘E’ and the remaining

characters contain the exponent value, right-justified and preceded by a minus sign for negative

exponents. Any gap after the letter ‘E’ is padded with spaces. If the exponent is too large, the

string is filled with asterisks.

See Also Page 138

gDisplayStr

Syntax

C/C++: void gDisplayStr(char string[]);

F90: subroutine gDisplayStr(string)

character*(*), intent(in) :: string

505

ROUTINE SPECIFICATIONS gDisplayStr

Arguments string
Any character argument (except array name)

Description The routine gDisplayStr() outputs a character string consisting of any combination of

characters in the ASCII set and any special characters permitted by the system. Strings should

be terminated by *. otherwise the number of characters is limited to the total length of string

up to a maximum of 255 characters.

The following escape sequences offer control of various functions:

*L or *l- shift into lower case

*U or *u- shift into upper case

*Fnnn or *fnnn temporary change to font nnn where nnn = 000 to 199 (see gSetCharFont())

*N or *n- move to next line (see gStartTextBlock(), gMoveToNextLine())

*E or *e- activate current exponent position and size settings (see gSetStrExponent())

*I or *i- activate current index position and size settings (see gSetStrExponent())

*O or *o- position next character over previous character at exponent size setting

*S or *s- start underscore (see gSetStrUnderscore())

*W or *w- increase current font weight by 3 (see gSetFontWeight())

*\- set italic angle to -15 degrees (see gSetItalicAngle())

*|- reset italic angle to that on entry

*/- set italic angle to +15 degrees (see gSetItalicAngle())

*A or *a- set current position on base line as an alignment position

(used to switch exponent, index positioning and character size off and

also resets underline and weight)

*B or *b- move back to last align position on base line

*:- displays umlaut form of character if followed by aouAOU

*:S- displays German sz character if available in current font

** means output *

The escape character * can be set to any other character by the gSetEscapeChar() routine.

The characters are drawn using the current font with its weight and representation set by the

most recent calls to gSetFontWeight() and gSetFontForm() respectively. If the *F escape

sequence is used this will make a temporary change to the current font for the output of this

string only. Two further facilities are available for controlling the font.

*FS sets the GINO font to the temporary string font.

*FR restores the font which was current when the string routine was called.

506

gDisplayStr ROUTINE SPECIFICATIONS

If *N is used, the routine gStartTextBlock() must have been called to set up a text block start

position, otherwise a warning message is output and the next line is positioned below the end

of the previous string.

Multiple use of *E or *I adjusts the position above or below the base line for each occurrence.

The start and end position and direction of the string are determined by the current setting of

character justification (see gSetStrJustify()).

Hardware or software characters are output depending on the current setting of

gSetHardChars(), gSetMixedChars() or gSetSoftChars() and they are drawn subject to the

current size, orientation, italics and underline. These settings may not be exactly matched for

hardware characters. If GINO transformable characters are currently selected (using

gSetCharTransformMode()), the string will be output using vectors, in the current line style

subject to the current transformation and viewing setting.

All character codes outside the range 0 to 255 are output as ASCII code 47, a ‘/’. In addition, if

software characters are being output then all character codes outside the range 25-127 are also

output as a ‘/’. The exception being the codes representing the a,o, u umlaut and beta characters

according to the characters code of the current implementation (DOS or ISO). Thus the

following ASCII codes are mapped onto the special characters provided in several GINO

software fonts:

DOS ISO Char

132 228 ä
148 246 ö
129 252 ü
225 223 ß
142 196 Ä
153 214 Ö
154 220 Ü

See Also Page 138

gPrintf

gMoveToNextLine

gSetStrExponent

gSetCharFont

gSetStrJustify

gSetStrUnderscore

gSetFontForm

gSetFontWeight

gSetItalicAngle

gSetEscapeChar

gSetCharTransformMode

507

ROUTINE SPECIFICATIONS gDisplayStr

gDisplayStrPolyline

Syntax

C/C++: void gDisplayStrPolylineBy2D(int npts, GPOINT *points, char string[]);

void gDisplayStrPolylineTo2D(int npts, GPOINT *points, char string[]);

F90: subroutine gDisplayStrPolylineBy2D(npts, points, string)

subroutine gDisplayStrPolylineTo2D(npts, points, string)

integer, intent(in) :: npts

type (GPOINT), intent(in) :: points(*)

character*(*), intent(in) :: string

Arguments npts
Number of vector increments specified

points
Array of points specifying a series of either relative or absolute 2D positions, which define a
polyline along which the string will be drawn

string
Character string

Description The routines gDisplayStrPolylineBy2D() and gDisplayStrPolylineTo2D() display a character

string along a polyline represented by the points contained in the array points by adjusting the

angle of each character in the string. The polyline should be defined as a series of either

relative or absolute points depending on the routine used. The relative points used by

gDisplayStrPolylineBy2D() start at the current position and pass through npts vector

increments.

Strings should be terminated by *. otherwise the number of characters is limited to the total

length of string up to a maximum of 256 characters. For example, if string is declared as char

[10] then the string will always be terminated after 10 characters, if no intervening *. is

encountered.

The characters are drawn subject to the font representation, font weight, character size, italics

and underline settings. If transformations are switched on the string is output using transformed

characters so that the string follows the transformed polyline.

The string is justified on the polyline according to the current setting of gSetStrJustify(). The

character string may contain any of the GINO escape sequences described under gDisplayStr().

If the length of the character string is longer than the length of the polyline, the string is

truncated.

See Also Page 159

gSetStrJustify

gDisplayStr

508

gDisplayStrPolyline ROUTINE SPECIFICATIONS

gDragSeg

Syntax

C/C++: void gDragSeg(int nseg);

F90: subroutine gDragSeg(nseg)

integer, intent(in) :: nseg

Arguments nseg
Picture segment number or segment group number

> 0, Drag picture segment or segment group nseg

= GALL, Drag all picture segments

< -1, Drag all segments except segment nseg or segment
group nseg

Description The routine gDragSeg() causes the specified picture segment to follow the position of the

cursor until a key is pressed. The position of the picture segment anchor and the integer

identifier of the key are obtained by calling the routine gGetEventRecord().

Where software emulation of segments is being performed, the cursor is positioned at the

segment origin (if possible) and the user can move the cursor to the required position. The

segment does not follow the cursor but is erased from its current position and redrawn at the

new position when the cursor key is pressed.

See Also Page 440, 456

gGetEventRecord

gDrawAkima

Syntax

C/C++: void gDrawAkimaBy2D(int npts, GPOINT *points, int beg, int fin);

void gDrawAkimaTo2D(int npts, GPOINT *points, int beg, int fin);

F90: subroutine gDrawAkimaBy2D(npts, points, beg, fin)

subroutine gDrawAkimaTo2D(npts, points, beg, fin)

integer, intent(in) :: npts,beg,fin

type (GPOINT), intent(in) :: points(*)

Arguments npts
Number of points

points
Array specifying series of relative or absolute points through which the curve is drawn

beg
End conditions for start of curve

509

ROUTINE SPECIFICATIONS gDragSeg

= GXPOINT, Direction of curve calculated using extra point

= GNONE, No end conditions

= GANGLE, Direction of curve defined by angle

fin
End conditions for end of curve (as for start of curve)

Description The routines gDrawAkimaBy2D() and gDrawAkimaTo2D() draw a piecewise smooth cubic

curve through the specified number of relative or absolute coordinate points. The matching end

slopes of the curve are computed using an averaging method due to Akima. In the case of

gDrawAkimaBy2D(), the curve starts at the current drawing position and is drawn through

npts series of vector increments. In the case of gDrawAkimaTo2D() the curve starts at the first

element in points and is drawn through the intervening npts points. The number of

sub-increments is controlled by the arc routine gSetArcIncrement().

The start and end directions of the curve can be separately controlled by setting beg and fin to

non-zero values. If beg or fin is set to GANGLE, the direction of the curve is specified directly

in terms of cosine and sine values. If beg or fin is set to GXPOINT, the direction of the curve is

calculated so that the curve would pass through an extra specified point as if it was extended to

include that point. These angles and/or extra points defining the curve end conditions are set up

using gSetCurveAttribs2D(). Note that, the curve drawing routines update the current curve

end conditions so that the start and end angles match those of the curve that has been drawn.

The current curve end conditions can be enquired by calling gEnqCurveAttribs2D().

See Also Page 93, 285

gEnqCurveAttribs2D

gSetArcIncrement

gSetCurveAttribs2D

gDrawArc

Syntax

C/C++: void gDrawArcBy2D(float dxc, float dyc, float dxe, float dye, int sense);

void gDrawArcBy3D(float dxc, float dyc, float dzc,float dxe, float dye, float dze,float

dxt, float dyt, float dzt);

void gDrawArcTo2D(float xc, float yc, float xe, float ye, int sense);

void gDrawArcTo3D(float xc, float yc, float zc,float xe, float ye, float ze, float dxt, float

dyt, float dzt);

F90: subroutine gDrawArcBy2D(dxc, dyc, dxe, dye, sense)

subroutine gDrawArcBy3D(dxc, dyc, dzc, dxe, dye, dze, dxt, dyt, dzt)

subroutine gDrawArcTo2D(xc, yc, xe, ye, sense)

subroutine gDrawArcTo3D(xc, yc, zc, xe, ye, ze, dxt, dyt, dzt)

real, intent(in) :: dxc,dyc,dzc,dxe,dye,dze,dxt,dyt,dzt

real, intent(in) :: xc,yc,zc,xe,ye,ze

integer, intent(in) :: sense

Arguments dxc,dyc,dzc,xc,yc,zc
Position of the arc centre defined as either relative to the current drawing position or an
absolute position

510

gDrawArc ROUTINE SPECIFICATIONS

dxe,dye,dze,xe,ye,ze
A relative or absolute position defining a vector from the arc’s centre on which the arc will
terminate

sense
Direction of drawing

= GANTICLOCKWISE, The arc is drawn positively

= GCLOCKWISE, The arc is drawn negatively

dxt,dyt,dzt
Direction vector defining the starting direction or plane of a 3D arc

Description These routines draw a two or three dimensional circular arc using relative or absolute

coordinates to define its centre and end positions. Where relative positions are given, these are

relative to the current drawing position.

The drawing of all arcs start at the current drawing position and have a radius equal to the

distance from the start to the specified centre position. The arc is terminated at a point that lies

on a line from the specified arc centre through the specified end point.

For 2D arcs, the direction of drawing is given by sense, but for 3D arcs, the start direction is

indicated by the direction vector (dxt,dyt,dzt) . If the start, centre and end points are collinear

the direction vector gives the plane of the arc, otherwise it merely indicates whether the major

or minor arc is required. If the direction vector is parallel to this same line, an error message is

output and no arc is output.

If transformations are being used, it is essential that the current drawing position is set by a

routine using absolute coordinates (e.g. gMoveTo2D/3D()) after the transformation is changed

and before gDrawArcTo2D/3D() is called.

If the output device cannot support hardware arcs or if software arcs have been requested by

calling gSetArcMode(), the arc is drawn as a series of straight vectors. However, sufficient

vectors are provided to give the curve a smooth appearance.

See Also Page 86

Page 284

gSetArcMode

511

ROUTINE SPECIFICATIONS gDrawArc

gDrawBezier

Syntax

C/C++: void gDrawBezierBy2D(int npts, GPOINT *points2);

void gDrawBezierBy3D(int npts, GPOINT3 *points3);

void gDrawBeziero2D(int npts, GPOINT *points2);

void gDrawBezierTo3D(int npts, GPOINT3 *points3);

F90: subroutine gDrawBezierBy2D(npts, points2)

subroutine gDrawBezierBy3D(npts, points3)

subroutine gDrawBezierTo2D(npts, points2)

subroutine gDrawBezierTo3D(npts, points3)

integer, intent(in) :: npts

type (GPOINT), intent(in) :: points2(*)

type (GPOINT3), intent(in) :: points3(*)

Arguments npts
Number of coordinate points specified

points2, points3
Array specifying series of relative or absolute points in space coordinates through which the
curve is drawn

Description The routines gDrawBezierBy2D(), gDrawBezierBy3D(), gDrawBezierTo2D()and

gDrawBezierTo3D() draw a smooth curve through the specified number of relative or absolute

coordinate points. In the case of gDrawBezierBy2D() and gDrawBezierBy3D(), the curve starts

at the current drawing position and is drawn through npts series of vector increments. In the

case of gDrawBezierTo2D() and gDrawBezierTo3D() the curve starts at the first element in

points and is drawn through the intervening npts points.

The number of sub-increments is controlled by the arc routine gSetArcIncrement(), where the

total number of straight-line segments used to draw the curve is defined as the number of data

points supplied * number of increments. At least 2 points are required to define a Bezier curve.

See Also Page 101

Page 290

gSetArcIncrement

512

gDrawBezier ROUTINE SPECIFICATIONS

gDrawBezierSphere

Syntax

C/C++: void gDrawBezierSphere(float xp, float yp, float zp, float radius, ...);

F90: subroutine gDrawBezierSphere(xp, yp, zp, radius, gURot, gVRot, gWRot, gUComp,

gVComp)

real, intent(in) :: xp,yp,zp,radius

real, optional, intent(in) :: gURot, gVRot, gWRot

integer, optional, intent(in) :: gUComp, gVComp

Arguments xp, yp, zp
Origin (centre) of sphere

radius
Radius of sphere

Optional Args gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawBezierSphere() draws a ‘solid’ sphere primitive constructed of outward

facing facets according to the specified complexity. The sphere is generated from eight Bezier

patches centred at the origin (xp, yp, zp), with the defined radius.

The arguments gURot, gVRot, gWRot specify optional rotations about the object’s local axes

system. Whilst these will not alter the visual appearance of a coloured sphere, it will affect the

appearance of a textured sphere as the texture origin will lie in a different position with relation

to the global axes.

The arguments gUComp and gVComp define the object’s complexity in its U (circumference)

and V (height) axes respectively. These values determine the number of divisions (facets) in

either direction and therefore, the objects smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 323

gDrawFacet

513

ROUTINE SPECIFICATIONS gDrawBezierSphere

gDrawBezierSurface

Syntax

C/C++: void gDrawBezierSurface(int nx, int ny, GPOINT3 *mesh, ...);

F90: subroutine gDrawBezierSurface(nx, ny, mesh, gUComp, gVComp)

integer, intent(in) :: nx,ny

type (GPOINT3), intent(in) :: mesh(nx,ny)

integer, optional, intent(in) :: gUComp, gVComp

Arguments nx, ny
Number of points in mesh

mesh
Two dimensions array of 3D mesh points

Optional Args gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawBezierSurface() draws a surface based on an interpolation of the supplied

mesh.

The arguments gUComp and gVComp define the object’s complexity in its U and V axes

respectively. These values determine the number of divisions (facets) in either direction and

therefore the object’s smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 317

gDrawFacet

gDrawBezierVolume

Syntax

C/C++: void gDrawBezierVolume(float xp, float yp, float zp, int npts, GPOINT *points, ...);

F90: subroutine gDrawBezierVolume(xp, yp, zp, npts, points, gURot, gVRot, gWRot,

gUComp, gVComp)

real, intent(in) :: xp,yp,zp

integer, intent(in) :: npts

type (GPOINT), intent(in) :: points(*)

real, optional, intent(in) :: gURot, gVRot, gWRot

integer, optional, intent(in) :: gUComp,gVComp

514

gDrawBezierSurface ROUTINE SPECIFICATIONS

Arguments xp, yp, zp
Origin (bottom, centre) of volume

npts
Number of control points in outline

points
Array containing two dimensional outline control points

Optional Args gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUComp, gVComp
Optional object complexity (default 10)

Description The routine gDrawBezierVolume() draws a ‘solid’ volume of rotation constructed of outward

facing facets according to the specified complexity. The volume is generated by rotating an

interpolated curve, based on the supplied control points contained in the points array, about a

vertical axis which passes through the origin (xp, yp, zp).

An alternative orientation can be specified using either up to three local axes rotations (gURot,

gVRot, gWRot) or by using an absolute/relative vector, gVVec from the object’s origin. In the

latter case a local rotation about the object’s vertical axis can also be added in gVRot.

The arguments gUCompand gVComp define the object’s complexity about its U and V axes.

This values determine the number of divisions (facets) in these directions and therefore, the

objects smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 324

gDrawFacet

gDrawBox

Syntax

C/C++: void gDrawBox(float xp, float yp, float zp, ...);

F90: subroutine gDrawBox(xp, yp, zp, gUDim, gVDim, gWDim, gURot, gVRot, gWRot,

gUVec, gVVec, gWVec, gAbs, gUComp, gVComp, gWComp)

real, intent(in) :: xp,yp,zp

real, optional, intent(in) :: gUDim, gVDim, gWDim

real, optional, intent(in) :: gURot, gVRot, gWRot

type (GPOINT3), optional, intent(in) :: gUVec, gVVec, gWVec

integer, optional, intent(in) :: gAbs

integer, optional, intent(in) :: gUComp, gVComp, gWComp

Arguments xp, yp, zp
Origin (bottom, left, back corner) of box

515

ROUTINE SPECIFICATIONS gDrawBox

Optional Args gUDim, gVDim, gWDim
Optional box dimensions (default 1.0,1.0,1.0)

gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUVec, gVVec, gWVec
Optional edge vectors

gAbs
Optional edge vector direction flag

= GABSOLUTE, Absolute edge vectors

= GRELATIVE, Relative edge vectors

gUComp ,gVComp, gWComp
Optional object complexity (default 1 x 1 x 1)

Description The routine gDrawBox() draws a ‘solid’ box primitive of the specified dimensions by

generating outward facing facets for each face. The box is positioned at the specified origin

(xp, yp, zp), with a default unit dimension extending in a positive direction along each of its

three local axes.

An alternative dimension/orientation can be specified using either a) up to three dimension

values (gUDim, gVDim, gWDim) and up to three local axes rotations (gURot, gVRot,

gWRot) or b) as three mutually perpendicular edge vectors (gUVec, gVVec, gWVec) which

may be absolute or relative to the object’s origin.

By default, each face is constructed from a single facet, but using the optional arguments

gUComp, gVComp and/or gWComp the two faces in each of the three local axes may be

sub-divided into multiple facets for greater accuracy of lighting and texturing. Thus if

gUComp is set to 2, then the two faces along the X/U axes of the box will be divided into 2x2

(4) facets.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 307

gDrawFacet

gDrawCellArray

Syntax

C/C++: void gDrawCellArray(float x1, float y1, float x2, float y2, int npixx, int npixy, int isx, int

isy, int idx, int idy, int pixbuf[]);

F90: subroutine gDrawCellArray(x1, y1, x2, y2, npixx, npixy, isx, isy, idx, idy, pixbuf)

real, intent(in) :: x1,y1,x2,y2

integer, intent(in) :: npixx,npixy,isx,isy,idx,idy,pixbuf(*)

Arguments x1,y1
Bottom-left corner of image in current units

516

gDrawCellArray ROUTINE SPECIFICATIONS

x2,y2
Top-right corner of image in current units

npixx,npixy
Dimension of image data array

isx,isy
The start X position and Y position of a sub-array

idx,idy
The X and Y dimensions of a sub-array

pixbuf
The array containing image colour information

Description The routine gDrawCellArray() draws a scaled image to fit the transformed corner points which

are specified in current drawing units. The final image is drawn in a rectangle with edges

parallel to the drawing area as represented by the transformed points.

Image data is passed through a pointer to an integer array pixbuf dimensioned (npixx,npixy).

Where the whole of this array is to be displayed, the user should set isx and isy to 1 and idx

and idy to be the same as npixx and npixy. Alternatively a portion of the array can be

displayed (still at the anchor position ix,iy) by setting the values of isx and isy to the offsets

from the start of the pixbuf and idx,idy to the dimensions of the sub-array.

The image data may consist of packed or unpacked colour indices or in the case of true colour

devices, 24bit true colour RGB values.

See Also Page 191

gDefinePixelPacking

gSetColourInfo

gDrawCone

Syntax

C/C++: void gDrawCone(float xp, float yp, float zp, float rad1, float rad2, ...);

F90: subroutine gDrawCone(xp, yp, zp, rad1, rad2, gHeight, gURot, gVRot, gWRot,

gVVec, gAbs, gUComp, gVComp)

real, intent(in) :: xp,yp,zp,rad1,rad2

real, optional, intent(in) :: gHeight

real, optional, intent(in) :: gURot, gVRot, gWRot

type (GPOINT3), optional, intent(in) :: gVVec

integer, optional, intent(in) :: gAbs

integer, optional, intent(in) :: gUComp, gVComp

Arguments xp, yp, zp
Origin (bottom, centre) of cone

rad1, rad2
Bottom and top radii of cone

517

ROUTINE SPECIFICATIONS gDrawCone

Optional Args gHeight
Optional cone height (default 1.0)

gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gVVec
Optional heigh/orientation vector

gAbs
Optional height/orientation vector direction flag

= GABSOLUTE, Absolute height/orientation vector

= GRELATIVE, Relative height/orientation vector

gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawCone() draws a ‘solid’ cone primitive constructed of outward facing facets

according to the specified complexity. The cone is centred at the origin (xp, yp, zp), with the

defined bottom and top radii (rad1 and rad2) and a default unit height extending in a positive

direction along the local V (vertical) axes.

An alternative height/orientation can be specified using either a height dimension (in gHeight)

and up to three local axes rotations (gURot, gVRot, gWRot) or an absolute/relative vector,

gVVec from the base of the object. In the latter case a local rotation about the object’s vertical

axis can also be added in gVRot.

The arguments gUComp and gVComp define the object’s complexity in its U (circumference)

and V (height) axes respectively. These values determine the number of divisions (facets) in

either direction and in the case of the circumferential value, the objects smoothness. Setting

gUComp to 6 will define a 6 sided cone for example.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 309

gDrawFacet

gDrawCube

Syntax

C/C++: void gDrawCube(float xp, float yp, float zp, float dim, ...);

F90: subroutine gDrawCube(xp, yp, zp, dim ,gURot, gVRot, gWRot)

real, intent(in) :: xp,yp,zp,dim

real,optional, intent(in) :: gURot, gVRot, gWRot

integer, optional, intent(in) :: gUComp, gVComp, gWComp

Arguments xp, yp, zp
Origin (bottom, left, back corner) of cube

518

gDrawCube ROUTINE SPECIFICATIONS

dim
Cube dimension

Optional Args gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUComp ,gVComp, gWComp
Optional object complexity (default 1 x 1 x 1)

Description The routine gDrawCube() draws a ‘solid’ cube primitive of the specified dimension by

generating six equally sized facets for each face. The box is positioned at the specified origin

(xp, yp, zp) extending in a positive direction along each of its three local axes.

The arguments gURot, gVRot, gWRot specify optional rotations about the object’s local axes

system.

By default, each face is constructed from a single facet, but using the optional arguments

gUComp, gVComp and/or gWComp the two faces in each of the three local axes may be

sub-divided into multiple facets for greater accuracy of lighting and texturing. Thus if

gUComp is set to 2, then the two faces along the X/U axes of the cube will be divided into 2x2

(4) facets.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 307

gDrawFacet

gDrawCurve

Syntax

C/C++: void gDrawCurveBy2D(int npts, GPOINT *points, int beg, int fin);

void gDrawCurveTo2D(int npts, GPOINT *points, int beg, int fin);

F90: subroutine gDrawCurveBy2D(npts, points, beg, fin)

subroutine gDrawCurveTo2D(npts, points, beg, fin)

integer, intent(in) :: npts,beg,fin

type (GPOINT), intent(in) :: points(*)

Arguments npts
Number of points

points
Array specifying series of relative or absolute points through which the curve is drawn

beg
End conditions for start of curve

= GXPOINT, Direction of curve calculated using extra point

= GNONE, No end conditions

= GANGLE, Direction of curve defined by angle

519

ROUTINE SPECIFICATIONS gDrawCurve

fin
End conditions for end of curve (as for start of curve)

Description The routines gDrawCurveBy2D() and gDrawCurveTo2D() draw a smooth curve through the

specified number of relative or absolute coordinate points. In the case of gDrawCurveBy2D(),

the curve starts at the current drawing position and is drawn through npts series of vector

increments. In the case of gDrawCurveTo2D() the curve starts at the first element in points and

is drawn through the intervening npts points. The number of sub-increments is controlled by

the current arc tolerance as set by gSetArcTolerance().

The start and end directions of the curve can be separately controlled by setting beg and fin to

non-zero values. If beg or fin is set to GANGLE, the direction of the curve is specified directly

in terms of cosine and sine values. If beg or fin is set to GXPOINT, the direction of the curve is

calculated so that the curve would pass through an extra specified point as if it was extended to

include that point. These angles and/or extra points defining the curve end conditions are set up

using gSetCurveAttribs2D(). Note that, the curve drawing routines update the current curve

end conditions so that the start and end angles match those of the curve that has been drawn.

The current curve end conditions can be enquired by calling gEnqCurveAttribs2D().

See Also Page 93

gEnqCurveAttribs2D

gSetArcTolerance

gSetCurveAttribs2D

gDrawCylinder

Syntax

C/C++: void gDrawCylinder(float xp, float yp, float zp, float radius, ...);

F90: subroutine gDrawCylinder(xp, yp, zp, radius, gHeight, gURot, gVRot, gWRot,

gVVec, gAbs, gUComp, gVComp)

real, intent(in) :: xp,yp,zp,radius

real, optional, intent(in) :: gHeight

real, optional, intent(in) :: gURot, gVRot, gWRot

type (GPOINT3), optional, intent(in) :: gVVec

integer, optional, intent(in) :: gAbs

integer, optional, intent(in) :: gUComp, gVComp

Arguments xp, yp, zp
Origin (bottom, centre) of cylinder

radius
Radius of cylinder

Optional Args gHeight
Optional cylinder height (default 1.0)

gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

520

gDrawCylinder ROUTINE SPECIFICATIONS

gVVec
Optional height vector

gAbs
Optional height vector direction flag

= GABSOLUTE, Absolute height vector

= GRELATIVE, Relative height vector

gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawCylinder() draws a ‘solid’ cylinder primitive constructed of outward facing

facets according to the specified complexity. The cylinder is centred at the origin (xp, yp, zp),

with the defined radius and a default unit height extending in a positive direction along the

local V (vertical) axes.

An alternative height/orientation can be specified using either a height dimension (in gHeight)

and up to three local axes rotations (gURot, gVRot, gWRot) or an absolute/relative vector,

gVVec from the base of the object. In the latter case a local rotation about the object’s vertical

axis can also be added in gVRot.

The arguments gUComp and gVComp define the object’s complexity in its U (circumference)

and V (height) axes respectively. These values determine the number of divisions (facets) in

either direction and in the case of the circumferential value, the objects smoothness. Setting

gUComp to 6 will define a 6 sided cylinder for example.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 309

gDrawFacet

gDrawFacet

Syntax

C/C++: void gDrawFacet(int npts, GPOINT3 *points, ...);

F90: subroutine gDrawFacet(npts, points, gNormals, gTextCoords, gColours)

integer, intent(in) :: npts

type (GPOINT3), intent(in) :: points(*)

type (GPOINT3), optional, intent(in) :: gNormals(*), gTextCoords(*)

integer, optional, intent(in) :: gColours(*)

Arguments npts
Number of vertices in facet

points
Array specifying series of absolute points that define the facet boundary

521

ROUTINE SPECIFICATIONS gDrawFacet

Optional Args gNormals
Optional array specifying normal vectors at each vertex

gTextCoords
Optional array specifying texture coordinate values at each vertex

gColours
Optional integer array specifying colours at each vertex

Description The routine gDrawFacet() displays a single facet (polygon) containing npts vertices held in the

array points of type GPOINT3. The facet is drawn according to the current modelling and/or

viewing transformations subject to the current facet offset as set by gSetFacetOffsetMode().

The facet is drawn either solid or as a boundary according to the current facet filling style as

set by gSetFacetFillStyle().

The facet colour is determined by the current material property, which may be set (using

gSetMaterialIndex()) to match the current line drawing colour (gSetLineColour()), or according

to specific colour attributes that are affected by the current lighting conditions. Alternatively if

the optional gColours array is used, the facet is coloured using graduations of the colours

specified at each vertex in this array (these are not affected by any lighting conditions).

The optional arrays gNormals and gTextCoords can be used to specify non-planar normals

and/or texture coordinates when creating smooth or texture mapped surfaces. Both arrays are of

type GPOINT3.

See Also Page 296

gSetFacetFillStyle

gSetFacetOffsetMode

gSetLineColour

gSetMaterialIndex

gDrawLine

Syntax

C/C++: void gDrawLineBy2D(float dx, float dy);

void gDrawLineBy3D(float dx, float dy, float dz);

void gDrawLineTo2D(float x, float y);

void gDrawLineTo3D(float x, float y, float z);

F90: subroutine gDrawLineBy2D(dx, dy)

subroutine gDrawLineBy3D(dx, dy, dz)

subroutine gDrawLineTo2D(x, y)

subroutine gDrawLineTo3D(x, y, z)

real, intent(in) :: dx,dy,dz

real, intent(in) :: x,y,z

Arguments dx,dy,dz
Coordinate increments (in the current units) from the current drawing position to the end point

x,y,z
The absolute coordinates (with respect to the current axes and in the current units) of the end
point

522

gDrawLine ROUTINE SPECIFICATIONS

Description The gDrawLine set of routines draws a straight line from the current drawing position to the

specified end point using relative or absolute coordinates. Both 2D and 3D routines are

provided.

Where a mixture of 2D and 3D routines are used, the current Z coordinate is assumed to be

constant during the drawing of a 2D vector (the default being 0.0).

The current drawing position is updated to be the end of the line drawn by these routines.

See Also Page 80

Page 280

gDrawMarker

Syntax

C/C++: void gDrawMarker(int nsym);

F90: subroutine gDrawMarker(nsym)

integer, intent(in) :: nsym

Arguments nsym
Symbol number

= GDOT, Dot

= GUP, Upwards triangle

= GDOWN, Downwards triangle

= GPLUS, Plus sign

= GCROSS, Cross

= GBOX, Small square box

= GDIAMOND, Diamond

= GCIRCLE, Small circle

= GSTAR, Star or asterisk

9 - 23, Optional hardware symbol

> 23, Character from font table

Description The routine gDrawMarker() draws either a dot, one of the eight standard symbols, a hardware

symbol or any one of the characters from the GINO font tables.

Symbols are drawn independent of the current GINO font, but symbol numbers can be

calculated using the following formulae:

FONT*1000 + <ACSII CODE>

The symbol number is shown in the bottom left corner of the character box in Appendix C.

All symbols are drawn centred at the current drawing position with the current position

remaining at the same position after the symbol is drawn.

If untransformed characters are currently set then the appearance of symbols is controlled by

the current character size only. If software transformed characters are set (using

gSetCharTransformMode()) then the symbol is controlled by all the character attributes (size,

angle and italic angle).

523

ROUTINE SPECIFICATIONS gDrawMarker

The whole of the symbol must fall within the window limits for it to be output.

See Also Page 161

gSetCharTransformMode

Appendix C - Character Font Tables

gDrawPixel

Syntax

C/C++: void gDrawPixel(int ix, int iy, int pix);

void gDrawPixelArea(int ix, int iy, int npixx, int npixy, int isx, int isy, int idx, int idy, int

pixbuf[]);

F90: subroutine gDrawPixel(ix, iy, pix)

subroutine gDrawPixelArea(ix, iy, npixx, npixy, isx, isy, idx, idy, pixbuf)

integer, intent(in) :: ix,iy,pix

integer, intent(in) :: npixx,npixy,isx,isy,idx,idy,pixbuf(*)

Arguments ix,iy
Pixel (anchor) position (relative to top left corner)

pix
Pixel colour information for single pixel

npixx,npixy
Dimension of pixel data array

isx,isy
The start X position and Y position of a sub-array

idx,idy
The X and Y dimensions of a sub-array

pixbuf
The array containing pixel colour information

Description The routines gDrawPixel() and gDrawPixelArea() draws a single pixel or a rectangular pixel

area using the colour information passed by the user. The pixel (area) is displayed with

reference to the anchor position specified by the position (ix,iy), noting that the pixel

coordinate system has its origin as the top left corner of the device with the first pixel position

being referenced as (0,0).

In both routines, the colour information may consist of colour indices or 24bit true colour

values depending on the colour mode of the currently nominated device and as set by the

routine gSetColourInfo().

In the case of gDrawPixelArea(), the pixel information is passed through a pointer to an integer

array pixbuf dimensioned (npixx,npixy). Where the whole of this array is to be displayed, the

user should set isx and isy to 1 and idx and idy to be the same as npixx and npixy.

Alternatively a portion of the array can be displayed (still at the anchor position ix,iy) by

setting the values of isx and isy to the offsets from the start of the pixbuf array and idx,idy to

the dimensions of the sub-array.

524

gDrawPixel ROUTINE SPECIFICATIONS

The routine gDrawPixelArea() will extract the pixel data from the pixbuf array according to

the specification set by gDefinePixelPacking(). The default is for one pixel value to be

extracted from one word of pixbuf. The pixel rectangle will be clipped to the device limits if

these limits are exceeded. The pixel array will also be subject to the current pixel

transformation as set by gSetPixelTransform().

See Also Page 191

gDefinePixelPacking

gSetColourInfo

gSetPixelTransform

gDrawPolygonBound

Syntax

C/C++: void gDrawPolygonBound(int line);

F90: subroutine gDrawPolygonBound(line)

integer, intent(in) :: line

Arguments line
Line style index

= GCURRENT, Current line style

= 1 - 256, Line style index

> 256, Current line style

Description The routine gDrawPolygonBound() draws the boundaries of all the polygons currently defined.

All polygon edges are drawn. This includes the closing edge and any edges that were defined

with invisible moves. line specifies the line style for drawing the boundaries. The current line

style remains unaffected and the current position is restored to that prior to calling

gDrawPolygonBound().

See Also Page 251

gSelectPolygons

525

ROUTINE SPECIFICATIONS gDrawPolygonBound

gDrawPolyline

Syntax

C/C++: void gDrawPolylineBy2D(int npts, GPOINT *points2);

void gDrawPolylineBy3D(int npts, GPOINT3 *points3);

void gDrawPolylineTo2D(int npts, GPOINT *points2);

void gDrawPolylineTo3D(int npts, GPOINT3 *points3);

F90: subroutine gDrawPolylineBy2D(npts, points2)

subroutine gDrawPolylineBy3D(npts, points3)

subroutine gDrawPolylineTo2D(npts, points2)

subroutine gDrawPolylineTo3D(npts, points3)

integer, intent(in) :: npts

type (GPOINT), intent(in) :: points2(*)

type (GPOINT3), intent(in) :: points3(*)

Arguments npts
Number of lines to be drawn

points2,points3
Array holding relative or absolute coordinates specifying the end points of lines to be drawn
with respect to the current axes and in the current units

Description The gDrawPolyline set of routines draws a polyline in 2D or 3D using either relative or

absolute coordinates. In the case of gDrawPolylineBy2D/3D(), the polyline starts at the current

drawing position and is drawn through npts series of vector increments. In the case of

gDrawPolylineTo2D/3D() the polyline starts at the current drawing position and draws straight

lines to each of the npts points in points2 or points3.

The current drawing position is updated to be the end of the last vector drawn by these

routines.

See Also Page 82

Page 280

gDrawPolylineSet

Syntax

C/C++: void gDrawPolylineSet2D(int npol, GPOLYGON *polylines2);

void gDrawPolylinetSet3D(int npol, GPOLYGON3 *polylines3);

F90: subroutine gDrawPolylineSet2D(npol, polylines2)

subroutine gDrawPolylineSet3D(npol, polylines3)

integer, intent(in) :: npol

type (GPOLYGON),intent(in) :: polylines2(*)

type (GPOLYGON3),intent(in) :: polylines3(*)

526

gDrawPolyline ROUTINE SPECIFICATIONS

Arguments npol
Number of polylines in polyline set

polylines2,polylines3
Array of 2D or 3D polyline structures to be drawn

Description The routines gDrawPolylineSet2D() and gDrawPolylineSet3D() draw a set of polygons. Each

polygon structure consists of a number of vertices and a pointer to an array of 2D or 3D points.

Each polygon is complete within itself and will automatically be closed if not defined as such.

Coordinates are absolute and have no relation to the current drawing position.

These routines can handle up to 2048 points and if the total number of points in the polyline set

exceeds this, an error message is generated and no output is done.

The current position is restored to that prior to calling either routine.

See Also Page 85, 283

gFillPolygonSet2D

gFillPolygonSet3D

gDrawPolymarker

Syntax

C/C++: void gDrawPolymarkerBy2D(int npts, GPOINT *points2, int nsym);

void gDrawPolymarkerBy3D(int npts, GPOINT3 *points3, int nsym);

void gDrawPolymarkerTo2D(int npts, GPOINT *points2, int nsym);

void gDrawPolymarkerTo3D(int npts, GPOINT3 *points3, int nsym);

F90: subroutine gDrawPolymarkerBy2D(npts, points2, nsym)

subroutine gDrawPolymarkerBy3D(npts, points3, nsym)

subroutine gDrawPolymarkerTo2D(npts, points2, nsym)

subroutine gDrawPolymarkerTo3D(npts, points3, nsym)

integer, intent(in) :: npts,nsym

type (GPOINT), intent(in) :: points2(*)

type (GPOINT3), intent(in) :: points3(*)

Arguments npts
Number of symbols to be drawn

points2,points3
Array holding relative or absolute coordinates specifying the points at which symbols are to be
drawn (with respect to the current axes and in the current units)

nsym
Symbol number (see gDrawMarker())

Description The gDrawPolymarker set of routines are used to draw npts symbols at points specified by a

series of relative or absolute coordinate points held in the 2D array points2 or the 3D array

points3. Coordinate points specified by gDrawPolyMarkerBy2D() and

gDrawPolyMarkerBy3D() are relative to the current drawing position.

527

ROUTINE SPECIFICATIONS gDrawPolymarker

The current drawing position is updated to be the centre of the last symbol drawn by these

routines.

See Also Page 97, 163, 287

gDrawMarker

gDrawRect3D

Syntax

C/C++: void gDrawRect3D(float xmin, float xmax, float ymin, float ymax, float zmin, float

zmax);

F90: subroutine gDrawRect3D(xmin, xmax, ymin, ymax, zmin, zmax)

real, intent(in) :: xmin, xmax, ymin, ymax, zmin, zmax

Arguments xmin, xmax, ymin, ymax, zmin, zmax
Object limits

Description The routine gDrawRect3D() draws a ‘solid’ rectangular parallelepiped with its edges parallel to

and aligned along the current axes, according to the specified limits.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 307

gDrawFacet

gDrawRuledBezierSurface

Syntax

C/C++: void gDrawRuledBezierSurface(int np1, GPOINT3 *points1, int np2, GPOINT3

*points2, ...);

F90: subroutine gDrawRuledBezierSurface(np1, points1, np2, points2, gUComp,

gVComp)

integer, intent(in) :: np1,np2

type (GPOINT3), intent(in) :: points1(*),points2(*)

integer, optional, intent(in) :: gUComp, gVComp

Arguments np1
Number of control points

points1
Array of 3D control points

np2
Number of control points

528

gDrawRect3D ROUTINE SPECIFICATIONS

points2
Array of 3D control points

Optional Args gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawRuledBezierSurface() draws a surface between a curve based on an

interpolation of the first set of control points in points1 and curve based on an interpolation of

the second set of control points in points2. Where one curve has a different number of control

points, the one with the smaller number is elevated to the number in the larger.

The arguments gUComp and gVComp define the object’s complexity in its U (curve1/curve2)

and V axes respectively. These values determine the number of divisions (facets) in either

direction and therefore the object’s smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 322

gDrawFacet

gDrawSeg

Syntax

C/C++: void gDrawSeg(int nseg);

F90: subroutine gDrawSeg(nseg)

integer, intent(in) :: nseg

Arguments nseg
Picture segment or segment group number

> 0, Draw segment(s) specified by segment nseg

= GALL, Draw all segments

< -1, Draw all segments except those specified by nseg

Description The routine gDrawSeg() is used to redraw an existing segment from the segment display file.

gDrawSeg() can be used to redisplay a segment or group which has been ‘damaged’ by other

segment operations using background-erase.

gDrawSeg() does not redraw invisible segments.

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(0), no error message is generated. However, the device may output a local error

message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 433

gSetSegMode

529

ROUTINE SPECIFICATIONS gDrawSeg

gDrawShadedPolylineTo3D

Syntax

C/C++: void gDrawShadedPolylineTo3D(int npts, GPOINT3 *points, GPOINT3 *normals, ...);

F90: subroutine gDrawShadedPolylineTo3D(npts, points, normals, gTextCoords,)

integer, intent(in) :: npts

type (GPOINT3), intent(in) :: points(*), normals(*)

type (GPOINT3), optional, intent(in) :: gTextCoords(*)

Arguments npts
Number of points in the supplied arrays

points
Array holding absolute coordinates specifying the vertices of a polyline to be drawn with
respect to the current axes and in the current units

normals
Array specifying normal vectors at each vertex

Optional Args gTextCoords
Optional array specifying texture coordinate values at each vertex

Description The gDrawShadedPolylineTo3D routine draws a polyline in 3D using absolute coordinates

subject to lighting and shading conditions. The polyline starts at the first point in the supplied

array and and draws straight lines to each of the remaining npts-1 points in points.

The polyline is drawn using the current material attributes and shaded according to the current

lighting conditions using the normlas supplied in the array normals. The current texture map

may also be applied to the polyline, if texture mapping is switched on, using the texture

coordinates supplied in the optional array gTextCoords, which if not passed are set to zero for

each vertex.

The current drawing position is not updated to be the end of the last vector drawn by this

routine.

See Also Page 307

gSetMaterialIndex

gSetTextureMappingMode

530

gDrawShadedPolylineTo3D ROUTINE SPECIFICATIONS

gDrawSphere

Syntax

C/C++: void gDrawSphere(float xp, float yp, float zp, float radius, ...);

F90: subroutine gDrawSphere(xp, yp, zp, radius, gURot, gVRot, gWRot, gUComp,

gVComp)

real, intent(in) :: xp,yp,zp,radius

real, optional, intent(in) :: gURot, gVRot, gWRot

integer, optional, intent(in) :: gUComp, gVComp

Arguments xp, yp, zp
Origin (centre) of sphere

radius
Radius of sphere

Optional Args gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawSphere() draws a ‘solid’ sphere primitive constructed of outward facing

facets according to the specified complexity. The sphere is centred at the origin (xp, yp, zp),

with the defined radius.

The arguments gURot, gVRot, gWRot specify optional rotations about the object’s local axes

system. Whilst these will not alter the visual appearance of a coloured sphere, it will affect the

appearance of a textured sphere as the texture origin will lie in a different position with relation

to the global axes.

The arguments gUComp and gVComp define the object’s complexity in its U (circumference)

and V (height) axes respectively. These values determine the number of divisions (facets) in

either direction and therefore, the objects smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 310

gDrawFacet

531

ROUTINE SPECIFICATIONS gDrawSphere

gDrawSpline

Syntax

C/C++: void gDrawSplineBy2D(int npts, GPOINT *points2, int beg, int fin);

void gDrawSplineBy3D(int npts, GPOINT3 *points3, int beg, int fin);

void gDrawSplineTo2D(int npts, GPOINT *points2, int beg, int fin);

void gDrawSplineTo3D(int npts, GPOINT3 *points3, int beg, int fin);

F90: subroutine gDrawSplineBy2D(npts, points2, beg, fin)

subroutine gDrawSplineBy3D(npts, points3, beg, fin)

subroutine gDrawSplineTo2D(npts, points2, beg, fin)

subroutine gDrawSplineTo3D(npts, points3, beg, fin)

integer, intent(in) :: npts,beg,fin

type (GPOINT), intent(in) :: points(*)

type (GPOINT3), intent(in) :: points3(*)

Arguments npts
Number of coordinate points specified

points2, points3
Array specifying series of relative or absolute points in space coordinates through which the
curve is drawn

beg
End conditions for start of a spline curve

= GXPOINT, Direction of curve calculated using extra point

= GNONE, No end conditions

= GANGLE, Direction of curve defined by slope derivatives

fin
End conditions for end of a spline curve (as for beg)

Description The routines gDrawSplineBy2D(), gDrawSplineBy3D(), gDrawSplineTo2D()and

gDrawSplineTo3D() draw a smooth spline curve through the specified number of relative or

absolute coordinate points. In the case of gDrawSplineBy2D() and gDrawSplineBy3D(), the

curve starts at the current drawing position and is drawn through npts series of vector

increments. In the case of gDrawSplineTo2D() and gDrawSplineTo3D() the curve starts at the

first element in points and is drawn through the intervening npts points.

The number of sub-increments is controlled by the arc routine gSetArcIncrement() and the

spline tension is controlled by the routine gSetSplineTension(). At least 3 points are required to

define a spline curve.

532

gDrawSpline ROUTINE SPECIFICATIONS

The start and end directions of the spline curve can be separately controlled by setting beg and

fin to non-zero values. If beg or fin is set to GANGLE, the direction of the curve is specified

directly in terms of slope derivatives. If beg or fin is set to GXPOINT, the direction of the

curve is calculated so that the curve would pass through an extra specified point as if it was

extended to include that point. These slopes and/or extra points defining the curve end

conditions are set up using gSetCurveAttribs2D() or gSetCurveAttribs3D(). Note that, the

spline curve drawing routines update the current curve end conditions so that the start and end

slopes match those of the curve that has been drawn. The current curve end conditions can be

enquired by calling gEnqCurveAttribs2D() or gEnqCurveAttribs3D().

See Also Page 98

Page 288

gEnqCurveAttribs2D

gEnqCurveAttribs3D

gSetArcIncrement

gSetCurveAttribs2D

gSetCurveAttribs3D

gSetSplineTension

gDrawSplineSurface

Syntax

C/C++: void gDrawSplineSurface(int nx, int ny, GPOINT3 *mesh, ...);

F90: subroutine gDrawSplineSurface(nx, ny, mesh, gUComp, gVComp)

integer, intent(in) :: nx,ny

type (GPOINT3), intent(in) :: mesh(nx,ny)

integer, optional, intent(in) :: gUComp, gVComp

Arguments nx, ny
Number of points in mesh

mesh
Two dimensions array of 3D mesh points

Optional Args gUComp ,gVComp
Optional object complexity (default 4*nx and 4*ny)

Description The routine gDrawSplineSurface() draws a surface based on an interpolation of the supplied

mesh such that the surface passes through all the data points supplied.

The arguments gUComp and gVComp define the object’s complexity in its U and V axes

respectively. These values determine the number of divisions (facets) in either direction and

therefore the object’s smoothness. The actual complexity is, however, always rounded down to

a complete multiple of the number of data points on the mesh in either direction so that the

surface passes through all the data points.

The tension of the spline surface is controlled by the tension routine gSetSplineTension() and

the routine takes special account of data that is closed in the U direction, by ensuring a smooth

join between the start and end of the surface.

533

ROUTINE SPECIFICATIONS gDrawSplineSurface

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 313

gDrawFacet

gSetSplineTension

gDrawSweptBezierSurface

Syntax

C/C++: void gDrawSweptBezierSurface(int np1, GPOINT3 *points1, int np2, GPOINT3

*points2, ...);

F90: subroutine gDrawSweptBezierSurface(np1, points1, np2, points2, gUComp,

gVComp)

integer, intent(in) :: np1,np2

type (GPOINT3), intent(in) :: points1(*),points2(*)

integer, optional, intent(in) :: gUComp, gVComp

Arguments np1
Number of control points

points1
Array of 3D control points

np2
Number of control points

points2
Array of 3D control points

Optional Args gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawSweptBezierSurface() draws a surface based on an interpolation of the first

set of control points in points1 extruded along a curve based on an interpolation of the second

set of control points in points2.

The arguments gUComp and gVComp define the object’s complexity in its U (curve1) and V

(curve2) axes respectively. These values determine the number of divisions (facets) in either

direction and therefore the object’s smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 321

gDrawFacet

534

gDrawSweptBezierSurface ROUTINE SPECIFICATIONS

gDrawTabulatedBezierSurface

Syntax

C/C++: void gDrawTabulatedBezierSurface(int np, GPOINT3 *points, GPOINT3 vector, ...);

F90: subroutine gDrawTabulatedBezierSurface(np, points, vector, gUComp, gVComp)

integer, intent(in) :: np

type (GPOINT3), intent(in) :: points(*),vector

integer, optional, intent(in) :: gUComp, gVComp

Arguments np
Number of control points

points
Array of 3D control points

vector
Extrusion vector

Optional Args gUComp ,gVComp
Optional object complexity (default 10 x 10)

Description The routine gDrawTabulatedBezierSurface() draws a surface based on an interpolation of the

control points extruded along the supplied vector.

The arguments gUComp and gVComp define the object’s complexity in its U (control curve)

and V (extrusion vector) axes respectively. These values determine the number of divisions

(facets) in either direction and therefore the object’s smoothness.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 320

gDrawFacet

535

ROUTINE SPECIFICATIONS gDrawTabulatedBezierSurface

gDrawVolume

Syntax

C/C++: void gDrawVolume(float xp, float yp, float zp, int npts, GPOINT *points, ...);

F90: subroutine gDrawVolume(xp, yp, zp, npts, points, gVVec, gAbs, gURot, gVRot,

gWRot, gUComp)

real, intent(in) :: xp,yp,zp

integer, intent(in) :: npts

type (GPOINT), intent(in) :: points(*)

type (GPOINT3), optional, intent(in) :: gVVec

integer, optional, intent(in) :: gAbs

real, optional, intent(in) :: gURot, gVRot, gWRot

integer, optional, intent(in) :: gUComp

Arguments xp, yp, zp
Origin (bottom, centre) of volume

npts
Number of points in outline

points
Array containing outline vertices

Optional Args gVVec
Optional orientation vector

gAbs
Optional orientation vector direction flag

= GABSOLUTE, Absolute vector

= GRELATIVE, Relative vector

gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUComp
Optional object complexity (default 10)

Description The routine gDrawVolume() draws a ‘solid’ volume of rotation constructed of outward facing

facets according to the specified complexity. The volume is generated by rotating the set of

outline vertices contained in the points array, about a vertical axis which passes through the

origin (xp, yp, zp).

An alternative orientation can be specified using either up to three local axes rotations (gURot,

gVRot, gWRot) or by using an absolute/relative vector, gVVec from the object’s origin. In the

latter case a local rotation about the object’s vertical axis can also be added in gVRot.

536

gDrawVolume ROUTINE SPECIFICATIONS

The argument gUComp defines the object’s complexity about its U axis (circumference). This

value determines the number of divisions (facets) in this direction and therefore, the objects

smoothness. The number of facets in the vertical (V axis) direction is determined by npts.

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 311

gDrawFacet

gDrawWedge

Syntax

C/C++: void gDrawWedge(float xp, float yp, float zp, ...);

F90: subroutine gDrawWedge(xp, yp, zp, gUDim, gVDim, gWDim, gURot, gVRot, gWRot,

gUVec, gVVec, gWVec, gAbs)

real, intent(in) :: xp,yp,zp

real, optional, intent(in) :: gUDim, gVDim, gWDim

real, optional, intent(in) :: gURot, gVRot, gWRot

type (GPOINT3), optional, intent(in) :: gUVec, gVVec, gWVec

integer, optional, intent(in) :: gAbs

Arguments xp, yp, zp
Origin (bottom, left, back corner) of wedge

Optional Args gUDim, gVDim, gWDim
Optional wedge dimensions (default 1.0,1.0,1.0)

gURot ,gVRot, gWRot
Optional rotations about local axes (default 0.0,0.0,0.0)

gUVec, gVVec, gWVec
Optional edge vectors

gAbs
Optional edge vector direction flag

= GABSOLUTE, Absolute edge vectors

= GRELATIVE, Relative edge vectors

Description The routine gDrawWedge() draws a ‘solid’ wedge primitive of the specified dimensions by

generating outward facing facets for each face. The wedge is positioned at the specified origin

(xp, yp, zp), with a default unit dimension extending in a positive direction along each of its

three local axes. The wedge is cut from top left to bottom right.

An alternative dimension/orientation can be specified using either a) up to three dimension

values (gUDim, gVDim, gWDim) and up to three local axes rotations (gURot, gVRot,

gWRot) or b) as three mutually perpendicular edge vectors (gUVec, gVVec, gWVec) which

may be absolute or relative to the object’s origin.

537

ROUTINE SPECIFICATIONS gDrawWedge

The facets are drawn in the current facet colour/material according to the current

lighting/shading environment and subject to the current modelling/viewing transformations.

See Also Page 309

gDrawFacet

gDummy

Syntax

C/C++: void gDummy(void);

F90: subroutine gDummy

Arguments None

Description A call to gDummy() nominates a notional device which does not produce any graphics output.

Used in conjunction with gDebug() or gSetTracerMode() it is a useful aid to program

development.

It is called by GINO if the user fails to nominate a device. This is to allow proper initialization

of GINO.

See Also Page 42

gDebug

gSetTracerMode

gElevateBezier

Syntax

C/C++: void gElevateBezier2D(int *npts, GPOINT *points2);

void gElevateBezier3D(int *npts, GPOINT3 *points3);

F90: subroutine gElevateBezier2D(npts, points2)

subroutine gElevateBezier3D(npts, points3)

integer, intent(inout) :: npts
type (GPOINT), intent(inout) :: points2(*)
type (GPOINT3), intent(inout) :: points3(*)

Arguments npts
Number of points in Bezier curve, incrented by one on return.

points2,points3
Array holding absolute coordinates of Bezier curve control points.

Description The gElevateBezier set of routines takes a set of Bezier curve control points in 2D or 3D and

generates a new set, with an additional control point, that represents the same curve.

538

gDummy ROUTINE SPECIFICATIONS

Note that the value passed in npts will be incremented by one on return and the arrays points2

or points3 must be large enough to contain the extra control point that is returned in these

arrays.

See Also Page 103

Page 290

gReduceBezier2D

gReduceBezier3D

gEditSeg

Syntax

C/C++: void gEditSeg2D(int nseg, int tag, GMAT2D t2, int sw);

void gEditSeg3D(int nseg, int tag, GMAT3D t3, int sw);

F90: subroutine gEditSeg2D(nseg, tag, t2, sw)

subroutine gEditSeg3D(nseg, tag, t3, sw)

integer, intent(in) :: nseg,tag

real, intent(in) :: t2(6),t3(16)

integer, intent(in) :: sw

Arguments nseg
Picture segment number

tag
Segment tag identifier

t2,t3
2D or 3D transformation matrix

sw
Transformation mode switch

= GAPPLY, Apply matrix according to current transformation mode

= GREPLACE, Replace current transformation matrix

Description The routines gEditSeg2D() and gEditSeg3D() replace the modelling transformation matrix that

immediately follows the identifier tag in segment nseg, with matrix t2 or t3.

The argument sw determines the way in which the matrix will affect the modelling

transformation when the segment is redrawn. If sw = GAPPLY then the new transformation

matrix t2/t3 will be added to the existing modelling transformation matrix according to the

current transformation mode (see gSetTransformMode()). If sw = GREPLACE then the matrix

t2/t3 will replace the existing modelling transformation with the new matrix.

If the segment tag occurs more than once in the segment, all matrices following the tag will be

edited.

If the identifier tag does not exist within the segment a warning message is output but if the tag

is not followed by a transformation matrix, no action is taken.

539

ROUTINE SPECIFICATIONS gEditSeg

See Also Page 436

gInsertSegTag

gSetTransformMode

gEndBatchUpdate

Syntax

C/C++: void gEndBatchUpdate(void);

F90: subroutine gEndBatchUpdate

Arguments None

Description This routine is used to end a batch of modifications started by gStartBatchUpdate(). The

modifications are output to the display to reflect the changes.

See Also Page 50

gStartBatchUpdate

gEndPolygon

Syntax

C/C++: void gEndPolygon(void);

F90: subroutine gEndPolygon

Arguments None

Description A polygon is closed by a call to gEndPolygon(). At this point the current polygon identifier is

assigned to the polygon. No more vertices can be added to the polygon after a call to

gEndPolygon().

See Also Page 247

gEnqArcState

Syntax

C/C++: void gEnqArcState(int *sw, int *nincs, float *tol);

F90: subroutine gEnqArcState(sw, nincs, tol)

integer, intent(out) :: sw,nincs

real, intent(out) :: tol

Arguments sw
State of software arc switch

540

gEndBatchUpdate ROUTINE SPECIFICATIONS

= GHARD, Hardware arcs

= GSOFT, Software arcs

nincs
Number of increments per full circle

tol
Arc tolerance

Description The routine gEnqArcState() returns values in sw,nincs and tol as set up by the most recent calls

to gSetArcMode(), gSetArcIncrement() and gSetArcTolerance() respectively. If gSetArcMode()

or gSetArcTolerance() have not been called, the appropriate arguments are set to the defaults,

which depend on the resolution of the output device. If gSetArcIncrement() has not been

called, nincs is returned as 0.

See Also Page 91

gSetArcIncrement

gSetArcMode

gSetArcTolerance

gEnqBrokenLine

Syntax

C/C++: void gEnqBrokenLine(int brk);

F90: subroutine gEnqBrokenLine(brk)

integer, intent(out) :: brk

Arguments brk
Current broken line type

= GSOLID, Solid

= 1 - 256, User defined or device dependent

> 256, Solid or device dependent

Description The routine gEnqBrokenLine() returns the currently requested broken line type. The current

line type may be set by calling gSetBrokenLine(). The default for the broken line type is solid,

which corresponds to a call to gSetBrokenLine(0).

If brk is returned set to zero, the current line type is solid. If brk is in the range 1 to 256, the

parameters that define the current line type may be enquired by calling

gEnqBrokenLineStyle().

See Also Page 116

gSetBrokenLine

gEnqBrokenLineStyle

541

ROUTINE SPECIFICATIONS gEnqBrokenLine

gEnqBrokenLineStyle

Syntax

C/C++: void gEnqBrokenLineStyle(int brk, GBRKSTY *rep);

F90: subroutine gEnqBrokenLineStyle(brk, rep)

integer, intent(in) :: brk

type (GBRKSTY), intent(out) :: rep

Arguments brk
Broken line type

= 1 to 256 only

rep.mode
Line mode

= GSOLID

= GCONTDASH

= GCONTCHAIN

= GDISCONTDASH

= GDISCONTCHAIN

rep.repeat
Repeat length in current units

rep.dash
Dash length in current units

rep.dot
Dot length in current units (for chained lines)

Description The routine gEnqBrokenLineStyle() returns the line style parameters rep.mode, rep.repeat,

rep.dash and rep.dot associated with one of the broken line types 1 to 256. If brk is outside

this range, an error message is output and all the values are returned set to zero. In the absence

of any calls to gDefineBrokenLineStyle(), gEnqBrokenLineStyle() returns the default values

for the line type parameters.

See Also Page 124

gDefineBrokenLineStyle

gEnqCharAttribs

Syntax

C/C++: void gEnqCharAttribs(GCHASTY *rep);

F90: subroutine gEnqCharAttribs(rep)

type (GCHASTY), intent(out) :: rep

542

gEnqBrokenLineStyle ROUTINE SPECIFICATIONS

Arguments rep.type
Character output type

= 1, Hardware (gSetHardChars(),gSetMixedChars() or
gSetHardCharSize())

= 2, Pseudo hardware (gSetHardChars(),gSetMixedChars()
or gSetHardCharSize())

= 3, Software untransformable (gSetSoftChars())

= 4, Software transformable
(gSetCharTransformMode(GON))

rep.width
Character width in current units

rep.height
Character height in current units

rep.size
Hardware character size

rep.slant
Italic angle in degrees

rep.angle
String angle in degrees

Description The routine gEnqCharAttribs() returns information about the current character settings in the

structure rep. The structure, which is of type GCHASTY contains the following elements:

If rep.size is returned set to -1, a call to gSetHardCharSize() is not current and the working

character specification is returned in rep.width, rep.height, rep.slant and rep.angle. This may

differ slightly from the requested specification (see gSetMixedChars() and gSetHardChars()).

If rep.size is greater than or equal to zero, gSetHardCharSize() has set the current character

size and orientation. The size is returned in rep.width and rep.height, rep.angle will be set to

0.0 or 90.0 and rep.slant will be set to zero. If rep.size is zero, rep.width and rep.height

return the default character size.

See Also Page 151

gSetHardCharSize

gSetCharTransformMode

gSetHardChars

gSetMixedChars

gSetSoftChars

gEnqCharTransform

Syntax

C/C++: void gEnqCharTransform(float dx, float dy, GPOINT *point);

F90: subroutine gEnqCharTransform(dx, dy, point)

real, intent(in) :: dx,dy

type (GPOINT), intent(out) :: point

543

ROUTINE SPECIFICATIONS gEnqCharTransform

Arguments dx,dy
Width and height of character string

point
Return the relative end position subject to character angle and italic

Description The routine gEnqCharTransform() transforms a coordinate position according to the current

character angle and italic settings.

See Also Page 152

gSetStrAngle

gSetItalicAngle

gEnqClippingMode

Syntax

C/C++: void gEnqClippingMode(int *sw);

F90: subroutine gEnqClippingMode(sw)

integer, intent(out) :: sw

Arguments sw
Clipping mode:

= GNOCLIP, No hardware or software clipping

= GHARD, Hardware clipping (default)

= GSOFT, Software clipping

Description The routine gEnqClippingMode() returns the current clipping mode for GINO output as set by

the routine gSetClippingMode().

The routine gSetClippingMode() may be used to switch to software clipping or switch all

clipping off.

See Also Page 221, 222

gSetClippingMode

gSetViewportClipSwitch

gSetWindow2D

gSetWindow3D

gEnqColourInfo

Syntax

C/C++: void gEnqColourInfo(int *ndc, int *ndt);

F90: subroutine gEnqColourInfo(ndc, ndt)

integer, intent(out) :: ndc,ndt

Arguments ndc
Number of colours that can be separately defined or selected

544

gEnqClippingMode ROUTINE SPECIFICATIONS

= 0, Monochrome device

= 1, Monochrome device with background erase

> 1, Colour/greyscale device

ndt
Display type, identifying the colour/greyscale capabilities of the device:

= 0, No colour/greyscale variation (i.e. Monochrome)

= �1, Fixed colour/greyscale (i.e. no gDefineRGB() facilities)

= �2, Static colour/greyscale (i.e. selection from fixed
palette)

= �3, Dynamic colour/greyscale

= �4, Direct colour/greyscale

N.B. Positive values indicate colour display, negative values indicate greyscale

Description The routine gEnqColourInfo() returns in ndc and ndt information about the device’s current

colour and greyscale capabilities. In general, a device can only display a finite number of

colours/greyscales. The number of colours/greyscales that can be defined (see gDefineRGB())

and selected (see gSetLineColour()) is returned in ndc. If ndc is set to zero, the device cannot

display any colours.

ndt returns information about the colour/greyscale capabilities of the device: ndt= 0 for

monochrome displays; = � 1 for displays with fixed colours/greyscales which cannot be

changed with gDefineRGB(); = � 2 for displays with a palette but may not provide exactly the

colour requested with gDefineRGB(); = � 3 for dynamic colour/greyscale devices and = �4 for

direct colour/greyscale devices. Negative values indicate greyscale rather than colour display.

See Also Page 46, 206

gSetLineColour

gDefineRGB

gEnqConfigStatus

Syntax

C/C++: int gEnqConfigStatus(...);

F90: integer function gEnqConfigStatus(cfgdir)

character*(*), optional, intent(in) :: cfgdir

Arguments None

Optional Args cfgdir

Optional location of GINO configuration file

Description The function gEnqConfigStatus() enables a GINO application to check the status of the GINO

Configuration File and take appropriate action if the file is not found or illegal. The routine

returns a zero value if the GINO configuration file is found to exist and contains the correct

licencing information.

545

ROUTINE SPECIFICATIONS gEnqConfigStatus

If the routine gEnqConfigStatus() is not called, the configuration file is checked by the first

GINO routine used, and if not satisfactory the application will STOP.

Where an application requires a check on the configuration file, gEnqConfigStatus() should

therefore be used in place of the call to gOpenGino(), ie. the very first GINO routine called in

an application. If gEnqConfigStatus() is called at any other time GINO is re-initialized.

See Also Page 26, 40

gOpenGino

gEnqCursorAction

Syntax

C/C++: void gEnqCursorAction(int *action, int *lverts, GPOINT *points);

F90: subroutine gEnqCursorAction(action, lverts, points)

integer, intent(out) :: action,lverts

type (GPOINT), intent(out) :: points(*)

Arguments action
Cursor action type

= GPOLYLINE,

= GDEFAULT,

= GRUBBERBAND,

= GRUBBERBOX,

= GRUBBERSQUARE,

= GRUBBERELLIPSE,

= GRUBBERCIRCLE,

lverts
Number of vertices if polyline cursor

points
Coordinates of polyline cursor

Description The routine gEnqCursorAction() returns current setting for the cursor action type as set by

gSetCursorAction(). The default cursor action type is for the currently defined cursor shape to

follow the cursor or pointer position with no additional action.

If the current type is a user defined polyline cursor (action = GPOLYLINE) the coordinates are

returned in points with the number of vertices returned in lverts. points should be declared as

length 200 to contain the maximum possible number of points that could be returned by this

routine. All other cursor action types return lverts as zero with no information in points.

The availability of cursor action types is hardware dependent and users should refer to the

relevant Appendix B document for the current device being used.

See Also Page 243

gSetCursorAction

Appendix B

546

gEnqCursorAction ROUTINE SPECIFICATIONS

gEnqCursorType

Syntax

C/C++: void gEnqCursorType(int *type, int *forcol, int *bakcol);

F90: subroutine gEnqCursorType(type, forcol, bakcol)

integer, intent(out) :: type,forcol,bakcol

Arguments type
Cursor Type

= GDEFAULT, Default

= GSMALLCROSS, Small cross

= GLARGECROSS, Large cross(full screen/window if available)

= GX, X

= GPOINTER, Pointer

> 4, Hardware dependent cursor types

forcol
Foreground colour

bakcol
Background colour

Description The routine gEnqCursorType() returns the current setting for the cursor type as set by

gSetCursorType().

The default cursor type is hardware dependent. When type > 4 refer to the appropriate

Appendix B document for a list of available cursor types.

See Also Page 242

gSetCursorType

Appendix B

gEnqCurveAttribs

Syntax

C/C++: void gEnqCurveAttribs2D(float dxbeg, float dybeg, float dxfin, float dyfin, GPOINT

*begp2, GPOINT *finp2);

void gEnqCurveAttribs3D(float dxbeg, float dybeg, float dzbeg, float dxfin, float dyfin,

float dzfin, GPOINT3 *begp3, GPOINT3 *finp3);

F90: subroutine gEnqCurveAttribs2D(dxbeg, dybeg, dxfin, dyfin, begp2, finp2)

subroutine gEnqCurveAttribs3D(dxbeg, dybeg, dzbeg, dxfin, dyfin, dzfin, begp3,

finp3)

real, intent(out) :: dxbeg,dybeg,dzbeg,dxfin,dyfin,dzfin

type (GPOINT), intent(out) :: begp2,finp2

type (GPOINT3), intent(out) :: begp3,finp3

547

ROUTINE SPECIFICATIONS gEnqCursorType

Arguments dxbeg,dybeg,dzbeg
Slope angle/derivative for start of the curve

dxfin,dyfin,dzfin
Slope angle/derivative for end of the curve

begp2,begp3
Extra point defining start angle of curve

finp2,finp3
Extra point defining end angle of curve

Description The routine gEnqCurveAttribs2D() and gEnqCurveAttribs3D() return the curve end conditions

which have either been set through calling gSetCurveAttribs2D() or gSetCurveAttribs3D() or

have been set/updated as a result of the last curve drawing routine.

For the piecewise cubic curves, the slopes are measured in terms of the cosine and sine of the

angles at each end, whereas for the spline curves, the slope is measured in terms of actual

gradient and therefore will be scaled.

The curve end conditions define the direction of a curve at each end. They will be used in the

next curve drawing routine if the curve is to be drawn with specified end conditions and then

updated so that the start and end slopes match those of the curve that has been drawn. By

enquiring and setting the curve end conditions in between curve drawing routines, it is possible

to get curves to merge smoothly.

See Also Page 100, 289

gDrawAkimaBy2D

gDrawAkimaTo2D

gDrawCurveBy2D

gDrawCurveTo2D

gDrawSplineBy2D

gDrawSplineTo2D

gSetCurveAttribs2D

gSetCurveAttribs3D

gEnqDepthMode

Syntax

C/C++: void gEnqDepthMode(int *mode, float *dinit);

F90: subroutine gEnqDepthMode(mode, dinit)

integer, intent(out) :: mode

real, intent(out) :: dinit

Arguments mode
Depth test mode

= GNEVER, Never display output

= GLESSTHAN, Display if depth < value in depth buffer

= GLESSTHANOREQUALTO, Display if depth <= value in depth buffer

548

gEnqDepthMode ROUTINE SPECIFICATIONS

= GEQUALTO, Display if depth = value in depth buffer

= GNOTEQUALTO, Display if depth <> value in depth buffer

= GGREATERTHANEQUALTO, Display if depth >= value in depth buffer

= GGREATERTHAN, Display if depth > value in depth buffer

= GALWAYS, Always display output

dinit
Initial depth buffer setting (0.0 - 1.0)

Description This routine returns the current or default settings of the depth buffer operation.

See Also Page 329

gSetDepthMode

gEnqDeviceState

Syntax

C/C++: void gEnqDeviceState(GDEVSTATE *devstate);

F90: subroutine gEnqDeviceState(devstate)

type (GDEVSTATE), intent(out) :: devstate

Arguments devstate.name
Device driver nomination routine name

devstate.ddver
Device driver version number

devstate.maxaux
Maximum number of auxiliary drawing areas

devstate.dddim
Coordinate system handled by driver

= 2, 2D driver

= 3, 3D driver

devstate.ndevty
Device type

<0, Metafile device (JPEG, PNG, BMP etc.)

1 - 99, Graphics terminal

100 - 199, Plotter (on-line)

200 - 299, Plotter (on-line)

300 - 399, Windowing Device

400 - 499, GINOMENU GUI device (no GINO events)

devstate.ndev
Device output file pointer/unit

devstate.ntype
Device output type

549

ROUTINE SPECIFICATIONS gEnqDeviceState

devstate.xmm
Number of millimetres in 1 current unit

devstate.xdu
Number of device units in 1 current unit

devstate.unitsc
Device unit in millimetres

devstate.atrib
Device attribute flag

devstate.ahard
Arc generation flag

= 0, Hardware arcs not available

= 1, Hardware arcs available

devstate.arctol
Arc tolerance

devstate.cwt
Line attributes entries flag

= 0, Driver used PENSEL entry

= 1, Driver used LINCOL, LINWID, PENTYP and
PENSET

devstate.nbrk
Number of hardware broken line types

devstate.nlend
Number of line end types

devstate.thick
Thick line generation flag

= 0, Thick lines done in driver

= 1, Thick lines generated by lines drawn in direction of line

= 2, Thick lines generated by horizontal/vertical lines

= 3, Thick lines generated by hardware area fill

devstate.chard
Character generation flag

= 1, Hardware characters available

= 2, Hardware characters not available

devstate.nchard
Number of hardware character sizes

devstate.cangm
Hardware character angle multiple

= 0, Only horizontal

= 1 All angles can be drawn

> 1, Only angles at this multiple (eg. 90 degrees)

550

gEnqDeviceState ROUTINE SPECIFICATIONS

devstate.rectfi
Rectangle filling flag

= 0, No rectangle filling available

= 1, Rectangle filling available

devstate.npolmx
Maximum number of polygons that can be filled

= -1, No limitation

= 0, No polygon filling

= 1, Single polygon only

> 1, Maximum polygon limit

devstate.nvermx
Maximum number of points in filled polygons

devstate.ndcmax
Maximum number of colours/pens available

= 0, Monochrome device

= 1, Monochrome device with background erase

> 1, Colour/greyscale device

devstate.ndtmax
Display colour type

= 0, No colour/greyscale variation (i.e. Monochrome)

± 1, Fixed colour/greyscale (i.e. no rgb facilities)

± 2, Static colour/greyscale (i.e. selection from fixed
palette)

± 3, Pseudo colour/greyscale

± 4, Direct colour/greyscale

devstate.whard
Hardware windowing flag

= 0, No hardware windowing

= 1, Device can do hardware windowing

devstate.mhard
Hardware masking flag

= 0, No hardware masking

= 1, Device can do hardware masking

devstate.nsegmx
Maximum permitted segment number

devstate.ncurtp
Number of CURSOR types

devstate.nevetp
Number of EVENT types

551

ROUTINE SPECIFICATIONS gEnqDeviceState

devstate.nquemx
Maximum queue length

devstate.dialog
Dialogue area flag

= 0, No dialogue facilities

= 1, Device has dialogue facilities

devstate.xpixel
Horiz. pixel size in current units

devstate.ypixel
Vert. pixel size in current units

devstate.npixdp
Maximum pixel depth

devstate.nxpix
Number of pixels in horizontal device limit

devstate.nypix
Number of pixels in vertical device limit

Description The routine gEnqDeviceState() returns information relating to the currently nominated device

in the structure devstate.

The information returned by gEnqDeviceState() is set by the device driver and in most cases

cannot be changed by a GINO program after device initialization.

See Also Page 43

gEnqColourInfo

gEnqMaxDrawingLimits

gEnqDrawingLimits

Syntax

C/C++: void gEnqDrawingLimits(GDIM *dim, int *type);

F90: subroutine gEnqDrawingLimits(dim, type)

type (GDIM), intent(out) :: dim

integer, intent(out) :: type

Arguments dim
Paper dimensions in current units

type
Paper type

Description The routine gEnqDrawingLimits() returns dim.xpap, dim.ypap of the currently selected paper

or workstation window limits and type as the current paper type as defined in the most recent

call to gSetDrawingLimits(). If gSetDrawingLimits() has not been called, the default values are

returned.

552

gEnqDrawingLimits ROUTINE SPECIFICATIONS

The routine gEnqMaxDrawingLimits() may be used to find the maximum available limits.

See Also Page 45, 272

gSetDrawingLimits

gEnqMaxDrawingLimits

gEnqEscapeChar

Syntax

C/C++: void gEnqEscapeChar(char *cha);

F90: subroutine gEnqEscapeChar(cha)

character*(*), intent(out) :: cha

Arguments cha
Escape character

Description The routine gEnqEscapeChar() returns the current string escape character. The default escape

character is * (see gSetEscapeChar()).

See Also Page 158

gSetEscapeChar

gEnqFacetFillStyle

Syntax

C/C++: void gEnqFacetFillStyle(int *fill);

F90: subroutine gEnqFacetFillStyle(fill)

integer, intent(out) :: fill

Arguments fill
Facet fill style

= GHOLLOW, Boundary only

= GSOLID, Solid fill

Description The routine gEnqFacetFillStyle() returns the current facet filling style.

See Also Page 302

gSetFacetFillStyle

553

ROUTINE SPECIFICATIONS gEnqEscapeChar

gEnqFacetMaterialProps

Syntax

C/C++: void gEnqFacetMaterialProps(int face, int *amb, int *diff, int *spec, int *emit, float

*shine, float *trans);

F90: subroutine gEnqFacetMaterialProps(face, amb, diff, spec, emit, shine, trans)

integer, intent(in) :: face

integer, intent(out) :: amb,diff,spec,emit

real, intent(out) :: shine,trans

Arguments face
Facet face

= GFRONT, Enquire material properties for front face

= GBACK, Enquire material properties for back face

amb
Ambient reflection colour

diff
Diffuse reflection colour

spec
Specular reflection colour

emit
Emission colour

shine
Specular concentration (shininess) as percentage

trans
Translucence (filtering) (0.0-1.0)

Description The routine gEnqFacetMaterialProps() returns the current facet material properties as set by the

routine gSetFacetMaterialProps().

See Also Page 342

gSetFacetMaterialProps

gEnqFacetOffsetMode

Syntax

C/C++: void gEnqFacetOffsetMode(int *mode);

F90: subroutine gEnqFacetOffsetMode(mode)

integer, intent(out) :: mode

554

gEnqFacetMaterialProps ROUTINE SPECIFICATIONS

Arguments mode
Facet offset mode

= GOFF, No facet offset set

= GBOUNDARYAWAY, Shift boundary away from viewpoint

= GBOUNDARYNEAR, Shift boundary towards the viewpoint

= GINTERIORAWAY, Shift interior away from viewpoint

= GINTERIORNEAR, Shift interior towards the viewpoint

Description The routine gEnqFacetOffsetMode() returns the current facet offset mode as set by

gSetFacetOffsetMode().

See Also Page 303

gSetFacetOffsetMode

gEnqFog

Syntax

C/C++: void gEnqFog(GFOGATT *attribs);

F90: subroutine gEnqFog(attribs)

type (GFOGATT), intent(out) :: attribs

Arguments attribs.mode
Fog mode

= GNONE, No fog

= GLINEAR, Linear for depth-cueing

= GEXP1, Exponential for cloud and heavy fog

= GEXP2, Exponential for smoke and weather haze

attribs.colour
Fog colour (index or 24bit true colour value)

attribs.density
Fog density for exponential modes (default = 0.0025)

attribs.start
Start depth for linear fog (default = 0.0)

attribs.end
End depth for linear fog (default = 1.0)

Description The routine gEnqFog() returns the current fog settings.

See Also Page 338

gDefineFog

555

ROUTINE SPECIFICATIONS gEnqFog

gEnqFontStyle

Syntax

C/C++: void gEnqFontStyle(int *font, GFNTFILSTY *style, int *weight, int *space, int *rep);

F90: subroutine gEnqFontStyle(font, style, weight, space, rep)

integer, intent(out) :: font

type (GFNTFILSTY), intent(out) :: style

integer, intent(out) :: weight,space,rep

Arguments font
Current font number

style
Font filling style definition

weight
Font weight

< 0, Font thinning factor

= 0, Normal font weight

> 0, Font weighting factor

space
Font spacing

= 0, Normal font spacing

= 1, Force equal spacing

rep
Font representation

= 0, for normal font representation

= 1, Display as font 0

= 2, Display as boxes (type 1)

= 3, Display as font 0 and boxes (type 1)

= 4, Display as boxes (type 2)

= 5, Display as font 0 and boxes (type 2)

= 6, Display as boxes (type 3)

= 7, Display as font 0 and boxes (type 3)

Description The routine gEnqFontStyle() returns the current settings of the font attributes. The following

list shows each parameter’s description, and the routine in which it is set.

Parameter Description Set By

font font number gSetCharFont
style Setting for the font fill style gSetFontFillStyle
weight Font weight gSetFontWeight
space Font spacing gSetFontSpacing
rep Software font representation gSetFontForm

556

gEnqFontStyle ROUTINE SPECIFICATIONS

See Also Page 147

gSetCharFont

gSetFontForm

gSetFontSpacing

gSetFontFillStyle

gSetFontWeight

gEnqGinoState

Syntax

C/C++: void gEnqGinoState(GLIBSTATE *gstate);

F90: subroutine gEnqGinoState(gstate)

type (GLIBSTATE), intent(out) :: gstate

Arguments gstate.gino
GINO State

= 1, GINO initialized

= 2, Device nominated

= 3, Device initialized and drawing units defined

= 4, Picture started and drawing limits defined

= 5, Segment open and drawing started

gstate.graf
GINOGRAF state

= 0, Library not initialized

= 1, Library initialized

gstate.surf
GINOSURF state

= 0, Library not initialized

= 1, Library initialized

gstate.menu
GINOMENU state

= 0, Library not initialized

= 1, Library initialized

Description The routine gEnqGinoState() returns the state of GINO and its associated libraries.

The variable gstate.gino gives the state of GINO, in terms of device nomination and whether

drawing has started. All GINO routines either require GINO to be in a particular state before

operation or set GINO to a particular state after operation. These are classed as follows:

557

ROUTINE SPECIFICATIONS gEnqGinoState

State Require GINO in State Move GINO to state

1 Set or enqure GINO Attribute Close driver
2 Device Qualification Device nomination

or device enquiry
3 Set device attribute table Clear picture
4 Set Device attribute Close segment
5 Drawing Routine Open segment or drawing

Note that all drawing is placed in the dummy segment zero even if segments are not active. If

segments are active the currently opened segment can be obtained through the routine

gEnqOpenSeg().

The state of GINO’s associated libraries can be obtained from the remaining three elements of

the GLIBSTATE structure.

See Also Page 26, 50

gEnqOpenSeg

gEnqHardFontList

Syntax

C/C++: void gEnqHardFontList(int list[], int n, int *count);

F90: subroutine gEnqHardFontList(list, n, count)

integer, intent(in) :: n

integer, intent(out) :: list(*), count

Arguments list
Array containing font numbers

n
Number of elements in list

count
Number of font numbers available

Description The routine gEnqHardFontList() returns a list of hardware font numbers that the current device

has available. The numbers returned pertain to the font numbers specified in the routine

gSetCharFont().

The user should set n to be the size of the array list and no more than n font numbers will be

returned. The actual number of font numbers available is returned in count whether this is

larger or smaller than n.

See Also Page 147

gSetCharFont

558

gEnqHardFontList ROUTINE SPECIFICATIONS

gEnqHatchStyle

Syntax

C/C++: void gEnqHatchStyle(int fill, GHATSTY *rep);

F90: subroutine gEnqHatchStyle(fill, rep)

integer, intent(in) :: fill

type (GHATSTY), intent(out) :: rep

Arguments fill
Hatch style index

rep
Hatch style representation

Description The routine gEnqHatchStyle() returns the values defined for a particular entry in the table of

hatch styles in the structure rep. The elements are initially defined by GINO but may

subsequently have been redefined by calls to gDefineHatchStyle(). The elements of the hatch

style structure are discussed under the routine gDefineHatchStyle().

See Also Page 172, 182

gDefineHatchStyle

gEnqHLS

Syntax

C/C++: void gEnqHLS(int col, GHLSSTY *hls);

F90: subroutine gEnqHLS(col, hls)

integer, intent(in) :: col

type (GHLSSTY), intent(out) :: hls

Arguments col
Colour index

< 0, Dummy definition

= GBACKGROUND, Background colour

> 0, Index up to device capability

hls
Hue, lightness and saturation values

Description The routine gEnqHLS() returns the hue, lightness and saturation values identified by col. The

colour may have been defined by a routine other than gDefineHLS(), in which case the colour

coordinates are converted to HLS. If col is less than zero, the colour values returned are those

last specified by any of the colour definition routines.

559

ROUTINE SPECIFICATIONS gEnqHatchStyle

The default values are returned by gEnqHLS() until the colour identified by col is redefined by

any call to the colour definition routines.

The default values correspond to as many of the standard GINO colours as the device can

implement. For plotters and other devices that do not cater for variable colours or if col is out

of range for the device, gEnqHLS() returns hls.hue, hls.light and hls.sat set to zero.

See Also Page 216

gDefineHLS

gDefineHSV

gDefineRGB

gEnqHSV

Syntax

C/C++: void gEnqHSV(int col, GHSVSTY *hsv);

F90: subroutine gEnqHSV(col, hsv)

integer, intent(in) :: col

type (GHSVSTY), intent(out) :: hsv

Arguments col
Colour index

< 0, Dummy definition

= GBACKGROUND, Background colour

> 0, Index up to device capability

hsv
Hue, saturation and value settings

Description The routine gEnqHSV() returns the hue, saturation and value settings identified by col. The

colour may have been defined by a routine other than gDefineHSV(), in which case the colour

coordinates are converted to HSV. If col is less than zero, the colour values returned are those

last specified by any of the colour definition routines.

The default values are returned by gEnqHSV() until the colour identified by col is redefined by

any call to the colour definition routines.

The default values correspond to as many of the standard GINO colours as the device can

implement. For plotters and other devices that do not cater for variable colours or if col is out

of range for the device, gEnqHSV() returns hsv.hue, hsv.sat and hsv.value set to zero.

See Also Page 214

gDefineHLS

gDefineHSV

gDefineRGB

560

gEnqHSV ROUTINE SPECIFICATIONS

gEnqImageFile

Syntax

C/C++: void gEnqImageFile(char file[], int *type, int *ixgrid, int *iygrid, int *nbpp, int *ncols);

F90: subroutine gEnqImageFile(file, type, ixgrid, iygrid, nbpp, ncols)

character*(*), intent(in) :: file

integer, intent(out) :: type,ixgrid,iygrid,nbpp,ncols

Arguments file
Image file name

type
Image type

= 0, Unknown image file type

= GBMPFILE, Uncompressed Windows Bitmap file (BMP)

= GXWDFILE, X Windows Dump format (XWD)

= GICOFILE, Windows Icon file (ICO)

= GJPEGFILE, JPEG image format (JPG)

= GPNGFILE, Portable Network Graphics file (PNG)

ixgrid
Image width in pixels

iygrid
Image height in pixels

nbpp
Number of bits per pixel

ncols
Number of colours in image file colour table

Description The routine gEnqImageFile() can be used to interrogate an image file to determine the image

type and a number of its attributes prior to reading in the image file itself.

Five image file types are recognised by this routine (matching those that can be interpreted by

the routine gGetImageFile()) and the attributes returned are as described above.

See Also Page 74

gGetImageFile

561

ROUTINE SPECIFICATIONS gEnqImageFile

gEnqImpAttribs

Syntax

C/C++: void gEnqImpAttribs(GIMPLEMENTATION *impl);

F90: subroutine gEnqImpAttribs(gstate)

type (GIMPLEMENTATION), intent(out) :: impl

Arguments impl.rmin
Minimum real value for machine/implementation

impl.rmax
Maximum real value for machine/implementation

impl.rsmall
Minimum real value > 0.0 for machine/implementation

impl.rsig
Small significant real number for machine/implementation

impl.imin
Minimum integer value for machine/implementation

impl.imax
Maximum integer value for machine/implementation

impl.nipr
Number of integer words per real word

impl.nfmax
Number of bytes per integer word

impl.nbits
Number of bits per machine word

impl.nbmask
Integer word with all bits set to 1

impl.iwtres
Smallest unit of time in milliseconds for generating time delay

impl.nbyter
Number of bytes per unit in unformatted file record length specification

impl.nfumin
Lowest valid Fortran unit number

impl.nfumax
Higest valid Fortran unit number

impl.ndevdf
Default Fortran unit number used for device output to file

562

gEnqImpAttribs ROUTINE SPECIFICATIONS

impl.nsavdf
Default Fortran unit number used for SAVDRA device output

impl.nfdinp
Fortran unit used for command input

impl.nfdout
Fortran unit used for command output

impl.nfertr
Fortran unit used for error and trace output

impl.nfmess
Fortran unit used to read GINO error message file

impl.nfsdf
Fortran unit used for Software Display File

impl.nffont
Fortran unit used for reading GINO font file

impl.nficon
Fortran unit used for reading GINOMENU icon file

impl.nfstat
Fortran unit used for GINO-F state stack file

impl.nfimpl
Implementation number

impl.nflice
GINO license number

impl.iso
Character set flag (0=ANSI/DOS, 1=ISO)

impl.dsep
Pathname directory separator character (’\’ for PC, ‘/’ for Unix, ‘.’ for VMS)

Description The routine gEnqImpAttribs() returns the settings of various implementation dependent

variables. Where a Fortran file unit is returned set to -1, this means that the particular unit has

not been opened and any available unit will be used when required.

See Also Appendix A

gEnqKeyState

Syntax

C/C++: int gEnqKeyState(int key);

F90: integer function gEnqKeyState(key)

integer, intent(in) :: key

563

ROUTINE SPECIFICATIONS gEnqKeyState

Arguments key
key code

Description The function gEnqKeyState() returns the status of a keyboard key at the time the function is

called. The function returns 0 (zero) if the key is not pressed and 1 if it is.

The possible values of key are documented under gGetEventRecord() with the following

additional special key codes:

key Special Key Description

-1 Left mouse button
-2 Middle mouse button
-3 Right mouse button

-20 Shift
-21 Ctrl
-22 Alt

-30 Caps lock
-31 Num lock
-32 Scroll lock

This routine is only supported on windowing devices.

See Also Page 457

gGetEventRecord

gEnqLastErrors

Syntax

C/C++: void gEnqLastErrors(int list[], int n, int *count);

F90: subroutine gEnqLastErrors(list, n, count)

integer, intent(in) :: n

integer, intent(out) :: list(*),count

Arguments list
Integer array returning error and warning numbers

n
Number of error and warning numbers to return

= 0, Nothing returned in list

count
Number of errors logged since last call to gSetMaxErrorLimit()

564

gEnqLastErrors ROUTINE SPECIFICATIONS

Description GINO keeps a count of all errors. The count is reset whenever gSetMaxErrorLimit() is called.

gEnqLastErrors() returns the current count in count. GINO also stores the 12 most recent error

and warning numbers. Error numbers are positive, warning numbers are negative.

gEnqLastErrors() returns n error and warning numbers. All numbers beyond those currently

recorded are set to zero. The numbers returned in array list start with the most recent error or

warning.

If n is less than or equal to zero, no numbers are returned in list. If n is less than zero, a

warning message is output.

See Also Page 30

gSetMaxErrorLimit

gEnqLightAttribs

Syntax

C/C++: void gEnqLightAttribs(int light, GLITATT *att);

F90: subroutine gEnqLightAttribs(light, att)

integer, intent(in) :: light

type (GLITATT), intent(out) :: att

Arguments light
Light source number (1-8)

att.state
Light state

= GON, Light is switched on

= GOFF, Light is switched off

att.type
Light type

= GAMBIENT

= GDIRECTIONAL

= GPOINTLIGHT

= GSPOTLIGHT

att.col
Light colour

att.dir
Direction vector

att.pos
Position

att.att1
Constant attenuation factor

565

ROUTINE SPECIFICATIONS gEnqLightAttribs

att.att2
Linear attenuation factor

att.conc
Spot light concentration

att.spang
Spot light spread angle in degrees

att.spec
Specular colour component

Description The routine gEnqLightAttribs() returns the current attributes of the specified light source. The

information is returned in a structure of type GLITATT, which contains values set by

gDefineLightSource() and gSetLightSwitch().

See Also Page 333

gDefineLightSource

gSetLightSwitch

gEnqLineColour

Syntax

C/C++: void gEnqLineColour(int *col);

F90: subroutine gEnqLineColour(col)

integer, intent(out) :: col

Arguments col
Current colour index

Description The routine gEnqLineColour() returns the currently requested colour index set by

gSetLineColour(). If col falls outside the range of colours of the device, the pen colour will be

different from the requested colour index. The pen colour is determined by calling

gEnqSelectedPen().

See Also Page 117

gSetLineColour

gEnqSelectedPen

gEnqLineEnd

Syntax

C/C++: void gEnqLineEnd(int *end);

F90: subroutine gEnqLineEnd(end)

integer, intent(out) :: end

Arguments end
Current line end type

566

gEnqLineColour ROUTINE SPECIFICATIONS

= GNONE, No ends

= GSQUARE, Square ends

= GROUND, Round ends

> 2, No ends or device dependent

Description The routine gEnqLineEnd() returns the currently requested line end type. The default for the

line end type is ‘no ends’. The line end type may be changed by calling gSetLineEnd().

See Also Page 120

gSetLineEnd

gEnqLineStyle

Syntax

C/C++: void gEnqLineStyle(int line, GLINSTY *rep);

F90: subroutine gEnqLineStyle(line, rep)

integer, intent(in) :: line

type (GLINSTY), intent(out) :: rep

Arguments line
Line style index

= GCURRENT, Current line style

= 1 - 256, Stored line style

rep
Line style representation

Description The routine gEnqLineStyle() returns the line attribute values defined by the specified line style.

If line is zero or out of range, the current line attributes are returned. If line is out of range, a

warning message is output. Otherwise, one of 256 sets of line attributes, stored in the line style

table, is returned. The line style representation elements are discussed under the routine

gDefineLineStyle().

See Also Page 129

gSetBrokenLine

gSetLineColour

gSetLineEnd

gSetLineVis

gSetLineWidth

gSetPenType

567

ROUTINE SPECIFICATIONS gEnqLineStyle

gEnqLineVis

Syntax

C/C++: void gEnqLineVis(int *vis);

F90: subroutine gEnqLineVis(vis)

integer, intent(out) :: vis

Arguments vis
Current line visibility

= GOFF, Off

= GON, On

Description The routine gEnqLineVis() returns the current setting for the line visibility. The default is for

line visibility to be switched on. The line visibility may be changed by calling gSetLineVis().

See Also Page 116

gSetLineVis

gEnqLineWidth

Syntax

C/C++: void gEnqLineWidth(float *width);

F90: subroutine gEnqLineWidth(width)

real, intent(out) :: width

Arguments width
Current line width in current units

Description The routine gEnqLineWidth() returns the currently requested line width. The default for the

line width is either 0.2mm or the initial thickness for lines generated by the device. The line

width may be changed by calling gSetLineWidth().

The actual thickness of lines generated by the device can be enquired by calling

gEnqSelectedPen(). If the device is limited in its ability to generate lines of a specified

thickness, the value returned by gEnqSelectedPen() will almost certainly differ from the

currently requested line width.

See Also Page 119

gEnqSelectedPen

gSetLineWidth

568

gEnqLineVis ROUTINE SPECIFICATIONS

gEnqLineWidthMode

Syntax

C/C++: void gEnqLineWidthMode(int *sw);

F90: subroutine gEnqLineWidthMode(sw)

integer, intent(out) :: sw

Arguments sw
Thick line generation mode

= GHARDWARE, Hardware thick line generation

= GMIXWARE, Mixed hardware/software thick line generation

= GSOFTWARE, Software thick line generation

Description The routine gEnqLineWidthMode() returns the current thick line generation mode for lines

greater than one device unit wide as set by the routine gSetLineWidthMode().

See Also Page 119

gSetLineWidthMode

gEnqLineWidthScaling

Syntax

C/C++: void gEnqLineWidthScaling(float *scale);

F90: subroutine gEnqLineWidthScaling(scale)

real, intent(out) :: scale

Arguments scale
Line width scale factor

Description The routine gEnqLineWidthScaling() returns the line width scale factor set by

gSetLineWidthScaling(). The scale factor affects all settings of line width including user

settings through gSetLineWidth() and internal settings for character underlining and font

weight.

See Also Page 120

gSetLineWidthScaling

569

ROUTINE SPECIFICATIONS gEnqLineWidthMode

gEnqMaskState

Syntax

C/C++: void gEnqMaskState(int *sw, GLIMIT *bounds);

F90: subroutine gEnqMaskState(sw, bounds)

integer, intent(out) :: sw

type (GLIMIT), intent(out) :: bounds

Arguments sw
State of masking switch

= 0, Masking off

= 1, Masking on, rectangular limits returned

= 2, Polygonal masking on, polygon rectangular boundary

returned

bounds
Mask bounds

Description The routine gEnqMaskState() returns the current masking state.

If the mask has been defined using gSetMask2D(), the mask limits are returned in bounds. If a

polygonal mask has been defined using gSetPolygonMask() this routine only returns the

rectangular extent of the defined polygons. The list of polygon identifiers can be obtained

using gEnqPolygonMaskList().

If no mask has been defined with gSetMask2D() or gSetPolygonMask(), the masking state will

be returned as off, irrespective of the call to gSetMaskMode(), and all its bounds are returned

as 0.0.

See Also Page 225

gSetMask2D

gSetPolygonMask

gEnqPolygonMaskList

gEnqMaterial

Syntax

C/C++: void gEnqMaterial(int mat, GMATSTY *rep);

F90: subroutine gEnqMaterial(mat, rep)

integer, intent(in) :: mat

type (GMATSTY), intent(out) :: rep

Arguments mat
Material table index (1-256)

570

gEnqMaskState ROUTINE SPECIFICATIONS

rep.ambient
Ambient reflection coefficient (0.0 - 1.0)

rep.diffuse
Diffuse reflection coefficient (0.0 - 1.0)

rep.specular
Specular reflection coefficient (0.0 - 1.0)

rep.shine
Specular concentration (shininess) (%)

rep.trans
Translucence (filtering) (0.0 - 1.0)

Description The routine gEnqMaterial() returns the material coefficients and values of an entry in the

material table. These values are set using the routine gDefineMaterial().

See Also Page 341

gDefineMaterial

gEnqMaterialAttribs

Syntax

C/C++: void gEnqMaterialAttribs(int *fcol, int *bcol, int *fmat, int *bmat);

F90: subroutine gEnqMaterialAttribs(fcol, bcol, fmat, bmat)

integer, intent(out) :: fcol, bcol, fmat, bmat

Arguments fcol
Front face material colour

bcol
Back face material colour

fmat
Front face material index

bmat
Back face material index

Description The routine gEnqMaterialAttribs() returns the current settings for the material colour and the

material table indices for both front and back faces of facets. These parameters are set by the

routines gSetMaterialColour() and gSetMaterialIndex() respectively.

See Also Page 341

gSetMaterialColour

gSetMaterialIndex

571

ROUTINE SPECIFICATIONS gEnqMaterialAttribs

gEnqMaxDrawingLimits

Syntax

C/C++: void gEnqMaxDrawingLimits(GDIM *dim);

F90: subroutine gEnqMaxDrawingLimits(dim)

type (GDIM), intent(out) :: dim

Arguments dim
Maximum paper or device limits

Description The routine gEnqMaxDrawingLimits() returns the maximum paper or workstation window

limits for the currently nominated device.

These limits may be different to those returned by gEnqDrawingLimits(), even at device

nomination, as gEnqDrawingLimits() always returns the current paper or workstation window

limits which may be less than the maximum available on that device.

See Also Page 46

gEnqDrawingLimits

gEnqMousePos

Syntax

C/C++: void gEnqMousePos(int env, GPIXEL *point);

F90: subroutine gEnqMousePos(env, point)

integer, intent(in) :: env

type (GPIXEL), intent(out) :: point

Arguments env
Mouse position environment

GSCREEN Relative to screen or display area

GDRAWINGAREA Relative to current drawing area or device window

point
Mouse position in pixels

Description The routine gEnqMousePos() enquires the current position of the graphics pointer or mouse in

the structure point relative to the top left corner of the specified environment passed in env.

The routine gEnqPosOfPixel() can be used to translate the mouse position relative to the

current drawing area or device window (GDRAWINGAREA) to a picture position and the

routine gSetMousePos() can be used to set the current mouse position.

572

gEnqMaxDrawingLimits ROUTINE SPECIFICATIONS

See Also Page 456

gSetMousePos

gEnqPosOfPixel

Appendix B

gEnqNumberOfErrors

Syntax

C/C++: void gEnqNumberOfErrors(int *count);

F90: subroutine gEnqNumberOfErrors(count)

integer, intent(out) :: count

Arguments count
Number of trapped errors and warnings

= -1, Error trapping disabled

Description The routine gEnqNumberOfErrors() returns the number of errors and warnings generated since

the last call to gSetErrorTrap(1). If error trapping is disabled, count is returned set to -1. A call

to gEnqLastErrors() will return the actual error and warning numbers generated (up to a

maximum of 12).

See Also Page 30

gEnqLastErrors

gSetErrorTrap

gEnqOpenSeg

Syntax

C/C++: void gEnqOpenSeg(int *nseg);

F90: subroutine gEnqOpenSeg(nseg)

integer, intent(out) :: nseg

Arguments nseg
Currently opened segment

Description The routine gEnqOpenSeg() returns the currently opened segment as set by the routine

gOpenSeg(). If no segment is currently open nseg returns a value of zero.

See Also Page 427

gOpenSeg

573

ROUTINE SPECIFICATIONS gEnqNumberOfErrors

gEnqPenType

Syntax

C/C++: void gEnqPenType(int *type);

F90: subroutine gEnqPenType(type)

integer, intent(out) :: type

Arguments type
Pen type

= 0, Unspecified

Description The routine gEnqPenType() returns the currently requested pen type. Most devices will not

provide all pen types so quite often the pen type made available will not correspond to the

requested pen type. The actual pen type is determined by calling gEnqSelectedPen().

See Also Page 120

gEnqSelectedPen

gSetPenType

gEnqPicturePos

Syntax

C/C++: void gEnqPicturePos(GPOINT3 *point);

F90: subroutine gEnqPicturePos(point)

type (GPOINT3), intent(out) :: point

Arguments point
The coordinates with respect to the picture axes and in the current units of the current drawing
position

Description The routine gEnqPicturePos() sets the argument point to the current drawing position in picture

coordinates.

See Also Page 238, 368

574

gEnqPenType ROUTINE SPECIFICATIONS

gEnqPixelAttribs

Syntax

C/C++: void gEnqPixelAttribs(int *ori, float *xsca, float *ysca, int *xrep, int *yrep);

F90: subroutine gEnqPixelAttribs(ori, xsca, ysca, xrep, yrep)

integer, intent(out) :: ori

real, intent(out) :: xsca,ysca

integer, intent(out) :: xrep,yrep

Arguments ori
An integer indicating the orientation of the pixel array

= 0, None

= 1, 90 degrees anti-clockwise

= 2, 180 degrees anti-clockwise

= 3, 270 degrees anti-clockwise

xsca,ysca
X and Y scaling factors

xrep,yrep
Direction and number of pixels of replication

Description gEnqPixelAttribs() returns the current pixel scaling and replication attributes as set by the

routines gSetPixelTransform() and gSetPixelReplication().

The orientation and scale factors are set by the routine gSetPixelTransform() and the

replication values are set by the routine gSetPixelReplication(). A fuller explanation of the

returned variables can be found under the appropriate routine.

See Also Page 202

gSetPixelReplication

gSetPixelTransform

gEnqPixelPacking

Syntax

C/C++: void gEnqPixelPacking(int *nbp, int *nrb, int *npw, int *ndir, int *dir);

F90: subroutine gEnqPixelPacking(nbp, nrb, npw, ndir, dir)

integer, intent(out) :: nbp,nrb,npw,ndir,dir

Arguments nbp
The number of bits per pixel

nrb
The number of relevant bits

575

ROUTINE SPECIFICATIONS gEnqPixelAttribs

npw
The number of pixels per word

ndir
Pixel order within machine word

= +1, Normal direction

= -1, Reverse direction

dir
Drawing direction

= 1, Start top left, access horizontally

= 2, Start top left, access vertically

= 3, Start top right, access horizontally

= 4, Start top right, access vertically

= 5, Start bottom left, access horizontally

= 6, Start bottom left, access vertically

= 7, Start bottom right, access horizontally

= 8, Start bottom right, access vertically

Description gEnqPixelPacking() returns the users pixel data characteristics as set by gDefinePixelPacking()

and used by gDrawPixelArea() and gGetPixelArea(). It defines the form of bit packing or

unpacking between the users data storage and the actual device.

See Also Page 202

gDefinePixelPacking

gDrawPixelArea

gGetPixelArea

gEnqPixelPos

Syntax

C/C++: void gEnqPixelPos(float xsc, float ysc, GPIXEL *pix);

F90: subroutine gEnqPixelPos(xsc, ysc, pix)

real, intent(in) :: xsc,ysc

type (GPIXEL), intent(out) :: pix

Arguments xsc,ysc
Screen coordinates with respect to the picture axes within the device limits

pix
Returned pixel coordinates of the screen position

Description The routine gEnqPixelPos() returns the pixel coordinates (pix) of a screen position (xsc,ysc)

with respect to the picture axes.

NB: The pixel coordinate system has its origin at the top left corner of the device.

See Also Page 198

576

gEnqPixelPos ROUTINE SPECIFICATIONS

gEnqPixelResolution

Syntax

C/C++: void gEnqPixelResolution(int *nxpix, int *nypix);

F90: subroutine gEnqPixelResolution(nxpix, nypix)

integer, intent(out) :: nxpix,nypix

Arguments nxpix
The number of pixels in the horizontal direction

nypix
The number of pixels in the vertical direction

Description The routine gEnqPixelResolution() returns the pixel resolution for the current device limits.

The range of pixels is from 0 to nxpix-1 and 0 to nypix-1.

The pixel origin is at the top left of the device limits.

See Also Page 190

gEnqPointMode

Syntax

C/C++: void gEnqPointMode(int *switch);

F90: subroutine gEnqPointMode(switch)

integer, intent(out) :: switch

Arguments switch
Point storage mode

= GOFF, Switch point storing off

= GSPACE, Points stored in space coordinates

= GPICTURE, Points stored in picture coordinates

Description The routine gEnqPointMode() returns the current point storage mode.

See Also Page 104

gSetPointMode

577

ROUTINE SPECIFICATIONS gEnqPixelResolution

gEnqPolygonList

Syntax

C/C++: void gEnqPolygonList(int list[], int n, int *count);

F90: subroutine gEnqPolygonList(list, n, count)

integer, intent(in) :: n

integer, intent(out) :: list(*),count

Arguments list
Integer array returning selected polygon identifiers

n
Number of polygon identifiers to return

= 0, Nothing returned in list

count
Number of polygon identifiers in last call to gSelectPolygons()

Description The routine gEnqPolygonList() returns a list of polygon identifiers that are currently selected

for polygon filling with the gFillSelectedPolygons() routine. The polygons are selected using

the routine gSelectPolygons().

The array list should be declared of length n, and no more than that number of identifiers are

returned. count returns the actual number of polygon identifiers selected with

gSelectPolygons() even if this number is greater then n. If count = 0 then all defined polygons

are currently selected for filling.

If n is less than or equal to zero, no numbers are returned in list. If n is less than zero, a

warning message is output.

See Also Page 257

gSelectPolygons

gEnqPolygonMaskList

Syntax

C/C++: void gEnqPolygonMaskList(int list[], int n, int *count);

F90: subroutine gEnqPolygonMaskList(list, n, count)

integer, intent(in) :: n

integer, intent(out) :: list(*),count

Arguments list
Integer array returning selected polygon identifiers

578

gEnqPolygonList ROUTINE SPECIFICATIONS

n
Number of polygon identifiers to return

= 0, Nothing returned in list

count
Number of polygon identifiers in last call to gSetPolygonMask()

Description The routine gEnqPolygonMaskList() returns a list of polygon identifiers that are currently

selected for polygon masking. The polygons are selected using the routine gSetPolygonMask().

The array list should be declared of length n, and no more than that number of identifiers are

returned. count returns the actual number of polygon identifiers selected with

gSetPolygonMask() even if this number is greater then n. If count = 0 then polygon masking is

not being used.

If n is less than or equal to zero, no numbers are returned in list. If n is less than zero, a

warning message is output.

See Also Page 266

gSetPolygonMask

gEnqPolygonWindowList

Syntax

C/C++: void gEnqPolygonWindowList(int list[], int n, int *count);

F90: subroutine gEnqPolygonWindowList(list, n, count)

integer, intent(in) :: n

integer, intent(out) :: list(*),count

Arguments list
Integer array returning selected polygon identifiers

n
Number of polygon identifiers to return

= 0, Nothing returned in list

count
Number of polygon identifiers in last call to gSetPolygonWindow()

Description The routine gEnqPolygonWindowList() returns a list of polygon identifiers that are currently

selected for polygon windowing. The polygons are selected using the routine

gSetPolygonWindow().

The array list should be declared of length n, and no more than that number of identifiers are

returned. count returns the actual number of polygon identifiers selected with

gSetPolygonWindow() even if this number is greater then n. If count = 0 then polygon

windowing is not being used.

579

ROUTINE SPECIFICATIONS gEnqPolygonWindowList

If n is less than or equal to zero, no numbers are returned in list. If n is less than zero, a

warning message is output.

See Also Page 266

gSetPolygonWindow

gEnqPolygonWorkspace

Syntax

C/C++: void gEnqPolygonWorkspace(int *npoly, int *nvert, int *nfree, int *ident);

F90: subroutine gEnqPolygonWorkspace(npoly, nvert, nfree, ident)

integer, intent(out) :: npoly,nvert,nfree,ident

Arguments npoly
Number of polygons defined so far

nvert
Number of vertices defined so far

nfree
Number of real words still available in the polygon workspace

ident
Current polygon identifier

Description The routine gEnqPolygonWorkspace() returns information about the storage of polygons.

npoly and nvert together describe the amount of space in gDefinePolygonWorkspace() that has

been used. Each polygon requires a header of eight real words and each coordinate pair

requires two real words.

Thus:

nw = 8*npoly +2 *nvert+nfree = size of polygon workspace (see

gDefinePolygonWorkspace())

ident is either 0 or the identifier defined by the last call to gSetPolygonIdent().

npoly, nvert and nfree are all set to zero if no polygon workspace has been defined, i.e. no call

has been made to gDefinePolygonWorkspace().

See Also Page 250

gDefinePolygonWorkspace

gSetPolygonIdent

580

gEnqPolygonWorkspace ROUTINE SPECIFICATIONS

gEnqPosOfPixel

Syntax

C/C++: void gEnqPosOfPixel(int ix, int iy, GPOINT *point);

F90: subroutine gEnqPosOfPixel(ix, iy, point)

integer, intent(in) :: ix,iy

type (GPOINT), intent(out) :: point

Arguments ix,iy
Pixel position within the device coordinates

point
Returned screen coordinates of pixel position

Description The routine gEnqPosOfPixel() returns the screen coordinates (point) of a pixel position (ix,iy).

NB: The pixel coordinate system has its origin at the top left corner of the device.

See Also Page 198

gEnqQueueLength

Syntax

C/C++: void gEnqQueueLength(int *len);

F90: subroutine gEnqQueueLength(len)

integer, intent(out) :: len

Arguments len
The length of the event queue

= 0, If no events are waiting

> 0, If any events are waiting

Description The routine gEnqQueueLength() is called to enquire whether an event is waiting in the queue

to be read. If none, len is set to 0. If an event is waiting, len is set to the number of events in

the queue. In some cases, the device may not know exactly how many events are waiting, in

which case, len will be set to the minimum.

See Also Page 456

581

ROUTINE SPECIFICATIONS gEnqPosOfPixel

gEnqRGB

Syntax

C/C++: void gEnqRGB(int col, GRGBSTY *rgb);

F90: subroutine gEnqRGB(col, rgb)

integer, intent(in) :: col

type (GRGBSTY), intent(out) :: rgb

Arguments col
Colour index

< 0, Dummy definition

= GBACKGROUND, Background colour

> 0, Index up to device capability

rgb
Red, green, blue colour components

Description The routine gEnqRGB() returns the red, green, blue values identified by col. The colour may

have been defined by a routine other than gDefineRGB(), in which case the colour coordinates

are converted to RGB. If col<0, the colour values returned are those last specified by any of the

colour definition routines.

The default values are returned by gEnqRGB() until the colour identified by col is redefined by

any call to the colour definition routines.

The default values correspond to as many of the standard GINO colours as the device can

implement. For plotters and other devices that do not cater for variable colours, or if col is out

of range for the device, gEnqRGB() returns rgb.red, rgb.green and rgb.blue set to zero.

See Also Page 212

gDefineHLS

gDefineHSV

gDefineRGB

gEnqSavdraDimension

Syntax

C/C++: void gEnqSavdraDimension(GFILE *fp, int *type, GDIM *dim);

F90: subroutine gEnqSavdraDimension(unit, type, dim)

integer, intent(in) :: unit

integer, intent(out) :: type

type (GDIM), intent(out) :: dim

582

gEnqRGB ROUTINE SPECIFICATIONS

Arguments fp
GINO-C file pointer

unit
Fortran 90 File unit

type
Type of SAVDRA metafile

= 1, SAVDRA metafile

= 2, SAVPIC metafile

dim
Paper size of SAVDRA metafile

Description The routine gEnqSavdraDimension() returns the type and paper limits of a GINO SAVDRA

metafile without interpreting the whole file.

The metafile should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate.

See Also Page 64

gFopen

gEnqSavdraSegAttribs

Syntax

C/C++: void gEnqSavdraSegAttribs(GFILE *fp, int nseg, GPICATT *att);

F90: subroutine gEnqSavdraSegAttribs(unit, nseg, att)

integer, intent(in) :: unit,nseg

type (GPICATT), intent(out) :: att

Arguments fp
GINO-C file pointer

unit
Fortran 90 File unit

nseg
Picture segment number

att.exist
Flag indicating existence of segment

= 0, Segment nseg does not exist

= 1, Segment nseg exists

= 2, Segment nseg exists as a group

att.vis
Visibility status

583

ROUTINE SPECIFICATIONS gEnqSavdraSegAttribs

= GOFF, invisible (not displayed)

= GON, visible (displayed)

att.sens
Sensitivity status

= GOFF, Non hit-sensitive

= GON, Hit-sensitive

att.mark
‘Marked’ status

= GUNMARK, Not marked

= GMARK, Marked

att.anchor
Picture anchor point (GPOINT3 structure)

Description The routine gEnqSavdraSegAttribs() returns the segment attributes of segment nseg in a GINO

SAVDRA metafile. The metafile is scanned until the requested segment is found but no

graphical information is interpreted.

The metafile should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate.

See Also Page 65

gFopen

gEnqSavdraSegList

Syntax

C/C++: void gEnqSavdraSegList(GFILE *fp, int list[], int n, int *count);

F90: subroutine gEnqSavdraSegList((unit, list, n, count)

integer, intent(in) :: unit,n

integer, intent(out) :: list(*),count

Arguments fp
GINO-C file pointer

unit
Fortran 90 File unit

list
Integer array returning segment identifiers

n
Number of segment identifiers to return

= 0, Nothing returned in list

count
Number of segment identifiers contained in the metafile

584

gEnqSavdraSegList ROUTINE SPECIFICATIONS

Description The routine gEnqSavdraSegList() returns a list of segments contained in the opened SAVDRA

metafile. The complete metafile is scanned but no graphical information is interpreted.

The metafile should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate.

The array list should be declared of length n, and no more than that number of identifiers are

returned. The argument count returns the actual number of segment identifiers contained in the

file even if this number is greater then n. If count = 0 then the metafile only contains

information in segment zero.

If n is less than or equal to zero, no numbers are returned in list. If n is less than zero, a

warning message is output.

See Also Page 65

gEnqSavdraSegAttribs

gEnqSegAttribs

Syntax

C/C++: void gEnqSegAttribs(int nseg, GPICATT *att);

F90: subroutine gEnqSegAttribs(nseg, att)

integer, intent(in) :: nseg

type (GPICATT), intent(out) :: att

Arguments nseg
Picture segment number

att.exist
Flag indicating existence of segment

= 0, Segment nseg does not exist

= 1, Segment nseg exists

= 2, Segment nseg exists as a group

att.vis
Visibility status

= GOFF, invisible (not displayed)

= GON, visible (displayed)

att.sens
Sensitivity status

= GOFF, Non hit-sensitive

= GON, Hit-sensitive

att.mark
‘Marked’ status

585

ROUTINE SPECIFICATIONS gEnqSegAttribs

= GUNMARK, Not marked

= GMARK, Marked

att.anchor
Picture anchor point (GPOINT3 structure)

Description The routine gEnqSegAttribs() returns the segment attributes of segment nseg in the structure

att.

Where possible this information is obtained from the display file held in the device. If the

software display file has been activated using gSetSegMode(), any information not obtainable

from the hardware will be supplemented from information held in the software display file. If

no display file is being used or the segment doesn’t exist all arguments are returned as zero.

Where nseg has been defined as a group with gDefineSegGroup(), att.exist is returned as 2 and

all other arguments are returned as zero.

See Also Page 432

gDefineSegGroup

gSetSegVis

gSetSegHit

gMarkSeg

gInsertSegRef

gOpenSeg

gSetSegMode

gEnqSegGroup

Syntax

C/C++: void gEnqSegGroup(int ngrp, int *segmin, int *segmax);

F90: subroutine gEnqSegGroup(ngrp, segmin, segmax)

integer, intent(in) :: ngrp

integer, intent(out) :: segmin,segmax

Arguments ngrp
Segment group number

segmin
Start segment number

segmax
End segment number

Description The routine gEnqSegGroup() returns the range of segment numbers defined for segment group

ngrp. A segment group is defined by calling gDefineSegGroup() and removed by calling

gRemoveSegGroup(). ngrp should lie within the range defined by a call to

gDefineGroupRange(). If gDefineGroupRange() has not been called, the range defaults to 1 to

32767. If ngrp is out of range, segmin and segmax are returned set to -1.

586

gEnqSegGroup ROUTINE SPECIFICATIONS

If the specified segment group does not exist, segmin and segmax are returned set to zero.

Otherwise, segmin and segmax return the range of segment numbers defined for the segment

group.

See Also Page 438

gRemoveSegGroup

gDefineSegGroup

gDefineGroupRange

gEnqSegHit

Syntax

C/C++: void gEnqSegHit(int *nseg, float x, float y, float radius);

F90: subroutine gEnqSegHit(nseg, x, y, radius)

integer, intent(out) :: nseg

real, intent(in) :: x,y,radius

Arguments nseg
Picture segment number

= -1, No picture segment in hit area

x,y
Picture coordinates of hit centre

radius
Radius of hit area in current units

Description The routine gEnqSegHit() simulates a light pen hit in a picture segment. The display buffer is

searched for picture segments that are hit sensitive (see gSetSegHit()) and that cross the hit

area radius. If none are found nseg will be set to -1. The hit area is centred at x,y and has a

radius specified by radius. If more than one picture segment crosses the hit area, either the one

closest to the hit centre or the next in the display file is chosen.

Some devices that support segments do not support this routine in hardware and software

emulation is required.

See Also Page 439

gSetSegHit

gSetSegMode

587

ROUTINE SPECIFICATIONS gEnqSegHit

gEnqSegTransform

Syntax

C/C++: void gEnqSegTransform(int nseg, float *xsca, float *ysca, float *ang, GPOINT *pos);

void gEnqSegTransform2D(int nseg, GMAT2D a);

F90: subroutine gEnqSegTransform(nseg, xsca, ysca, ang, pos)

subroutine gEnqSegTransform2D(nseg,a)

integer, intent(in) :: nseg

real, intent(out) :: xsca,ysca,ang

type (GPOINT), intent(out) :: pos

real, intent(out) :: a(6)

Arguments nseg
Segment name

xsca
Scaling factor for X coordinates

ysca
Scaling factor for Y coordinates

ang
Angle of rotation about anchor point

pos
Received coordinates of current anchor point

a
3 x 2 array to receive the 2-D segment transformation matrix

Description The routines gEnqSegTransform() and gEnqSegTransform2D() return the current segment

transformation for segment nseg either as individual transformation elements or as a 2D

transformation matrix.

These routines match the equivalent routines to set the segment transformation matrix,

however, gEnqSegTransform() can only be used if the segment transformation was set using

gSetSegTransform() which also uses separate values for the scale, rotation and position

elements. gEnqSegTransfrom2D() can be used whichever routine was used to set the segment

transform.

Where possible this information is obtained from the display file held in the device. If the

software display file has been activated using gSetSegMode(), any information not obtainable

from the hardware will be supplemented from information held in the software display file.

If no display file is being used or the segment doesn’t exist, all arguments are returned as zero.

See Also Page 432

gSetSegMode

gSetSegTransform

588

gEnqSegTransform ROUTINE SPECIFICATIONS

gEnqSegWorkspace

Syntax

C/C++: void gEnqSegWorkspace(int *nw, int *nfree);

F90: subroutine gEnqSegWorkspace(nw, nfree)

integer, intent(out) :: nw,nfree

Arguments nw
Number of real words set aside for storing Software Display File

= 0, Software Display File not defined in memory

>0, Size of display file

nfree
Number of free words of memory in the Software Display File

Description The routine gEnqSegWorkspace() returns the number of real words that have been allocated for

use by the Software Display File and the amount of free space in that memory. The space is

allocated by the routine gDefineSegWorkspace().

gEnqSegWorkspace() will return a value of zero if gDefineSegWorkspace() has not been

called, but the Software Display File may still be active in file mode.

See Also Page 426

gDefineSegWorkspace

gEnqSelectedPen

Syntax

C/C++: void gEnqSelectedPen(int *col, float *width, int *type);

F90: subroutine gEnqSelectedPen(col, width, type)

integer, intent(out) :: col,type

real, intent(out) :: width

Arguments col
Colour setting (see gSetLineColour())

width
Pen width in current units (see gSetLineWidth())

type
Pen type (see gSetPenType())

= 0, No pen types implemented

589

ROUTINE SPECIFICATIONS gEnqSegWorkspace

Description The routine gEnqSelectedPen() returns the physical pen attributes currently implemented by

the device. Devices cannot always implement colour, width and pen type exactly as requested

and this is always reflected in the values returned by gEnqSelectedPen(). The colour and pen

type requested simply may not be available or, for devices like plotters where the three

attributes are associated, the exact combination of attributes may not be available. The width

value returned is the pen width in current units.

Note that in the case of direct colour devices, the return value of col will contain a 24bit RGB

triplet irrespective of whether the line colour was selected using a colour identifier, a colour

table index or a 24bit RGB triplet.

See Also Page 113

gSetLineColour

gSetPenType

gEnqShadingMode

Syntax

C/C++: void gEnqShadingMode(GSHADING *att);

F90: subroutine gEnqShadingMode(att)

type (GSHADING), intent(out) :: att

Arguments att.mode
Shading mode

= GNONE, No shading (default)

= GFLAT, Flat shading (using facet normals)

= GGOURAUD, Smooth (Gouraud) shading (using vertex normals)

= GPHONG, Phong shading (using interpolated normals)

att.culling
Culling mode

= GOFF, No culling - Two sided lighting (default)

= GBACK, Ignore back (clockwise) facing polygons

= GFRONT, Ignore front (anti-clockwise) facing polygons

att.blending
Blending mode

= GOFF, Blending disabled (default)

= GON, Blending enabled

att.winding
Facet winding mode

= GANTICLOCKWISE, Anti-clockwise winding = front face (default)

= GCLOCKWISE, Clockwise winding = front face

Description The routine gEnqShadingMode() returns the current lighting and shading settings that affect

the display of 3D shaded objects.

590

gEnqShadingMode ROUTINE SPECIFICATIONS

See Also Page 327

gSetDepthMode

gSetShadingMode

gEnqSpacePos

Syntax

C/C++: void gEnqSpacePos(GPOINT3 *point);

F90: subroutine gEnqSpacePos(point)

type (GPOINT3), intent(out) :: point

Arguments point
The coordinates with respect to the space axes and in the current units of the current drawing
position

Description The routine gEnqSpacePos() sets the argument point to the current drawing position in space

coordinates.

See Also Page 238, 368

gEnqSplineTension

Syntax

C/C++: void gEnqSplineTension(float tension);

F90: subroutine gEnqSplineTension(tension)

real, intent(out) :: tension

Arguments tension
Spline curve tension

Description The routine gEnqSplineTension() returns the current setting of the spline curve tension as set

by the routine gSetSplineTension().

See Also Page 100, 287

gSetSplineTension

gEnqStrExponent

Syntax

C/C++: void gEnqStrExponent(float *relcw, float *relch, float *posexp, float *posind);

F90: subroutine gEnqStrExponent(relcw, relch, posexp, posind)

real, intent(out) :: relcw,relch,posexp,posind

Arguments relcw, relch
Relative character size for exponents and indices

591

ROUTINE SPECIFICATIONS gEnqSpacePos

posexp
Relative character position for exponents

posind
Relative character position for indices

Description The routine gEnqStrExponent() returns the current settings for string exponent attributes set by

gSetStrExponent().

The default size of string exponents and indices is 0.7 times the current character size, with

exponents positioned at 0.6 times the current character height above the base line and indices

positioned 0.3 times the current character height below the base line.

See Also Page 155

gSetStrExponent

gEnqStrJustify

Syntax

C/C++: void gEnqStrJustify(int *jus);

F90: subroutine gEnqStrJustify(jus)

integer, intent(out) :: jus

Arguments jus
String justification setting

= GLEFT, Left-justified

= GCENTRE, Centre-justified

= GRIGHT, Right-justified

Description The routine gEnqStrJustify() returns the current string justification setting as set by

gSetStrJustify().

The default setting is for strings to be left justified.

See Also Page 153

gSetStrJustify

gEnqStrUnderscore

Syntax

C/C++: void gEnqStrUnderscore(int *und);

F90: subroutine gEnqStrUnderscore(und)

integer, intent(out) :: und

Arguments und
String underscore switch

592

gEnqStrJustify ROUTINE SPECIFICATIONS

= GOFF, Underscore off

= GON, Underscore on

Description The routine gEnqStrUnderscore() returns the current string underscore switch as set by

gSetStrUnderscore().

Underscoring can also be switched on within strings using the *S escape sequence, but

gEnqStrUnderscore() is not able to detect this as the switch is switched off at the end of the

string in these circumstances.

The default setting is for strings with no underscoring.

See Also Page 152

gSetStrUnderscore

gEnqSysArgs

Syntax

C/C++: void

F90: subroutine gEnqSysArgs(n, args)

integer, intent(inout) :: n

character*(*), intent(out) :: args(*)

Arguments n
Size of args array on entry, number of elements filled on exit

args
Character array containing application name and any command line arguments

Description The system utility gEnqSysArgs() is available to F90 programmers to enquire the application

program name and any command line arguments entered when starting the program. The

application name is returned in args(1) and arguments in args(2), args(3), etc.

C programmers should use the standard argc and argv parameters to main().

See Also Page 463

gEnqSysDate

Syntax

C/C++: void gEnqSysDate(GDATE *date);

char * gEnqSysDateStr(char datestr[], int slen);

F90: subroutine gEnqSysDate(date)

subroutine gEnqSysDateStr(datestr)

type (GDATE), intent(out) :: date

character*(*), intent(out) :: datestr

593

ROUTINE SPECIFICATIONS gEnqSysArgs

Arguments date
Current year/month/day

datestr
System date/time string

slen
Length of date string (C/C++ only)

Description The system utilities gEnqSysDate() and gEnqSysDateStr() return the current system date as

either a structure containing year, month and day integer elements or as a string.

The routine gEnqSysDateStr() returns the system date/time as a character string, the format of

which is system dependent.

The C/C++ binding of gEnqSysDateStr() returns the date either in the string datestr of length

slen or (if datestr is NULL) as a pointer to a character string that has been malloc’ed internally

and which should be freed after use with the function free. In the Fortran 90 binding the date is

returned in the character argument datestr. If this is not large enough to contain the date it will

be truncated.

See Also Page 463

gEnqSysTime

gEnqSysEnviron

Syntax

C/C++: char * gEnqSysEnviron(char envnam[], char setting[], int slen);

F90: subroutine gEnqSysEnviron(envnam, setting)

character*(*), intent(in) :: envnam

character*(*), intent(out) :: setting

Arguments envnam
Environment string

setting
Environment setting

slen
Length of string setting (C/C++ only)

Description The system utility gEnqSysEnviron() can be used to enquire the setting of a system

environment variable. The environment variable name is passed in through the string envnam,

and its setting, if any, is returned in setting. If there is no setting of the requested environment

variable, a NULL/blank string is returned.

The C/C++ binding returns the environment setting either in the string setting of length slen or

(if setting is NULL) as a pointer to a character string that has been malloc’ed internally and

which should be freed after use with the function free. In the Fortran 90 binding the

environment setting is returned in the character argument setting. If this is not large enough to

contain the setting it will be truncated.

594

gEnqSysEnviron ROUTINE SPECIFICATIONS

See Also Page 464

gEnqSysPriority

Syntax

C/C++: void gEnqSysPriority(int *pri);

F90: subroutine gEnqSysPriority(pri)

integer, intent(out) :: pri

Arguments pri
Task priority

= GREALTIME, Highest possible priority

= GHIGH, Higher than normal

= GNORMAL, (default)

= GLOW, Lower than normal

= GIDLE, Idle state

Description The routine gEnqSysPriority() returns the current priority of the GINO application as set by the

routine gSetSysPrioirty().

See Also Page 466

gSetSysPriority

gEnqSysTime

Syntax

C/C++: void gEnqSysTime(GTIME *time);

F90: subroutine gEnqSysTime(time)

type (GTIME), intent(out) :: time

Arguments time.hour, time.min, time.sec, time.millsec
Current hour/minute/seconds/millisecs

Description The system utility gEnqSysTime() returns the current system time in terms of hours, minutes,

seconds and milliseconds.

See Also Page 463

gEnqSysDate

595

ROUTINE SPECIFICATIONS gEnqSysPriority

gEnqSysUsername

Syntax

C/C++: char * gEnqSysUsername(char uname[], int slen);

F90: subroutine gEnqSysUsername(uname)

character*(*), intent(out) :: uname

Arguments uname
Current user name or system id.

slen
Length of user name string (C/C++ only)

Description The system utility gEnqSysUsername() returns an appropriate user name of the current

application. In most multi-user implementations, the login name is returned, but in single user

systems, such as PC’s, an implementation dependent string is returned.

The C/C++ binding returns the user name either in the string uname of length slen or (if

uname is NULL) as a pointer to a character string that has been malloc’ed internally and which

should be freed after use with the function free. In the Fortran 90 binding the user name is

returned in the character argument uname. If this is not large enough to contain the user name

it will be truncated.

See Also Page 464

gEnqTextBlockAttribs

Syntax

C/C++: void gEnqTextBlockAttribs(float *xbeg, float *ybeg, float *drpfac);

F90: subroutine gEnqTextBlockAttribs(xbeg, ybeg, drpfac)

real, intent(out) :: xbeg,ybeg,drpfac

Arguments xbeg,ybeg
Text block start position

drpfac
Inter-line spacing factor

Description The routine gEnqTextBlockAttribs() returns the current settings for text block attributes as set

by gStartTextBlock() and gSetInterlineSpace().

The default inter-line spacing factor is 2.0, but there is no default setting for the text block

starting position. If gStartTextBlock() has not been called xbeg, ybeg are both returned as

-9999.0.

596

gEnqSysUsername ROUTINE SPECIFICATIONS

See Also Page 155

gStartTextBlock

gSetInterlineSpace

gEnqTextureCoordGeneration

Syntax

C/C++: void gEnqTextureCoordGeneration(int mode, ...);

F90: subroutine gEnqTextureCoordGeneration(mode, gSVec, gTVec)

integer, intent(out) :: mode

type (GTEXVEC), optional, intent(out) :: gSVec,gTVec

Arguments mode
Texture coordinate generation mode

= GOFF, Texture coordinate generation off (default)

= GOBJECT, Object coordinates used

= GSPHERICAL, Spherical texture coordinates

Optional Args gSVec, gTVec
Object coordinate transformation vectors for S and T texture coordinates

Description The routine gEnqTextureCoordGeneration() returns the current GINO texture coordinate

generation mode. Optionally the object coordinate transformation vectors may also be

enquired, but these are only relevant when the generation mode is currently set to GOBJECT.

Note that C/C++ users should pass the address of a structure of type GTEXVEC along with the

gSVec and/or gTVec arguments in a similar manner to the use of gSetTextureCoordGeneration.

See Also Page 351

gSetTextureCoordGeneration

gEnqTextureMappingMode

Syntax

C/C++: void gEnqTextureMappingMode(GTEXATT *att);

F90: subroutine gEnqTextureMappingMode(att)

type (GTEXATT), intent(out) :: att

Arguments att.mode
Texture mapping mode

= GOFF, Texture mapping is off (default)

= GOVERLAY, Overlay texture on surface

= GMODULATE, Modulate texture colours with surface colour

= GBLEND, Blend texture with constant blend colour

597

ROUTINE SPECIFICATIONS gEnqTextureCoordGeneration

att.blendcol
Blend colour

att.wraps
Texture wrapping switch in S direction

= GREPEAT, Repeat texture map (default)

= GCLAMP, Clamp texture map

att.wrapt
Texture wrapping switch in T direction

= GREPEAT, Repeat texture map (default)

= GCLAMP, Clamp texture map

att.maxfil
Filter when enlarging texture map

= GNEAREST, Use nearest texel (default)

= GLINEAR, Use weighted average of 2x2 texels

att.minfil
Filter when reducing texture map

= GNEAREST, Use nearest texel (default)

= GLINEAR, Use weighted average of 2x2 texels

= GNEARESTNEAREST, Nearest mipmap using nearest texel filter

= GNEARESTLINEAR, Nearest mipmap using linear texel filter

= GLINEARNEAREST, Linear interpolate mipmap using nearest texel filter

= GLINEARLINEAR, Linear interpolate mipmap and linear texel filter

att.bordercol
Texture map border colour

Description The routine gEnqTextureMappingMode() returns the current GINO texture mapping mode and

its attributes.

See Also Page 358

gSetTextureMappingMode

gEnqTransformState

Syntax

C/C++: void gEnqTransformState(int *ntran, int *dim, int *mode);

F90: subroutine gEnqTransformState(ntran, dim, mode)

integer, intent(out) :: ntran,dim,mode

Arguments ntran
State of modelling transformation switch

= GOFF, Transforming off

= GON, Transforming on

598

gEnqTransformState ROUTINE SPECIFICATIONS

dim
Number of dimensions in use

= GOFF, Transforming off

= 2, 2-D

= 3, 3-D with no perspective

= -3, 3-D with perspective

mode
State of picture mode switch

= GSPACE, Space mode

= GPICTURE, Picture mode

Description The routine gEnqTransformState() returns the current state of transforming.

See Also Page 381

gEnqViewport

Syntax

C/C++: void gEnqViewport2D(GLIMIT *piclim2, GLIMIT *viewlim);

void gEnqViewport3D(GLIMIT3 *piclim3, GLIMIT *viewlim);

F90: subroutine gEnqViewport2D(piclim2, viewlim)

subroutine gEnqViewport3D(piclim3, viewlim)

type (GLIMIT), intent(out) :: piclim2,viewlim

type (GLIMIT3), intent(out) :: piclim3

Arguments piclim2, piclim3
Picture coordinate range

viewlim
Viewport coordinate range in current paper units

Description The routine gEnqViewport2D() returns both the ranges of user picture coordinates and

viewport coordinates used in calculating the viewport mapping.

The values returned are either those set by gSetViewport2D() or if gSetViewport2D() has not

been called, the default values for both ranges are the same as the current paper limits as set by

gSetDrawingLimits() or the device defaults.

See Also Page 51, 221

Page 274

gSetViewport2D

gSetViewport3D

599

ROUTINE SPECIFICATIONS gEnqViewport

gEnqViewportMode

Syntax

C/C++: void gEnqViewportMode(int *sw);

F90: subroutine gEnqViewportMode(sw)

integer, intent(out) :: sw

Arguments sw
Viewport scaling switch

= GCENTRAL, Keep aspect ratio and centre in viewport

= GBOTTOMLEFT, Keep aspect ratio and place at bottom left of viewport

= GDEFORMED, Allow deformation of picture

Description The routine gEnqViewportMode() returns the viewport scaling switch as set by

gSetViewportMode(). The switch determines whether a viewport transformation set by

gSetViewport2D() should keep the aspect ratio of the picture coordinate area or allow

deformation.

See Also Page 50, 220

gSetViewportMode

gEnqViewportState

Syntax

C/C++: void gEnqViewportState(int *swi, int *clp, GLIMIT *limit);

F90: subroutine gEnqViewportState(swi, clp, limit)

integer, intent(out) :: swi,clp

type (GLIMIT), intent(out) :: limit

Arguments swi
Viewport scaling switch

= GCENTRAL, Keep aspect ratio and centre in viewport

= GBOTTOMLEFT, Keep aspect ratio and place at bottom left of viewport

= GDEFORMED, Allow deformation of picture

clp
Viewport clipping switch

= GOFF, Do not clip to viewport limits

= GON, Clip to viewport limits

limit
Viewport coordinate range in current paper units

600

gEnqViewportMode ROUTINE SPECIFICATIONS

Description The routine gEnqViewportState() returns the current viewport state.

The variable swi returns the viewport scaling switch as set by gSetViewportMode(). The switch

determines whether a viewport transformation set by gSetViewport2D() should keep the aspect

ratio of the picture coordinate area or allow deformation.

The variable clp returns the setting of the viewport clipping switch as set by

gSetViewportClipSwitch(). The default setting of clp = GON implies that the setting of a

viewport with gSetViewport2D() will also set the clipping limits to the same area, effectively

restricting drawing to those viewport limits. Where the viewport clipping switch is set to

GOFF, any future viewport setting will act simply as a mapping operation and window limits

may extend outside the viewport limits.

The remaining arguments return the actual viewport limits of the current viewport in paper

units. This may vary from the requested viewport limits returned by gEnqViewport2D()

depending on the current viewport scaling switch (swi) but represents the actual limits of the

specified picture region on the drawing area.

See Also Page 51, 221

gSetViewport2D

gEnqViewport2D

gSetViewportClipSwitch

gSetViewportMode

gEnqViewTransformMode

Syntax

C/C++: void gEnqViewTransformMode(int *mode);

F90: subroutine gEnqViewTransformMode(mode)

integer, intent(out) :: mode

Arguments mode
Viewing/Transformation mode

= GHARD, Hardware viewing/transformation mode

= GSOFT, Software viewing/transformation mode

Description This routine returns the current viewing/transformation mode of the currently nominated

device.

See Also Page 371

gSetViewTransformMode

601

ROUTINE SPECIFICATIONS gEnqViewTransformMode

gEnqWindowState

Syntax

C/C++: void gEnqWindowState(int *sw, GLIMIT3 *bounds);

F90: subroutine gEnqWindowState(sw, bounds)

integer, intent(out) :: sw

type (GLIMIT3), intent(out) :: bounds

Arguments sw
State of windowing switch

= 0, Windowing off, viewport limits returned

= 1, Windowing on, user-defined limits returned

= 2, Windowing on and set to viewport limits, viewport
limits returned

= 3, Windowing on and set to polygon, polygon boundary
returned

bounds
Current window limits

Description The routine gEnqWindowState() returns the current windowing state.

For a rectangular window set by gSetWindowMode(), gSetWindow2D() or gSetWindow3D(),

the window limits are returned in bounds. For a polygonal window defined by

gSetPolygonWindow() this routine only returns the rectangular extent of the defined polygons.

The list of polygon identifiers can be obtained through gEnqPolygonWindowList().

See Also Page 224, 275

gSetPolygonWindow

gEnqPolygonWindowList

gSetWindow2D

gSetWindow3D

gSetWindowMode

gEnqWorkingDir

Syntax

C/C++: char * gEnqWorkingDir(char directory[], int slen);

F90: subroutine gEnqWorkingDir(directory)

character*(*), intent(out) :: directory

Arguments directory
Current directory

602

gEnqWindowState ROUTINE SPECIFICATIONS

slen
Length of directory string (C/C++ only)

Description The system utility gEnqWorkingDir() returns the current operating directory of the GINO

application. This may be the directory in which the application was initiated, or one set by the

routine gSetWorkingDir().

The C/C++ binding returns the directory name either in the string directory of length slen or

(if directory is NULL) as a pointer to a character string that has been malloc’ed internally and

which should be freed after use with the function free. In the Fortran 90 binding the directory

name is returned in the character argument directory. If this is not large enough to contain the

directory name it will be truncated.

If the current working directory cannot be obtained by the system, this function will return a

NUL/blank string.

See Also Page 460

gSetWorkingDir

gEnqWorkspaceLimit

Syntax

C/C++: void gEnqWorkspaceLimit(int *n);

F90: subroutine gEnqWorkspaceLimit(nl1, nl2)

integer, intent(out) :: nl1,nl2

Arguments n
Number of real words reserved for use as a workspace area

= 0, No workspace area defined

nl1,nl2
Limits of global workspace area

Description The routine gEnqWorkspaceLimit() returns the size of GINO’s workspace area, if it has been

defined by gSetWorkspaceLimit(). Otherwise n is returned set to zero.

See Also Page 36, 53, 248

gSetWorkspaceLimit

gExecuteSysCommand

Syntax

C/C++: int gExecuteSysCommand(char command[], ...);

F90: integer function gExecuteSysCommand(command, gShow, gSuspend, gHandle)

character*(*), intent(in) :: command

integer, optional, intnent(in) :: gShow, gSuspend

integer, optional, intent(out) :: gHandle

603

ROUTINE SPECIFICATIONS gEnqWorkspaceLimit

Arguments command
System command string

Optional Args gShow
Visible state of Windows process

= GHIDDEN, Run as background process (no window)

= GNORMAL, Run in normal window (default)
= GMINIMIZE, Run in minimized/iconized window
= GMAXIMIZE, Run in maximized window

gSuspend
Suspension state of calling application

= GON, Suspend calling application while process runs

= GOFF, Return control to calling application immediately after
starting new process (i.e. Run new process in parallel).
This is the default.

gHandle
Handle of new process (available when not suspending calling application)

Description The system utility gExecuteSysCommand() provides a means to execute a system command or

process from within a GINO application. By default, the function will create a new process on

the host machine to execute the command and control will be immediately passed back to the

GINO application. In a Windows environment, the process will be run in a normal window, and

in all enviroments output from the command will be directed to the standard output stream

unless re-directed using appropriate operating system commands or symbols.

The optional argument gShow may be used in a Windows environment to alter the initial state

of the window in which the process is run.

Where the new process is running in parallel with the GINO application, its process handle

way be obtained by using the optional output argument gHandle. This may then be used in

susbsequent system commands or routines to track its progress or halt it if required. The handle

is not available if the calling application is suspended whilst the separate process runs.

The routine returns a value which is set to a system dependent non-zero value if the command

was illegal or failed for some reason.

See Also Page 465

gExtendSeg

Syntax

C/C++: void gExtendSeg(int nseg);

F90: subroutine gExtendSeg(nseg)

integer, intent(in) :: nseg

Arguments nseg
Picture segment number

604

gExtendSeg ROUTINE SPECIFICATIONS

Description The routine gExtendSeg() reopens segment nseg so that more drawing may be added to it. If

segment nseg does not exist, a gOpenSeg(nseg) is invoked.

On metafile output, gExtendSeg(nseg) is equivalent to gOpenSeg(nseg).

See Also Page 427

gOpenSeg

gFclose

Syntax

C/C++: int gFclose(GFILE *fp);

F90: integer function gFclose(unit)

integer, intent(in) :: unit

Arguments fp
GINO-C file pointer

unit
F90 file unit

Description The routine gFclose() closes the GINO file unit that was opened with gFopen(). The routine

returns 0 if the close is successful or an error code if not. In the C library this will be EOF

(from <stdio.h>).

See Also Page 27, 28

gFopen

gFillPolygon

Syntax

C/C++: void gFillPolygonBy2D(int fill, int line, int inv, int npts, GPOINT *points2);

void gFillPolygonBy3D(int fill, int line, int inv, int npts, GPOINT3 *points3);

void gFillPolygonTo2D(int fill, int line, int inv, int npts, GPOINT *points2);

void gFillPolygonTo3D(int fill, int line, int inv, int npts, GPOINT3 *points3);

F90: subroutine gFillPolygonBy2D(fill ,line, inv, npts, points2)

subroutine gFillPolygonBy3D(fill, line, inv, npts, points3)

subroutine gFillPolygonTo2D(fill, line, inv, npts, points2)

subroutine gFillPolygonTo3D(fill, line, inv, npts, points3)

integer, intent(in) :: fill,line,inv,npts

type (GPOINT), intent(in) :: points2(*)

type (GPOINT3), intent(in) :: points3(*)

Arguments fill
Fill style index

= GHOLLOW, Draw boundary only

605

ROUTINE SPECIFICATIONS gFclose

= GSOLID, Solid fill

= 1 - 256, Fill style index (hardware) or hatch style index
(software)

> 256, Fill style index (hardware) or solid fill (software)

line
Line style index

= GCURRENT, Current line style

= 1 - 256, Line style index

> 256, Current line style

inv
Inverse fill flag

= GAREA, Fill polygon

= GINVERSE, Fill outside polygon (inverse fill)

npts
Number of points in points array

points2,points3
2D or 3D coordinate arrays specifying relative or absolute points of polygon boundary

Description The gFillPolygon set of routines fill a single polygonal area without the need to declare any

workspace. Coordinates may be supplied as relative or absolute coordinates in 2 or 3

dimensions. Whether relative or absolute coordinates are used, the complete polygon includes

the current drawing position, all the points in the array points2/3 and an additional point (if

necessary) to ensure the last point is the same as the first point. All the points are then clipped

to the current clipping limits.

Up to2048 points can be used to define the polygon and if npts is greater than this, an error

message is generated and no output is done.

fill defines the fill style. The constant GHOLLOW specifies that only the boundary is to be

drawn and GSOLID defines solid fill. Values between 1 and 256 point to the entries in the

hatch style table (see gDefineHatchStyle()) and thus specifies the hatch style for the fill.

Whether an area is filled by software or hardware is determined by gSetFillMode(). If hardware

fill is enabled, fill may be interpreted in a device dependent way.

By default, hardware fill is attempted. If it is not possible to fill using the device’s hardware

then GINO defaults to the hatch style specified by fill. If fill is out of range for software filling,

a solid fill is used by default.

line defines the line style used for the boundary or fill style. A value of line between 1 and 256

points to an entry in the line style table (see gDefineLineStyle()) and specifies additional

attributes for the fill, usually a colour for hardware fill and a line type and colour for hatching.

The current line style is left unchanged.

A value for line which is zero or greater than 256 specifies the current line style.

A value for line less that zero or fill less than -1 generates a warning message and its positive

value is used.

inv defines whether the inside of the polygon is filled, or if inv = GINVERSE, the inverse area

is filled up to the current clipping limits.

606

gFillPolygon ROUTINE SPECIFICATIONS

The current position is restored to that prior to calling one of these routines.

See Also Page 167, 287

gSetFillMode

gDefineHatchStyle

gDefineLineStyle

gFillPolygonSet

Syntax

C/C++: void gFillPolygonSet2D(int fill, int line, int inv, int npol, GPOLYGON *polygons2);

void gFillPolygonSet3D(int fill, int line, int inv, int npol, GPOLYGON3 *polygons3);

F90: subroutine gFillPolygonSet2D(fill, line, inv, npol, polygons2)

subroutine gFillPolygonSet3D(fill, line, inv, npol, polygons3)

integer, intent(in) :: fill,line,inv,npol

type (GPOLYGON),intent(in) :: polygons2(*)

type (GPOLYGON3),intent(in) :: polygons3(*)

Arguments fill
Fill style index

= GHOLLOW, Draw boundary only

= GSOLID, Solid fill

= 1 - 256, Fill style index (hardware) or hatch style index
(software)

> 256, Fill style index (hardware) or solid fill (software)

line
Line style index

= GCURRENT, Current line style

= 1 - 256, Line style index

> 256, Current line style

inv
Inverse fill flag

= GAREA, Fill polygon

= GINVERSE, Fill outside polygon (inverse fill)

npol
Number of polygons in polygon set

polygons2,polygons3
Array of 2D or 3D polygon structures to be filled

Description The routines gFillPolygonSet2D() and gFillPolygonSet3D() fill a set of polygons according to

the specified fill and line styles. Each polygon structure consists of a number of vertices and a

pointer to an array of 2D or 3D points. Each polygon is complete within itself and will

automatically be closed if not defined as such. Coordinates are absolute and have no relation to

the current drawing position.

607

ROUTINE SPECIFICATIONS gFillPolygonSet

These routines can handle up to 2048 points and if the total number of points in the polygon set

exceeds this, an error message is generated and no output is done.

fill defines the fill style. The constant GHOLLOW specifies that only the boundary is to be

drawn and GSOLID defines solid fill. Values between 1 and 256 point to the entries in the

hatch style table (see gDefineHatchStyle()) and thus specifies the hatch style for the fill.

Whether an area is filled by software or hardware is determined by gSetFillMode(). If hardware

fill is enabled, fill may be interpreted in a device dependent way. By default, hardware fill is

attempted.

If it is not possible to fill using the device’s hardware then GINO defaults to the hatch style

specified by fill. If fill is out of range for software filling, a solid fill is used by default.

line defines the line style used for the boundary or fill style. A value of line between 1 and 256

points to an entry in the line style table (see gDefineLineStyle()) and specifies additional

attributes for the fill, usually a colour for hardware fill and a line type and colour for hatching.

The current line style is left unchanged.

A value for line which is zero or greater than 256 specifies the current line style. A value for

line less that zero or fill less than -1 generates a warning message and its positive value is used.

inv defines whether the inside of the polygon is filled, or if inv = GINVERSE, the inverse area

is filled up to the current clipping limits.

The current position is restored to that prior to calling either routine.

See Also Page 170, 288

gDrawPolylineSet2D

gDrawPolylineSet3D

gFillRect

Syntax

C/C++: void gFillRect(int fill, int line, GLIMIT *limit);

F90: subroutine gFillRect(fill, line, limit)

integer, intent(in) :: fill,line

type (GLIMIT), intent(in) :: limit

Arguments fill
Fill style index

= GHOLLOW, Draw boundary only

= GSOLID, Solid fill

= 1 - 256, Fill style index (hardware) or hatch style index
(software)

> 256, Fill style index (hardware) or solid fill (software)

line
Line style index

= GCURRENT, Current line style

608

gFillRect ROUTINE SPECIFICATIONS

= 1 - 256, Line style index

> 256, Current line style

limit
Coordinates of the rectangle to be filled

Description The routine gFillRect() fills a rectangle whose corners are transformed according to the current

GINO transformation and clipped to the current clipping limits - the result of which may not be

a rectangle.

fill defines the fill style. The constant GHOLLOW specifies that only the boundary is to be

drawn and GSOLID defines solid fill. Values between 1 and 256 point to the entries in the

hatch style table (see gDefineHatchStyle()) and thus specifies the hatch style for the fill.

Whether an area is filled by software or hardware is determined by gSetFillMode(). If hardware

fill is enabled, fill may be interpreted in a device dependent way. By default, hardware fill is

attempted. If it is not possible to fill using the device’s hardware then GINO defaults to the

hatch style specified by fill. If fill is out of range for software filling, a solid fill is used by

default.

line defines the line style used for the boundary or fill style. A value of line between 1 and 256

points to an entry in the line style table (see gDefineLineStyle()) and specifies additional

attributes for the fill, usually a colour for hardware fill and a line type and colour for hatching.

The current line style is left unchanged.

A value for line which is zero or greater than 256 specifies the current line style. A value for

line less that zero or fill less than -1 generates a warning message and its positive value is used.

The current position is restored to that prior to calling gFillRect().

See Also Page 165

gSetFillMode

gDefineHatchStyle

gDefineLineStyle

gFillSelectedPolygons

Syntax

C/C++: void gFillSelectedPolygons(int fill, int line, int inv);

F90: subroutine gFillSelectedPolygons(fill, line, inv)

integer, intent(in) :: fill,line,inv

Arguments fill
Fill style

= GHOLLOW, Draw boundary

= GSOLID, Solid fill

= 1 - 256, Fill style index (hardware fill) or hatch style index
(software fill)

> 256, Fill style index (hardware fill) or solid fill (software
fill)

609

ROUTINE SPECIFICATIONS gFillSelectedPolygons

line
Line style

= GCURRENT, Current line style

= 1 - 256, Line style index

> 256, Current line style

inv
Inverse fill flag

= GAREA, Fill polygons

= GINVERSE, Fill all but polygons (inverse fill)

Description The routine gFillSelectedPolygons() is used to fill polygons created using the routines

gStartPolygon()/gEndPolygon() and selected using gSelectPolygons(). These polygons may

consist of any combination of lines, moves, arcs and curves. As polygons may intersect there is

a need for a more precise definition of the areas that should be filled: an area is filled if it is

separated from the background area by an odd number of polygon boundaries. Inverse fill calls

for an even number of separating boundaries and by definition always fills the background area

(the continuous area that surrounds all polygons).

Although polygons may be defined anywhere in picture space, the fill actually generated will

be clipped to the current clipping limits.

fill defines the fill style. The constant GHOLLOW specifies that only the boundary is to be

drawn and GSOLID defines solid fill. Values between 1 and 256 point to the entries in the

hatch style table (see gDefineHatchStyle()) and thus specifies the hatch style for the fill.

Whether an area is filled by software or hardware is determined by gSetFillMode(). If hardware

fill is enabled, fill may be interpreted in a device dependent way. By default, hardware fill is

attempted. If it is not possible to fill using the device’s hardware then GINO defaults to the

hatch style specified by fill. If fill is out of range for software filling, a solid fill is used by

default.

line defines the line style used for the boundary or fill style. A value of line between 1 and 256

points to an entry in the line style table (see gDefineLineStyle()) and specifies additional

attributes for the fill, usually a colour for hardware fill and a line type and colour for hatching.

The current line style is left unchanged.

A value for line which is zero or greater than 256 specifies the current line style. A value for

line less that zero or fill less than -1 generates a warning message and its positive value is used.

The current position is restored to that prior to calling gFillSelectedPolygons().

See Also Page 257

gStartPolygon

gEndPolygon

gSelectPolygons

gSetFillMode

gDefineHatchStyle

gDefineLineStyle

610

gFillSelectedPolygons ROUTINE SPECIFICATIONS

gFitCharStr

Syntax

C/C++: void gFitCharStr(char string[], float x1, float y1, float x2, float y2, int fit);

F90: subroutine gFitCharStr(string, x1, y1, x2, y2, fit)

character*(*), intent(in) :: string

real, intent(in) :: x1,y1,x2,y2

integer, intent(in) :: fit

Arguments string
Character string

x1,y1
The absolute coordinates of the start point of fitting line

x2,y2
The absolute coordinates of the end point of fitting line

fit
Fitting type

= GB2P, Adjust string angle only (default)

= GSIZE, Adjust character size and angle

Description The routine gFitCharStr() outputs a character string so that it is aligned along an arbitrary line

joining the two specified points.

Strings should be terminated by *. otherwise the number of characters is limited to the total

length of string up to a maximum of 256 characters. For example, if string is declared as char

[10] then the string will always be terminated after 10 characters, if no intervening *. is

encountered.

The characters are drawn subject to the font representation, font weight, italics and underline

settings. The string is justified according to the current setting of gSetStrJustify(). Left-justified

strings start at the position x1,y1, centre-justified strings are positioned mid-way between the

specified coordinates, and right-justified strings end at the position x2,y2.

If fit = GB2P the string angle is adjusted so that the string lies along the arbitrary fitting line

but without attempting to fit it to the length of the line. When fit = GSIZE the character size is

adjusted as well as the string angle so that the string fits between the two points. If the string

contains more than one line (separated by the *N escape sequence) the character size is based

on the longest line in the string.

Any adjustments in the character angle or size are reset to their current values after the string is

output.

The character string may contain any of the GINO escape sequences described under

gDisplayStr().

If fit is out of range a warning message is output and fit is set to GB2P.

611

ROUTINE SPECIFICATIONS gFitCharStr

See Also Page 158

gSetStrJustify

gDisplayStr

gFlushGraphics

Syntax

C/C++: void gFlushGraphics(void);

F90: subroutine gFlushGraphics

Arguments None

Description In order to reduce the communications traffic between a graphics program and a graphics

device, GINO and some device drivers store information in a buffer, ready to send it to the

device in bursts. This may have the effect that the display is not up-to-date with the sequence

of GINO calls within the program.

The routine gFlushGraphics() ensures all graphics information held in all internal buffers

within GINO and the current graphics device is sent to the display.

See Also Page 49

gFopen

Syntax

C/C++: GFILE *gFopen(char name[], char cmode[]);

F90: integer function gFopen(name, fmode)

character*(*), intent(in) :: name

integer, intent(in) :: fmode

Arguments name
File name

cmode
File open mode for C/C++

= r, Open for reading only

= w, Open for writing

= r+, Open for update (reading and writing)

= w+, Open for writing

fmode
File open mode for F90

= GREADONLY, Open for reading only

= GWRITE, Open for writing

612

gFlushGraphics ROUTINE SPECIFICATIONS

= GUPDATE, Open for update (reading and writing)

= GSCRATCH, Open scratch file (removed at gFclose())

Description The routine gFopen() is used to open a GINO file unit for use with routines associated with file

I/O operations. If successful the routine returns a pointer of type GFILE in the C/C++ version

or an integer file unit in the F90 version which is required by these routines.

The file is opened with the name passed in the character string name and with one of the above

specified modes.

If an unspecified mode is given, or the file cannot be opened the routine returns the NULL

pointer (from <stdio.h>) for the C/C++ version or 0 (zero) for the F90 version.

The file can be closed with the routine gFclose().

See Also Page 27, 28

gFclose

gGenerateView

Syntax

C/C++: void gGenerateView(void);

F90: subroutine gGenerateView

Arguments None

Description The routine gGenerateView() generates a new modelling transformation by combining the data

specified by the viewing routines with the current modelling transformation. When in space

mode (the default) the current modelling transformation is post-multiplied by the viewing

parameters, while in picture mode (see gSetTransformMode()) the current modelling

transformation is pre-multiplied by the viewing parameters. Users are referred to the routine

gUpdateView() which sets the same viewing parameters on the current output without

modifying the modelling transformation matrix.

The default view is a parallel view pointing along the negative z-axis with the view centre at

the origin. It can be redefined by calls to gDefinePerspView(), gDefineSphericalView() or

gDefineParallelView() and modified by calls to gSetViewEyeDistance(), gMoveViewCentre(),

gViewShift() or gViewTurn(). The default view can be restored by calling gInitView(). If the

current view has perspective defined, it may also be modified by calls to

gSetViewPlaneDistance() or gViewRotate().

Unless gPosViewCentre() is called the view centre is projected onto the centre of the current

window limits. The window limits are set to the viewport limits unless a user-defined window

is currently specified (see gSetWindow2D(), gSetWindow3D() or gSetWindowMode()). If

gSetViewUpDirection() is not called, gGenerateView() attempts to project the 3-D y-axis

parallel to the screen y-axis, or if the 3-D y-axis is parallel to the view direction, then the 3-D

x-axis is projected parallel to the screen x-axis.

613

ROUTINE SPECIFICATIONS gGenerateView

See Also Page 399

gMoveViewCentre

gInitView

gDefineParallelView

gSetViewEyeDistance

gDefinePerspView

gPosViewCentre

gViewRotate

gViewShift

gDefineSphericalView

gViewTurn

gSetViewUpDirection

gSetViewPlaneDistance

gSetWindow

gSetWindowMode

gUpdateView

gGetCGMElement

Syntax

C/C++ void gGetCGMElement(int element);

F90: subroutine gGetCGMElement(element)

integer, intent(out) :: element

Arguments element
CGM element identifier

Description When interpreting a CGM metafile element by element, gGetCGMElement() is used to find the

identifier of the next element in the file. This element may then be interpreted or skipped using

the routines gInterpretCGMElement() and gSkipCGMElement() respectively.

The CGM file must be opened using the routine gOpenCGMFile().

See Also Page 70

gOpenCGMFile

gInterpretCGMElement

gSkipCGMElement

gGetCursorEvent

Syntax

C/C++: void gGetCursorEvent(int *key, GPOINT *point);

F90: subroutine gGetCursorEvent(key, point)

integer, intent(out) :: key

type (GPOINT), intent(out) :: point

614

gGetCGMElement ROUTINE SPECIFICATIONS

Arguments key
ASCII key code

= 0, no cursor input

point
Cursor position in picture coordinates

Description The routine gGetCursorEvent() turns on the graphics cursor and waits until a key is pressed (or

some other suitable trigger). If the call to gGetCursorEvent() is successful, the cursor or pointer

position is returned in point and the integer ASCII code of the key pressed is returned in key

(Refer to the specification of gGetEventRecord() for the possible return values of key). If the

call to gGetCursorEvent() is unsuccessful, key and point are returned set to zero.

The position of the cursor or pointer when it is turned on can be specified with a call to

gSetCursorPos() or gSetMousePos(). The default for this is the centre of device limits. If the

call to gGetCursorEvent() is successful, the cursor start position is set to point. If the device

does not support cursor input, an error message is output.

The cursor or pointer shape displayed when gGetCursorEvent() is called can be set using the

routine gSetCursorType(). In addition some devices offer the display of rubber bands, boxes

and circles while the cursor is being moved. These options can be set with the routine

gSetCursorAction().

Further information on the implement providing the cursor position and key can be obtained by

calling gGetEventRecord().

Appendix B should be consulted to see whether the device supports cursor input, positioning,

shapes or actions.

See Also Page 241

gSetCursorAction

gSetCursorPos

gSetCursorType

gGetEventRecord

Appendix B

gGetDirList

Syntax

C/C++: int gGetDirList(int *n, char *names[], int flen);

F90: integer function gGetDirList(n, names)

integer, intent(inout) :: n

character*(*), intent(out) :: names(*)

Arguments n
Input - Size of names array Output - Number of entries in names

names
List of file names

615

ROUTINE SPECIFICATIONS gGetDirList

flen
Maximum length of filename including terminating NULL (C/C++ only)

Description The system utility gGetDirList() returns a simple list of file names in the current directory. The

input value of the argument n specifies the maximum number of files to be returned (ie.

indicating the size of the names array), but on return, n will be set to the actual number of files

returned which may be less than or equal to the input value.

The function returns a non zero value if the operation was not successful for any reason and

zero if successful.

In the C/C++ binding, space must be allocated for the required number of file names prior to

calling this routine. This is achieved by declaring an array of length n of character pointers (the

address of which is passed to this function) and allocating space for each file name using

malloc, the address of which is placed in the character array. The space allocated for each file

name should be equal to flen * sizeof(char). In both bindings, if the individual file names are

larger than the width of the character array, the names will be truncated.

A more comprehensive utility is provided by gGetFullDirList() if more information is required

about files and their attributes.

See Also Page 461

gGetFullDirList

gGetDrawing

Syntax

C/C++: void gGetDrawing(GFILE *fp, int nseg, int mode, int paper);

F90: subroutine gGetDrawing(unit, nseg, mode, paper)

integer, intent(in) :: unit,nseg,mode,paper

Arguments fp
GINO-C file pointer

unit
Fortran 90 file unit

nseg
Picture segment number

> 0, Read specified picture segment

= GALL, Read all picture segments

mode
Relationship between the size of an object in the metafile and its size on a particular device:

= GABSOLUTE, The absolute size of an object is the same as that
specified in the initial metafile generating program
regardless of the current drawing units

= GMAPPED, The positive quadrant of the metafile drawing area is
mapped into the current drawing area (window or
viewport limits)

616

gGetDrawing ROUTINE SPECIFICATIONS

= GTRANSFORMED, The coordinates of an object on interpretation are the
same as those when the file was created, but subject to
the current GINO transformation

= GWHOLE, All four quadrants (positive and negative) of the
metafile drawing area are mapped into the current
drawing area (window or device limits)

paper
The paper size to be used:

= GPROGRAM, The paper size defined in the processing program is
used for each drawing interpreted

= GMETAFILE, The paper size given at the start of each drawing in the
metafile is used

Description The routine gGetDrawing() interprets a metafile produced by the gSavdra() generator. The

output from gGetDrawing() will correspond exactly with the output from the program that

created the file. gGetDrawing() restores all the settings of the line and character attributes that

were current when each picture segment was opened.

gGetDrawing() can also interpret files produced by gSavpic(). However, gSavpic() does not

record the line and character attributes when each segment is opened, so this information

cannot be restored by gGetDrawing(). A message is output by gGetDrawing() to warn the user

about this.

The metafile should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate.

If mode is GMAPPED or GWHOLE, the current transformation is ignored. If mode is out of

range, GABSOLUTE is assumed.

See Also Page 65

gFopen

gGetPicture

Appendix B

gGetEventRecord

Syntax

C/C++: void gGetEventRecord(int intype, GEVEREC *everec);

F90: subroutine gGetEventRecord(intype, everec)

integer, intent(in) :: intype

type (GEVEREC), intent(out) :: everec

Arguments intype
Event type

= GNULL, Null event type

= GKEYPRESS, Key or mouse button press (key)

= GSEGMENT, Picture segment number (nseg)

617

ROUTINE SPECIFICATIONS gGetEventRecord

= GSEGMENTANDKEY, Picture segment number and key/mouse button
(key,nseg)

= GLOCATOR, Screen position and key/mouse button press (key,pos)

= GSTRING, Text string (nargs,iargs)

= GREALS, String of real values (nargs,args)

= GINTEGERS, String of integer values (nargs,iargs)

= GMOVEMENT, Pointer, mouse or tablet movement (pos)

= GKEYRELEASE, Key or mouse button release (key,pos)

= GRESIZE, Window resize event (nargs,args)

= GPOINTERLEAVING, Pointer leaving window (pos)

= GPOINTERENTERING, Pointer entering window (pos)

everec.key
ASCII key code

= 0, Undefined

everec.impkey
Identifier of implement on which key was pressed

= -1, Undefined

everec.impdat
Identifier of implement from which data was supplied

= -1, Undefined

everec.nseg
Picture segment number

= -1, Undefined

everec.pos
Screen position in picture coordinates

= (0.0,0.0), Undefined

everec.nargs
Number of data values in args or iargs

= 0, No data

everec.args[80]
A real array of data

everec.iargs[80]
An integer array of data

Description The routine gGetEventRecord() will return appropriate event data after a call to

gWaitForEvent(), gDragSeg() or gGetCursorEvent(). intype specifies the type of event data

that should be returned.

618

gGetEventRecord ROUTINE SPECIFICATIONS

After a call to gWaitForEvent(), intype should be set to the value returned by that routine.

After a call to gDragSeg() or gGetCursorEvent(), intype should be set to GLOCATOR. If

intype is set to GNULL or is out of range, the event record is set for the null data type, which

corresponds to the values 0,-1,-1,-1,0.0,0.0 and 0. If intype is out of range, an error message is

output.

Each event data type defines some but not all of the return parameters as indicated above. Any

undefined parameters will be set to the value corresponding to the null data type.

everec.key returns the key/button pressed or released corresponding to the following table of

keyboard/mouse keys:

key Keyboard key

0-127 Standard 7-bit ASCII character

76,77,82 Left/Middle/Right mouse button
513-532 Function keys 1-20 (i.e. function key n +512)
533-536 Left/Right/Up/Down arrow key
537,538 Page Up/Down or Prior/Next
539 Insert
540,541 Home/End
542 Shift TAB

544 Numerical Key Pad /
545 Numerical Key Pad *
546 Numerical Key Pad -
547 Numerical Key Pad +
548 Numerical Key Pad ‘Enter’
549 Numerical Key Pad .
550-559 Numerical Key Pad 0-9

560 Print Screen
561 Pause
562 Select
563 Execute
564 Help

The following keyboard combinations are also returned in everec.key, but where the required

combination is not catered for it is suggested that the function gEnqKeyState() is used.

key Keyboard Key

n+64 Shift + special key > 511 (i.e. Shift F1 = 577)
n-64 Ctrl + special key > 511 (i.e. Ctrl F1 = 449)
n+1024 Alt + any key (i.e. Alt P = 1104, Alt F1 - 1537)

If no key was typed, everec.key= 0.

everec.impkey and everec.impdat are set to the implement types of the devices that supplied

the key and data associated with the event. If no key was typed, or no data was supplied, the

identifier(s) is returned as -1.

Implement types are as follows:-

619

ROUTINE SPECIFICATIONS gGetEventRecord

0 Screen
100 Keyboard
200 Function Box
300 Light Pen
400 Joystick/arrow keys/thumb wheel/mouse
500 Tablet/Digitizer
600 Valuator

everec.nseg is set to the picture segment number concerned in the event. If no picture segment

is relevant, everec.nseg is set to -1. everec.pos is the picture coordinates of the position being

returned and are set to -1.E-6 if no position is being returned.

All further information is stored in array everec.args or everec.iargs, the variable

everec.nargs giving the number of elements relevant to this event. If everec.nargs is set to

zero, there are no data values returned in everec.nargs or everec.iargs, and no attempt should

be made to access any element of these data arrays. For a text string, everec.iargs contains the

ASCII codes of the string entered and for event GRESIZE, the first two elements of

everec.args contain the width and height of the resized window in picture coordinates.

See Also Page 451

gDragSeg

gEnqKeyState

gWaitForEvent

gGetFullDirList

Syntax

C/C++: int gGetFullDirList(char pattern[], int *n, char *names[], int types[], int dates[], int

sizes[], int flen);

F90: integer function gGetFullDirList(pattern, n, names, types, dates, sizes)

character*(*), intent(in) :: pattern

integer, intent(inout) :: n

character*(*), intent(out) :: names(*)

integer, intent(out) :: types(*),dates(*),sizes(*)

Arguments pattern
File search pattern

n
Input - Size of attribute arrays (No. of files required) Output - Number of entries in attribute
arrays (No. of files returned)

names
List of file names

types
List of file types

620

gGetFullDirList ROUTINE SPECIFICATIONS

dates
List of file creation/modification dates (packed)

sizes
List of file sizes (in bytes)

flen
Maximum length of filename including terminating NULL (C/C++ only)

Description The function gGetFullDirList() returns the names of the files and their attributes that match the

file search pattern passed in the character string pattern. pattern may contain any legal search

pattern containing directory name and/or wild characters that are permitted in the

implementation being used. If pattern is a blank string, all files in the current directory are

treated as matching the pattern. The input value of the argument n specifies the maximum

number of files to be returned (ie. indicating the size of the return arrays names, types, dates

and sizes), but on return, n will be set to the actual number of files returned which may be less

than or equal to the input value.

In the C/C++ binding, space must be allocated for the required number of file names prior to

calling this function. This is achieved by declaring an array of length n of character pointers

(the address of which is passed to this function) and allocating space for each file name using

malloc, the address of which is placed in the character array. The space allocated for each file

name should be equal to flen * sizeof(char). In both bindings, if the individual file names are

larger than the width of the character array, the names will be truncated.

The list of file names is returned in names, each being a simple name without preceding

directory name. Their associated file types and sizes are returned in the corresponding elements

of the types, dates and sizes arrays. Each entry of the types array contains a bit pattern

representing the following information about the file:

Bit Information
1 Read-only
2 Hidden
3 System
4 Archive
5 Directory

Thus if the types element =0 , the corresponding file is a normal file, but if the element

contains 17, the file is a read-only directory etc.

Each element in the dates array contains an integer value representing the date and/or time the

corresponding file was last modified or created. The value is in an implementation dependent

format and should only be used for sorting purposes without unpacking. The system utility

routine gReturnDirDate() can be used to unpack the date and time information into its separate

components.

The routine returns a non zero value if the operation was not successful for any reason and zero

if successful.

See Also Page 461

gReturnDirDate

gGetDirList

621

ROUTINE SPECIFICATIONS gGetFullDirList

gGetImageFile

Syntax

C/C++: void gGetImageFile(int type, char file[], int coldef, int coloff, int collim, int *ixgrid, int

*iygrid, int psiz, int pix[]);

F90: subroutine gGetImageFile(type, file, coldef, coloff, collim, ixgrid, iygrid, psiz, pix)

integer, intent(in) :: type

character*(*), intent(in) :: file

integer, intent(in) :: coldef,coloff,collim,psiz

integer, intent(out) :: ixgrid,iygrid,pix(*)

Arguments type
Image type

= GBMPFILE, Uncompressed Windows Bitmap file (BMP)

= GXWDFILE, X Windows Dump format (XWD)

= GICOFILE, Windows Icon file (ICO)

= GJPEGFILE, JPEG image format (JPG)

= GPNGFILE, Portable Network Graphics file (PNG)

file
Image file name

coldef
Colour definition flag

= 0, Skip colour definition table - use image data only

= 1, Read and interpret image file making appropriate GINO
colour table changes

= 2 Map image to (nearest) GINO colour indices

coloff
Colour offset

collim
Colour index limit

= 0, Current device maximum colour index (see
gSetColourInfo())

ixgrid
Image width in pixels

iygrid
Image height in pixels

psiz
Size of image array pix

622

gGetImageFile ROUTINE SPECIFICATIONS

pix
Image array

Description The routine gGetImageFile() will read an image file of the specified type into a pixel array for

subsequent GINO processing or output using the image routines. The user must set the size of

the pixel array pix in psiz which should be large enough to hold any image read in by this

routine. The size of the image read is returned in the variables ixgrid and iygrid.

The image file may contain 1,2,4 or 8bit colour indices (optionally preceded with a list of

colour definitions) or consist of 24bit RGB triplets. The data is interpreted according to the

setting of the arguments coldef, coloff and collim, taking into account the colour mode of the

currently nominated device.

For coldef=0, any colour index definition data (in an indexed image file) is ignored and the

image data is read into the image array as it is stored (adding the specified offset in coloff).

This mode is not permitted when reading 24bit images on colour index devices (monochrome

or static or dynamic) as the data would represent an illegal colour index.

For coldef=1, the image integrity is maintained as far as is possible taking into account the

colour facilities of the current device. When reading an image on an indexed device, the GINO

colour table is modified, within the range of coloff and collim, to match the colours required in

the image file and the appropriate index is placed in the image array. On true colour devices, a

24bit RGB triplet is placed in the image array for each pixel read.

For coldef=2, the image colours, whether indexed or 24bit, are mapped onto the nearest

colours in the existing GINO colour table and the resulting index is placed in the image array.

No modifications are made to the GINO colour table. This mode is useful when using an

indexed device, but can seriously limit the range of colours in a 24bit image.

Image file size and attributes can be enquired using the routine gEnqImageFile() before using

gGetImageFile().

See Also Page 74, 346

gDrawCellArray

gDrawPixelArea

gEnqImageFile

gGetPicture

Syntax

C/C++: void gGetPicture(GFILE *fp, int nseg);

F90: subroutine gGetPicture(unit, nseg)

integer, intent(in) :: unit,nseg

Arguments fp
GINO-C file pointer

unit
Fortran 90 file unit

nseg
Picture segment number

623

ROUTINE SPECIFICATIONS gGetPicture

> 0, Read specified picture segment

= GALL, Read all picture segments

Description The routine gGetPicture() interprets a metafile produced by the gSavdra() or gSavpic()

generator. Only the information contained within each picture segment is output. gGetPicture()

ignores any information that records the settings of the line and character attributes that were

current when each picture segment was opened.

The metafile should be opened prior to calling this routine using the function gFopen(), with

the file pointer or unit number passed as appropriate.

A call to gGetPicture() does not affect any of the current settings (line attributes, character

attributes, transformation, etc).

See Also Page 67

gFopen

gGetDrawing

Appendix B

gGetPixel

Syntax

C/C++: void gGetPixel(int ix, int iy, int pix);

void gGetPixelArea(int ix, int iy, int npixx, int npixy, int isc, int isr, int idx, int idy, int

pixbuf[]);

F90: subroutine gGetPixel(ix ,iy, pix)

subroutine gGetPixelArea(ix, iy, npixx, npixy, isc, isr, idx, idy, pixbuf)

integer, intent(in) :: ix,iy,npixx,npixy,isc,isr,idx,idy

integer, intent(out) :: pix,pixbuf(*)

Arguments ix,iy
Pixel position of the top left corner of the pixel array to be read

pix
Pixel information for single pixel

npixx,npixy
Number of X and Y pixel values to be stored in index array

isc,isr
The start column and row of a sub-array

idx,idy
The X and Y dimensions of a sub-array

pixbuf
The array name in which the data is to be stored

624

gGetPixel ROUTINE SPECIFICATIONS

Description The routines gGetPixel() and gGetPixelArea() reads a single pixel or a rectangular pixel area

from a devices display. The pixel (area) is read with reference to the anchor position specified

by the position (ix,iy), noting that the pixel coordinate system has its origin at the top left

corner of the device with the first pixel position being referenced as (0,0).

In both routines, the colour information returned may consist of colour indices or 24bit true

colour values depending on the colour mode of the currently nominated device and as set by

the routine gSetColourInfo().

In the case of gGetPixelArea(), the pixel information is passed through a pointer to an integer

array pixbuf dimensioned (npixx,npixy). Where the whole of this array is to be retrieved, the

user should set isx and isy to 1 and idx and idy to be the same as npixx and npixy.

Alternatively a portion of the array can be replaced with the area on the screen (still at the

anchor position ix,iy) by setting the values of isx and isy to the offsets from the start of the

pixbuf and idx,idy to the dimensions of the sub-array.

The routine gGetPixelArea() will pack the pixel data into the pixbuf array according to the

specification set by gDefinePixelPacking(). The default is for one pixel value to be placed into

one word of pixbuf. The pixel rectangle will be clipped to the device limits if these limits are

exceeded. The pixel array will also be subject to the current pixel transformation as set by

gSetPixelTransform().

See Also Page 191

gDefinePixelPacking

gSetColourInfo

gGetRand

Syntax

C/C++: void gGetRand(float *rand);

F90: subroutine gGetRand(rand)

real, intent(out) :: rand

Arguments rand
Returned random number in range 0.0 to 1.0

Description The system utility gGetRand() can be used to return a non repeating sequence of random

numbers in the range 0.0 to 1.0.

If an application requires a set sequence of random numbers, a seed may be set using the

routine gSetRandSeed(). By default a date/time seed is set at GINO initialization ensuring a

different set of random numbers on each run, if gSetRandSeed() is not called.

See Also Page 466

gSetRandSeed

625

ROUTINE SPECIFICATIONS gGetRand

gGetTransform

Syntax

C/C++: void gGetTransform2D(GMAT2D a2);

void gGetTransform3D(GMAT3D a3);

F90: subroutine gGetTransform2D(a2)

subroutine gGetTransform3D(a3)

real, intent(out) :: a2(6)

real, intent(out) :: a3(16)

Arguments a2,a3
2D or 3D transformation matrix

Description The routines gGetTransform2D() or gGetTransform3D() are used to store a copy of the current

modelling transformation in the argument a2 or a3.

Where gGetTransform2D() is used only the 2-D part of current modelling transformation is

stored in the array a2.

See Also Page 377

gGetView

Syntax

C/C++: void gGetViewParams(GMATV vdata):

void gGetViewState(GVIEWSTATE vstate);

F90: subroutine gGetViewParams(vdata)

subroutine gGetViewState(vstate)

real, intent(out) :: vdata(15)

type (GVIEWSTATE), intent(out) :: vstate

Arguments vdata
Viewing data parameters

vstate.mode
View mode

= 0, No view defined

= 1, Perspective view defined (gDefineSphericalView() or
gDefinePerspView())

= 2, Parallel view defined (gDefineParallelView())

vstate.cflag
View centre flag

= 0, No view centre defined

626

gGetTransform ROUTINE SPECIFICATIONS

= 1, Default view centre defined

= 2, User defined view centre (gPosViewCentre())

vstate.upflag
View up direction flag

= 0, Default view up vector (0.0,1.0,0.0)

= 1, User defined view up vector (gSetViewUpDirection())

vstate.dir
View direction vector

vstate.centre
View centre

vstate.dist
Perspective viewing distance

vstate.shift
View shift

vstate.upvec
View up direction vector

Description The routines gGetViewParams() and gGetViewState() return all the viewing parameters in

either the array vdata or the structure vstate. The viewing parameters can be reset to the values

stored in either structure by calling the appropriate setting routine gSetViewParams() or

gSetViewState().

The current eye position can be calculated using the following formulae:

xeye = vstate.centre.x - vstate.dist * vstate.dir.x

yeye = vstate.centre.y - vstate.dist * vstate.dir.y

zeye = vstate.centre.z - vstate.dist * vstate.dir.z

Note that for parallel viws (mode = 2) vstate.dist will equal 0.0, so any arbitary value for dist

can be substituted to calculate a normal eye position.

See Also Page 416

gSetViewParams

gSetViewState

gInitView

Syntax

C/C++: void gInitView(void);

F90: subroutine gInitView

Arguments None

Description The routine gInitView() resets the viewing parameters to their initial default settings and

initializes the viewing transformation matrix. It does not affect the modelling transformation

matrix. The default settings are as follows:

627

ROUTINE SPECIFICATIONS gInitView

Parallel view

View direction = (0.0,0.0,-1.0)

View centre = (0.0,0.0,0.0)

View centre position = centre of current window limits

View UP direction = (0.0,1.0,0.0)

The effect of a call to gInitView() can also be achieved by calling gSetTransform(GRESET)

but this has the additional effect of initializing the modelling transformation matrix as well.

See Also Page 399

gSetTransform

gInsertSegRef

Syntax

C/C++: void gInsertSegRef(int nseg);

F90: subroutine gInsertSegRef(nseg)

integer, intent(in) :: nseg

Arguments nseg
Picture segment number

Description The routine gInsertSegRef() inserts a reference to segment nseg into the currently opened

segment.

A reference may be made to a segment which does not yet exist, in which case the reference is

ignored until the referenced segments are created and an operation is carried out on the

segment, e.g. gMoveSegTo2D(), gMoveSegBy2D(), gDrawSeg(), gSetSegVis().

A referenced segment will inherit line and character attributes from its parent until specifically

set within that segment. All current attributes are, however, saved at the beginning of a

reference and restored once the referenced segment has been drawn.

A segment cannot reference itself but may reference another segment up to a depth of 10

references. GINO also checks for recursive references when a segment structure is traversed as

long as it is holding a copy of the display file.

gInsertSegRef() may not operate on some devices when a hardware display file is available if

this function is not provided. A call to gSetSegMode(GSOFTWARE) may therefore be

required to force software emulation of hierarchical segment structures.

See Also Page 435

gMoveSegBy2D

gDrawSeg

gMoveSegTo2D

gSetSegVis

gSetSegMode

628

gInsertSegRef ROUTINE SPECIFICATIONS

gInsertSegTag

Syntax

C/C++: void gInsertSegTag(int tag);

F90: subroutine gInsertSegTag(tag)

integer, intent(in) :: tag

Arguments tag
Identifier

Description The routine gInsertSegTag() is called to set a user supplied identifier in a picture segment to

facilitate later editing.

It can be called anywhere within a segment but can only usefully be used immediately prior to

a routine which changes or sets the modelling transformation matrix. In this way the matrix can

be replaced using the routines gEditSeg2D() or gEditSeg3D().

See Also Page 436

gEditSeg2D

gEditSeg3D

gInterpolateData

Syntax

C/C++: int gInterpolateData2D(int nopt, float ptint, int npts, GPOINT *points2, int nptout, float

*ptout1);

int gInterpolateData3D(int nopt, float ptint, int npts, GPOINT3 *points3, int nptout,

float *ptout1, float *ptout2);

F90: integer function gInterpolateData2D(nopt, ptint, npts, points2, nptout, ptout1)

integer function gInterpolateData3D(nopt, ptint, npts, points3, nptout, ptout1, ptout2)

integer, intent(in) :: nopt,npts,nptout

real, intent(in) :: ptint

type (GPOINT),intent(in) :: points2*)

type (GPOINT3),intent(in) :: points3(*)

real, intent(out) :: ptout1,ptout2

Arguments nopt
Interpolation value data type

= GXDATA, Date value to to interpreted as X data

= GYDATA, Date value to to interpreted as Y data

= GZDATA, Date value to to interpreted as Z data

ptint
Data value to be interpolated

629

ROUTINE SPECIFICATIONS gInsertSegTag

npts
Number of data points in either points2 or points3 arrays

points2,points3
Array of 2D or 3D data points

nptout
Size of output arrays ptout1 (and ptout2)

ptout1, ptout2
Intersection values from interpolation

Description The functions gInterpolateData2D() and gInterpolateData3D() can be used to interpolate a

single value against either a 2D or 3D array of data points. The input data points may be

supplied from user supplied data or from GINO’s internal points storage facilities enabling

interpolation of previously drawn lines, arcs or curves.

Interpolation may be carried out in X, Y or Z (where the 3D function is used) according to the

setting of nopt and value passed in ptint. The data on which the interpolation takes place is

passed in the arrays points2 or points3 with npts specifying the number of points supplied.

As there are no restrictions on the form of the input data, the resulting interpolation may supply

zero, one or more intersections and this data is returned in the arrays ptout1 and ptout2 (where

the 3D function is used). Users should set the size of these arrays using the input argument

nptout, with the actual number of intersections being returned by the function itself. No more

than nptout intersections will be returned however, even though there may be more depending

on the supplied data.

Interpolation is carried out using linear interpolation.

See Also Page 107

Page 294

gReturnInternalPoints2D

gReturnInternalPoints3D

gInterpretCGMElement

Syntax

C/C++: void gInterpretCGMElement(int element);

F90: subroutine gInterpretCGMElement(element)

integer, intent(in) :: element

Arguments element
CGM element identifier

Description When interpreting a CGM metafile element by element and having obtained the next element

identifier using gGetCGMElement(), this may be interpreted with this routine.

The element may produce graphical output or change the state of the currently nominated

device depending on the element. The CGM file must be opened using the routine

gOpenCGMFile().

630

gInterpretCGMElement ROUTINE SPECIFICATIONS

See Also Page 70

gOpenCGMFile

gGetCGMElement

gMarkSeg

Syntax

C/C++: void gMarkSeg(int nseg, int mark);

F90: subroutine gMarkSeg(nseg, mark)

integer, intent(in) :: nseg,mark

Arguments nseg
Picture segment or segment group number

> 0, Change ‘marked’ status of picture segment specified by
nseg

= GALL, Change ‘marked’ status of all picture segments

< -1, Change ‘marked’ status of all segments except those
specified by nseg

mark
‘Marked’ status

= GUNMARK, Stop marking (default)

= GMARK, Mark the segment

Description The routine gMarkSeg() controls the highlighting of the specified picture segment.

When using hardware segments, highlighting or marking may be achieved by a brightening up

or flashing of a picture segment. When using software emulation, marking is achieved by

redrawing the selected segment or group with the ‘marking colour’ index as set by

gSetSegMarkColour(). When switching marking off, the segment or group is redrawn in its

defined colours.

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(GHARDWARE), no error message is generated. However, the device may

output a local error message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 431

gSetSegMarkColour

631

ROUTINE SPECIFICATIONS gMarkSeg

gModifyTransform

Syntax

C/C++: void gModifyTransform2D(GMAT2D a2);

void gModifyTransform3D(GMAT3D a3);

F90: subroutine gModifyTransform2D(a2)

subroutine gModifyTransform3D(a3)

real, intent(in) :: a2(6),a3(16)

Arguments a2,a3
2D or 3D transformation matrix

Description The routine gModifyTransform2D() or gModifyTransform3D() modifies the current modelling

transformation by that passed in the specified matrix according to the current transformation

mode.

The GINO modelling transformation is multiplied by the 3x2 matrix a. When in space mode

(the default) the current transformation is post-multiplied by a, while in picture mode (see

gSetTransformMode()) the current transformation is pre-multiplied by a.

If transforming is not on it is switched on and the modelling transformation is set to the unit

matrix, prior to multiplication by a.

See Also Page 377

gSetTransformMode

gModifyView

Syntax

C/C++: void gModifyView(GMAT3D a3);

F90: subroutine gModifyView(a3)

real, intent(in) :: a3(16)

Arguments a3
3D transformation matrix

Description The routine gModifyView() modifies the current viewing matrix by the specified 4x4

transformation.matrix. The viewing matrix is that constructed from the viewing parameters

after the routine gUpdateView() has been called, therefore this routine should be called after

gUpdateView() to have the correct effect.

This routine is used for the construction of shadows in conjunction with the routine

gCreatePlanarShadowMatrx().

See Also Page 342, 417

gCreatePlanarShadowMatrix

gUpdateView

632

gModifyTransform ROUTINE SPECIFICATIONS

gMove

Syntax

C/C++: void gMoveBy2D(float dx, float dy);

void gMoveBy3D(float dx, float dy, float dz);

void gMoveTo2D(float x, float y);

void gMoveTo3D(float x, float y, float z);

F90: subroutine gMoveBy2D(dx, dy)

subroutine gMoveBy3D(dx, dy, dz)

subroutine gMoveTo2D(x, y)

subroutine gMoveTo3D(x, y, z)

real, intent(in) :: dx,dy,dz

real, intent(in) :: x,y,z

Arguments dx,dy,dz
Coordinate increments (in current units) from the current drawing position to the required
position

x,y,z
Absolute coordinate of the new current drawing position (in current units)

Description The gMove set of routines moves the current drawing position to the specified end point in

terms of a relative or an absolute coordinate. The 2D routines do not alter the current Z position

which by default is set at 0.0.

Moves are not output to the device until the next visible item is drawn.

See Also Page 80

Page 279

gMoveSeg

Syntax

C/C++: void gMoveSegBy2D(int nseg, float dx, float dy);

void gMoveSegTo2D(int nseg, float x, float y);

F90: subroutine gMoveSegBy2D(nseg, dx, dy)

subroutine gMoveSegTo2D(nseg, x, y)

integer, intent(in) :: nseg

real, intent(in) :: dx,dy

real, intent(in) :: x,y

Arguments nseg
Picture segment or segment group number

> 0, Reposition segment(s) specified by segment nseg

633

ROUTINE SPECIFICATIONS gMove

= -1, Reposition all segments

< -1, Reposition all segments except those specified by nseg

dx,dy
Increment by which picture segment is repositioned

Description The routines gMoveSegBy2D() and gMoveSegTo2D() are used to reposition and redraw the

specified picture segment(s). The new position, specified in terms of relative or absolute

coordinates, represents the new position of the anchor of the specified segment (or the first

segment of the group if nseg is negative).

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(GHARDWARE), no error message is generated. However, the device may

output a local error message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 431

gSetSegMode

gMoveToNextLine

Syntax

C/C++: void gMoveToNextLine(void);

F90: subroutine gMoveToNextLine

Arguments None

Description The routine gMoveToNextLine() (or *N escape sequence) moves the current position to the

beginning of the next line in a text block. The start position of a text block is defined using

gStartTextBlock(). The start of each subsequent line is positioned according to the current

inter-line spacing factor which is set by gSetInterlineSpace(). The action of

gMoveToNextLine() (or *N) can be likened to sending a carriage-return and line feed where

the margin is set by gStartTextBlock().

The complete text block is subject to the current setting of the string angle set by

gSetStrAngle(). Thus each line is positioned ‘below’ the preceding line such that the block

structure is maintained.

If the transforming of characters is switched on with gSetCharTransformMode(), the movement

to the next line is also subject to the current transformation.

If gStartTextBlock() has not been called, a warning message is output and the current pen

position is moved by the current inter-line spacing factor as if only a line-feed had been

printed.

634

gMoveToNextLine ROUTINE SPECIFICATIONS

See Also Page 154

gStartTextBlock

gSetInterlineSpace

gSetStrJustify

gDisplayStr

gSetCharTransformMode

gMoveViewCentre

Syntax

C/C++: void gMoveViewCentre(float dist);

F90: subroutine gMoveViewCentre(dist)

real, intent(in) :: dist

Arguments dist
Distance to be moved along line of sight

Description The routine gMoveViewCentre() calculates a new position for the view plane by displacing the

view centre a distance dist in the direction of viewing. If a perspective view is being modified,

the eye position is displaced by the same amount, leaving the perspective distance unchanged.

If dist is less than zero, the displacement is in the opposite direction to the direction of

viewing.

See Also Page 404

gNewDrawing

Syntax

C/C++: void gNewDrawing(void);

F90: subroutine gNewDrawing

Arguments None

Description The routine gNewDrawing() clears the drawing area without removing segments from the

display file.

This has different effects on different output devices. On displays the whole drawing area is

cleared using the most efficient method. On plotters and printers the paper is ejected or

wound-on and a new drawing area or sheet is selected when the next drawing is started.

Any segments held in a display file, either hardware or software, are not deleted but flagged as

being invisible. These may be made visible using the gSetSegVis() routine as required.

See Also Page 48, 50, 64

gSetSegVis

635

ROUTINE SPECIFICATIONS gMoveViewCentre

gOpenAuxDrawingArea

Syntax

C/C++: void gOpenAuxDrawingArea(int ident, char title[], int xp, int yp, int width, int height);

F90: subroutine gOpenAuxDrawingArea(ident, title, xp, yp, width, height)

integer, intent(in) :: ident

character*(*), intent(in) :: title

integer, intent(in) :: xp,yp,width,height

Arguments ident
Auxiliary drawing area identifier (>1)

title
Auxiliary drawing area title or banner

xp,yp
Position of drawing area relative to display origin

width,height
Width and height of drawing area

Description The routine gOpenAuxDrawingArea() creates and opens a visible or invisible auxiliary

drawing area, where a device has the possibility of multiple drawing areas or display windows.

Auxiliary drawing areas are arranged in pairs, with the initial drawing area consisting of a

visible area with identifier zero and an invisible area or backing store with identifier 1.

Additional areas may be created such that every visible area automatically has an associated

invisible area, but invisible areas may be created without an associated visible one. When

gOpenAuxDrawingArea() is called with an even numbered identifier (ident) a new visible area

or window is created using the remaining arguments to define its title, origin and size together

with an associated invisible area of the same size with identifier ident+1. If

gOpenAuxDrawingArea() is called with an odd numbered identifier, a new invisible area is

opened of the specified size (width * height) ignoring the title and origin settings.

If the identifier is outside the range of possible identifiers for the current device, GINO outputs

an error message and no action is taken. The maximum number of areas/windows (in pairs)

that can be opened can be obtained through the device enquiry routine gEnqDeviceState(). An

error is also generated if a request is made to open a display area that is already open or a

request is made to open a visible area where an invisible area of ident+1 is already open. You

must close a display area using gCloseAuxDrawingArea() before re-opening another one with

the same identifier. Some devices may only provide invisible drawing areas (ie. additional

screen memory) each of which will have an odd numbered identifier. This restriction is

identified by the value of device.maxaux returned by gEnqDeviceState() as being negative.

A visible display area cannot be opened which is larger than the maximum drawing area for the

current device. Display resources may prevent the opening of a valid drawing area due to lack

of memory or network access.

636

gOpenAuxDrawingArea ROUTINE SPECIFICATIONS

See Also Page 49

gCloseAuxDrawingArea

gEnqDeviceState

gOpenCGMFile

Syntax

C/C++: void gOpenCGMFile(int code, GFILE *fp, int mode, int errlev);

F90: subroutine gOpenCGMFile(code, unit, mode, errlev)

integer, intent(in) :: code,unit,mode,errlev

Arguments code
CGM encoding type

= GCGMCHAR, Character encoding

= GCGMBINARY, Binary encoding

fp
GINO-C file pointer

unit
Fortran 90 file unit

mode
Interpretation mode

= GABSOLUTE , Metric metafiles are drawn the same size that they were
generated

= GMAPPED, Abstract and Metric metafiles are scaled to fit the
current window limits

= GTRANSFORMED, Same as GABSOLUTE subject to current
transformation

errlev
Error checking level

= GOFF, No error checking

= GFAST, Fast error checking

= GFULL, Full error checking

Description The routine gOpenCGMFile() is used to open a CGM metafile for interpretation element by

element.

The required file should be opened prior to calling this routine using the function gFopen(),

with the file pointer or unit number passed as appropriate.

The metafile may be either character or binary encoded but the interpreter must be informed of

which through the code argument.

The routines gGetCGMElement(), gInterpretCGMElement() and gSkipCGMElement() are used

to get the next element, interpret it, or skip over it respectively. The file is closed with

gCloseCGMFile().

637

ROUTINE SPECIFICATIONS gOpenCGMFile

Abstract metafiles are drawn such that one VDC unit = one GINO picture unit in

GABSOLUTE and GTRANSFROMED modes.

The interpretation may alter the current state of GINO in that the colour table may be changed

within a metafile, but all line and character attributes, window and transformation states are

restored at the end of a metafile.

See Also Page 70

gFopen

gOpenGino

Syntax

C/C++: void gOpenGino(void)

F90: subroutine gOpenGino

Arguments None

Description Calling gOpenGino() initiates the GINO package. Initialization happens automatically on

computer systems that zeroize all variables before running a program. Unfortunately, this is not

the case for all systems. A call to routine gOpenGino() prior to any other GINO routine will

ensure that GINO is properly initialized in all circumstances on any system.

Routine gOpenGino() must never be called after any other GINO routine except gCloseGino().

For example, a call to routine gOpenGino() occurring after a call to a device nomination

routine could leave the device in an abnormal state.

See Also Page 25, 39

gOpenSeg

Syntax

C/C++: void gOpenSeg(int nseg);

F90: subroutine gOpenSeg(nseg)

integer, intent(in) :: nseg

Arguments nseg
Picture segment number, 0 - 32767

> 0, Open picture segment nseg

= 0, Open (or add to) picture segment 0

Description The routine gOpenSeg() starts a new picture segment.

It must be executed before a picture segment is started. If the user does not call gOpenSeg(), an

internal call to gExtendSeg(0) will be made by GINO.

638

gOpenGino ROUTINE SPECIFICATIONS

If gOpenSeg() is called from within a picture segment, this segment is automatically

terminated.

On a device with picture segments, nseg is the number of the picture segment to be opened. If a

picture segment with this number (nseg>0) already exists, the old one is deleted and the new

one displayed as it is being created.

Segment handling is enabled if the device has the necessary hardware and the device driver has

it implemented, or if software emulation has been switched on using gSetSegMode().

If nseg = 0, then picture segment 0 is extended. This is the default and is treated as a dustbin

segment by GINO.

See Also Page 64, 426

gCloseSeg

gExtendSeg

gSetSegMode

gPlaySound

Syntax

C/C++: void gPlaySound(int freq, int time);

F90: subroutine gPlaySound(freq, time)

integer, intent(in) :: freq,time

Arguments freq
Frequency

time
Time in milliseconds

Description The system utility gPlaySound() attempts to sound a note using hardware system sound

resources if available. If a note of the specified frequency and/or time is not possible (e.g.

under UNIX and OpenVMS), a simple ‘BEEP’ may be sounded by the system.

Under Windows implementations of GINO, negative values of freq can be used to access the

different Windows alert sounds. If available, the defined values of these sounds are found in

the <windows.h> or <windows.ins> file. Thus:

gPlaySound(-MB_ICONHAND,0)

or

gPlaySound(-16,0)

will play the System Asterisk entry in the [sounds] section of WIN.INI. Other values include:

-MB_ICONQUESTION -32

-MB_ICONEXCLAMATION -48

-MB_ICONASTERISK -64

639

ROUTINE SPECIFICATIONS gPlaySound

See Also Page 466

gPolygonHit

Syntax

C/C++: void gPolygonHit(int *ident, float x, float y, float radius);

F90: subroutine gPolygonHit(ident, x, y, radius)

integer, intent(out) :: ident

real, intent(in) :: x,y,radius

Arguments ident
Identifier of polygon whose boundary is nearest to hit centre

= -1, No polygon inside hit area

x,y
Picture coordinates of hit centre

radius
Radius of hit area in current units

Description The routine gPolygonHit() searches the polygon workspace for polygons that overlap the hit

area. The identifier of the polygon whose boundary comes closest to the hit centre is returned

in ident. If no polygon boundaries extend inside the hit area ident is set to -1. The hit area is a

circular area of radius radius whose centre is at x,y in picture coordinates. The absolute value

of radius determines the hit radius.

If gSelectPolygons() has been called, only those polygons currently selected, will be examined.

See Also Page 261

gSelectPolygons

gPopTransform

Syntax

C/C++: void gPopTransform(void);

F90: subroutine gPopTransform

Arguments None

Description The routine gPopTransform() resets the current modelling transformation to the last

transformation saved by a call to gPushTransform().

Up to ten different copies of the current modelling transformation may be stored internally by

calls to gPushTransform().

Once a copy has been retrieved no further record of that copy is kept.

640

gPolygonHit ROUTINE SPECIFICATIONS

See Also Page 376

gPushTransform

gPosViewCentre

Syntax

C/C++: void gPosViewCentre(float xp, float yp);

F90: subroutine gPosViewCentre(xp, yp)

real, intent(in) :: xp,yp

Arguments xp,yp
Point in picture coordinates onto which the view centre is projected

Description The view transformation, when gGenerateView() or gUpdateView() is called, is set up so that

the view centre is projected onto the point (xp,yp).

See Also Page 402

gGenerateView

gUpdateView

gPrintf

Syntax

C/C++: int gPrintf(char format, ...);

Arguments format
Character string

Description The function gPrintf() writes a formatted string to the currently nominated device through the

routine gDisplayStr(). The function returns the number of characters transferred if successful.

This function provides a combination of gDisplayStr() and printf(3) functionality for GINO

devices. Strings can therefore contain GINO escape sequences as well as printf escape and

formatting functions and users are referred to gDisplayStr() and chapter 3 of their UNIX

documentation for further information on this function.

See Also Page 138

gDisplayStr

gPushTransform

Syntax

C/C++: void gPushTransform(void);

F90: subroutine gPushTransform

Arguments None

641

ROUTINE SPECIFICATIONS gPosViewCentre

Description The routine gPushTransform() stores a copy of the current modelling transformation.

Up to ten different copies of modelling transformation sequences may be stored simultaneously

by successive calls to gPushTransform().

See Also Page 376

gPopTransform

gReduceBezier

Syntax

C/C++: void gReduceBezier2D(int *npts, GPOINT *points2);

void gReduceBezier3D(int *npts, GPOINT3 *points3);

F90: subroutine gReduceBezier2D(npts, points2)

subroutine gReduceBezier3D(npts, points3)

integer, intent(inout) :: npts
type (GPOINT), intent(inout) :: points2(*)
type (GPOINT3), intent(inout) :: points3(*)

Arguments npts
Number of points in Bezier curve, decremented by one on return.

points2,points3
Array holding absolute coordinates of Bezier curve control points.

Description The gReduceBezier set of routines takes a set of Bezier curve control points in 2D or 3D and

generates a new set, with one less control point, that represents an approximation of the same

curve.

Note that the value passed in npts will be decremented by one on return and the arrays points2

or points3 will contain one less significant control point in them.

See Also Page 103

Page 290

gElevateBezier2D

gElevateBezier3D

gRemoveDir

Syntax

C/C++: int gRemoveDir(char path[]);

F90: integer function gRemoveDir(path)

character*(*), intent(in) :: path

Arguments path
Name of directory

642

gReduceBezier ROUTINE SPECIFICATIONS

Description The system utility gRemoveDir() removes the specified directory from the file store. The

directory may may be simple directory name in the current working directory or a full path

name.

The function returns an integer value which equal zero if the removal has been successful. A

system dependent error code is returned if the removal fails if, for example, access to the parent

directory is not permitted.

See Also Page 461

gMakeDir

gRemoveEventType

Syntax

C/C++: void gRemoveEventType(int intype);

F90: subroutine gRemoveEventType(intype)

integer, intent(in) :: intype

Arguments intype
Event type

= GALL, All event types

= GNULL, Null event type

= GKEYPRESS, Key or mouse button press

= GSEGMENT, Picture segment number

= GSEGMENTANDKEY, Picture segment number and key/mouse button

= GLOCATOR, Screen position and key/mouse button press

= GSTRING, Text string

= GREALS, String of real value

= GINTEGERS, String of integer values

= GMOVEMENT, Pointer, mouse or tablet movement

= GKEYRELEASE, Key or mouse button release

= GRESIZE, Window resize event

= GPOINTERLEAVING, Pointer leaving window

= GPOINTERENTERING, Pointer entering window

= GMOUSEWHEEL, Mouse wheel movement

Description The routine gRemoveEventType() deletes an event type from the list set up by

gAddEventType().

If intype is set to GALL, all event types are removed from the list and gAddEventType() must

be called before any further data can be read with the routine gWaitForEvent().

See Also Page 450

gAddEventType

643

ROUTINE SPECIFICATIONS gRemoveEventType

gRemoveFile

Syntax

C/C++: int gRemoveFile(char file[]);

F90: integer function gRemoveFile(file)

character*(*), intent(in) :: file

Arguments file
Name of file

Description The system utility gRemoveFile() removes the specified file from the file store. The file may

may be simple filename in the current working directory or a full path name.

The function returns an integer value which equal zero if the removal has been successful. A

system dependent error code is returned if the removal fails if, for example, access to the parent

directory is not permitted.

See Also Page 461

gCopyFile

gRenameFile

gRemoveSegGroup

Syntax

C/C++: void gRemoveSegGroup(int ngrp);

F90: subroutine gRemoveSegGroup(ngrp)

integer, intent(in) :: ngrp

Arguments ngrp
Segment group number

= -1, Remove all segment groups

Description The routine gRemoveSegGroup() removes segment group ngrp. Further references to segment

ngrp will be treated as references to a single segment. If ngrp is set to -1,

gRemoveSegGroup() removes all segment groups.

See Also Page 437

gDefineSegGroup

644

gRemoveFile ROUTINE SPECIFICATIONS

gRenameFile

Syntax

C/C++: int gRenameFile(char filea[], char fileb[]);

F90: integer function gRenameFile(filea, fileb)

character*(*), intent(in) :: filea, fileb

Arguments filea
Name of existing file

fileb
Name of new file

Description The system utility gRenameFile() renames an existing file, filea as fileb. Either or both file

names may be simple file names in the current working directory or full path names.

The function returns an integer value which equal zero if the rename has been successful. A

system dependent error code is returned if the rename fails.

See Also Page 461

gCopyFile

gRemoveFile

gRenameSeg

Syntax

C/C++: void gRenameSeg(int nseg, int newseg);

F90: subroutine gRenameSeg(nseg, newseg)

integer, intent(in) :: nseg,newseg

Arguments nseg
Picture segment number

newseg
New number to be given to picture segment nseg

Description The routine gRenameSeg() is called to rename picture segment nseg as newseg. The result is a

single segment with number newseg.

If nseg = newseg, no action is taken.

If newseg already exists, it is deleted.

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(GHARDWARE), no error message is generated. However, the device may

output a local error message.

645

ROUTINE SPECIFICATIONS gRenameFile

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 427

gSetSegMode

gRestoreGinoState

Syntax

C/C++: void gRestoreGinoState(int map);

F90: subroutine gRestoreGinoState(map)

integer, intent(in) :: map

Arguments map
Restore mapping mode

= GABSOLUTE, Restore without mapping to device limits

= GMAPPED, Map to current device limits (default)

Description The routine gRestoreGinoState() restores the setting of all GINO’s output attributes to the state

when the last call to gSaveGinoState() was made. Further details of the attributes stored is

documented under gSaveGinoState().

The argument map determines the restoration mapping mode. When map=GABSOLUTE, the

viewport parameters will be restored as they were saved by gSaveGinoState(), and therefore no

mapping will occur. When map=GMAPPED, the viewport parameters will be mapped to the

current device limits so that the same portion of the drawing area will be used on the current

device. This mode is useful when restoring a set of GINO attributes onto a different device

from which they were saved and which may have different device limits. Any subsequent

drawing will then be automatically mapped onto the device without having to change

coordinate system.

As implied by the previous paragraph, GINO attributes may be saved across device

nominations. The set of attributes are also saved on a stack, so gRestoreGinoState() will always

restore the last set of saved attributes.

See Also Page 54

gSaveGinoState

gRestoreTransform

Syntax

C/C++: void gRestoreTransform(void);

F90: subroutine gRestoreTransform

Arguments None

Description The routine gRestoreTransform() restores the state of transforming saved by the last call to

gSaveTransform().

646

gRestoreGinoState ROUTINE SPECIFICATIONS

See Also Page 376

gSaveTransform

gRetrieveSegs

Syntax

C/C++: void gRetrieveSegs(GFILE *fp);

F90: subroutine gRetrieveSegs(unit)

integer, intent(in) :: unit

Arguments fp
GINO-C file pointer to restore Software Display File from

unit
Fortran 90 file unit to restore Software Display File from

Description The routine gRetrieveSegs() restores the complete contents of an archived Software Display

File.

The archived Display File must be created with gArchiveSegs() and should be opened prior to

calling this routine using the function gFopen(), with the file pointer or unit number passed as

appropriate.

The display file is copied into memory or file depending on whether gDefineSegWorkspace()

has been called. If gDefineSegWorkspace() has been called but the restored file does not fit

into the allocated space an error message is generated and no action is taken.

The successful action of restoring a display file removes all currently stored segments.

See Also Page 442

gFopen

gArchiveSegs

gSetSegMode

gReturnDirDate

Syntax

C/C++: void gReturnDirDate(int pdate, GDATE *date, GTIME *time);

F90: subroutine gReturnDirDate(pdate, date, time)

integer, intent(in) :: pdate

type (GDATE), intent(out) :: date

type (GTIME), intent(out) :: time

Arguments pdate
Packed date/time

date.year, date.month, date.day
Year/Month/Day of creation/modification date

647

ROUTINE SPECIFICATIONS gRetrieveSegs

time.hour, time.min, time.sec, time.millsec
Hour/Minute/Second/Millisecond of creation/modification time

Description The system utility gReturnDirDate() unpacks date and time information returned by the routine

gGetFullDirList(). The packed date and time is associated with the creation or modification

date of a file returned by this routine and may be packed in a system dependent way.

See Also Page 463

gGetFullDirList

gReturnInternalPoints

Syntax

C/C++: int gReturnInternalPoints2D(int nn, GPOINT *points2, int np, GPOLYGON

*polyline2, int *npts, int * npol);

int gReturnInternalPoints3D(int nn, GPOINT3 *points3, int np, GPOLYGON3

*polyline3, int *npts, int *npol);

F90: integer function gReturnInternalPoints2D(nn, points2, np, polyline2, npts, npol)

integer function gReturnInternalPoints3D(nn, points3, np, polyline3, npts, npol)

integer, intent(in) :: nn,np

type (GPOINT), intent(out) :: points2(*)

type (GPOINT3), intent(out) :: points3(*)

type (GPOLYGON), intent(out) :: polyline2(*)

type (GPOLYGON3), intent(out) :: polyline3(*)

integer, intent(out) :: npts,npol

Arguments nn
Size of points array

points2,points3
Array to contain internal vertices from point storage workspace

np
Size of polyline array

polyline2,polyline3
Array to contain internal vertices from point storage workspace

npts
Size of polyline array, returns number of points stored

npol
Size of polyline array, returns number of polylines stored

Description The functions gReturnInternalPoints2D() and gReturnInternalPoints3D() fill two arrays with

information about visible lines that have been drawn while internal point storage is switched

on. Vertices are stored in space (untransformed) or picture (transformed) mode according to the

current point storage mode as set by gSetPointMode().

648

gReturnInternalPoints ROUTINE SPECIFICATIONS

The functions return all the vertices in the array points2/3 together with an array of polylines

in the array polyline2/3 where the vertex pointers in the structures polyline2/3 point to relevant

vertices in the points2/3 array.

The arguments nn and np should be set to the size of the respective arrays that have been

passed to the routines, and arguments npts and npol return the number of points and polylines

that are in the internal storage workspace. The functions themselves return the actual number

of polylines that have been returned in the user supplied arrays which may be less than the

number stored if there is not enough room in the supplied arrays. The total number of vertices

that can be stored is limited by the amount of point storage workspace that has been allocated

by gDefinePointWorkspace().

The returned polyline array can be drawn or filled using the gDrawPolylineSet2D/3D or

gFillPolygonSet2D/3D routines.

See Also Page 104

Page 293

gDefinePointWorkspace

gDrawPolylineSet2D

gDrawPolylineSet3D

gFillPolygonSet2D

gFillPolygonSet3D

gSetPointMode

gReturnPlanarNormal

Syntax

C/C++: void gReturnPlanarNormal(int npts, GPOINT3 *points, GPOINT3 *normal);

F90: subroutine gReturnPlanarNormal(npts, points, normal)

integer, intent(in) :: npts

type (GPOINT3), intent(in) :: points(*)

type (GPOINT3), intent(out) :: normal

Arguments npts
Number of vertices in facet/surface

points
Array specifying series of absolute points that define a facet/surface boundary

normal
Returned planar normal

Description The routine gReturnPlanarNormal() returns a vector representing the planar normal of the

vertices passed in the array points. It is assumed that the points in fact lie on a plane, as the

routine only uses the first, second and last points passed to calculate the normal vector.

See Also Page 297

649

ROUTINE SPECIFICATIONS gReturnPlanarNormal

gReturnStrInfo

Syntax

C/C++: void gReturnStrInfo(char string[], float *rlen, int *nnl, float *tch, float *sch, int *nesc);

F90: subroutine gReturnStrInfo(string, rlen, nnl, tch, sch, nesc)

character, intent(in) :: string

real, intent(out) :: rlen,tch,sch

integer, intent(out) :: nnl,nesc

Arguments string
Character string

rlen
Maximum length of string

nnl
Number of lines contained in string

tch
Maximum character height

sch
Maximum height above base line

nesc
Number of non escape characters in string

Description The routine gReturnStrInfo() returns information concerning the dimensions of a particular

character string.

For strings without any *N escape sequences, rlen returns the total length of the string taking

into account the width of every character in the string and the layout of exponents and indices,

and nnl will return 1. If the string contains one or more of the *N escape sequences, rlen will

return the length of the longest line in string and nnl will return the number of lines.

The length of the string is calculated by adding the width of each character taking into account

variable widths of hardware or software proportional fonts. The same calculation is made for

the layout of justified strings. If GINO is unable to obtain the widths of characters for hardware

fonts the current character width as set by gSetCharSize() is used for every character.

tch measures the total height of the string including exponents, indices, descenders and

multiple lines. sch measures only that part of the string above the base line (of the first line if

there are multiple lines).

nesc returns the number of non escape characters within the string, that is the number of

characters that will actually be displayed on output.

See Also Page 159

gDisplayStr

gRotate

650

gReturnStrInfo ROUTINE SPECIFICATIONS

gRotate

Syntax

C/C++: void gRotate2D(float angle);

void gRotate3D(int axis, float angle);

F90: subroutine gRotate2D(angle)

subroutine gRotate3D(axis, angle)

integer, intent(in) :: axis

real, intent(in) :: angle

Arguments axis
The axis about which the rotation is made

= GXAXIS, about the X-axis

= GYAXIS, about the Y-axis

= GZAXIS, about the Z-axis

angle
The angle in degrees through which rotation takes place

Description The routines gRotate2D() and gRotate3D() superimposes a rotation of angle degrees in the

current modelling transformation matrix. In the case of gRotate2D() the angle is with respect to

the Z axis, but with gRotate3D() the rotation is about the axis specified in the first argument.

Rotation is right-handed in sense with respect to the relevant axis.

In space mode (the default) this angle is specified with respect to the current space axes, while

in picture mode (see gSetTransformMode()) the angle is specified with respect to the picture

axes.

If transforming is not on before this routine is called then gRotate3D() switches it on.

See Also Page 228, 360

gSetTransformMode

gSaveGinoState

Syntax

C/C++: void gSaveGinoState(void);

F90: subroutine gSaveGinoState

Arguments None

Description The routine gSaveGinoState() saves the current setting of all the GINO attributes which can

later be restored using the routine gRestoreGinoState(). The attributes are saved on a stack, so

an application may make multiple calls to gSaveGinoState() before calling

gRestoreGinoState().

651

ROUTINE SPECIFICATIONS gRotate

The attributes saved include the following:

Device Limits

Linestyle and broken line tables and current settings

Hatch tables and current settings

Character and font settings

RGB table and current colour settings

Viewport parameters

Transformation and viewing settings

Rectangular/Polygonal clipping and masking limits

See Also Page 54

gRestoreGinoState

gSaveLineStyle

Syntax

C/C++: void gSaveLineStyle(int line);

F90: subroutine gSaveLineStyle(line)

integer, intent(in) :: line

Arguments line
Line style index

= GCURRENT, Current line style

= 1 - 256, Stored line style

Description The routine gSaveLineStyle() copies the current line attributes into the specified line style.

GINO can record up to 256 different line styles. If line = GCURRENT, gSaveLineStyle() does

nothing. If line is out of range, an error message is output and no further action is taken.

See Also Page 131

gDefineBrokenLineStyle

gSetBrokenLine

gDefineLineStyle

gSaveTransform

Syntax

C/C++: void gSaveTransform(void);

F90: subroutine gSaveTransform

Arguments None

652

gSaveLineStyle ROUTINE SPECIFICATIONS

Description The routine gSaveTransform() makes a copy of the state of transforming. This can

subsequently by recalled by gRestoreTransform(). A second call to gSaveTransform()

overwrites the information stored by the first call.

See Also Page 376

gRestoreTransform

gScale

Syntax

C/C++: void gScale2D(float sx, float sy);

void gScale3D(float sx, float sy, float sz);

F90: subroutine gScale2D(sx, sy)

subroutine gScale3D(sx, sy, sz)

real, intent (in) :: sx,sy,sz

Arguments sx,sy,sz
Scale factors for X,Y and Z coordinates respectively

Description The routines gScale2D() and gScale3D() set independent scale factors for X,Y (and Z)

coordinates by modifying the current modelling transformation matrix.

In space mode (the default) this scaling is specified with respect to the current space axes,

whilst in picture mode (see gSetTransformMode()) the scaling is specified with respect to the

picture axes.

For negative values of sx, sy and sz, the routine mirrors the drawing about the axis by the

absolute scale factor sx, sy or sz.

Transforming is switched on if not on already.

See Also Page 229, 363

gSetTransformMode

gSelectDrawingArea

Syntax

C/C++: void gSelectDrawingArea(int ident);

F90: subroutine gSelectDrawingArea(ident)

integer, intent(in) :: ident

Arguments ident
Drawing area identifier

= 0, Screen

= 1, Backing store (default)

> 1, User generated auxiliary drawing area

653

ROUTINE SPECIFICATIONS gScale

Description The routine gSelectDrawingArea() switches drawing to the selected drawing area. The default

drawing area for all devices is 1, which represents the visible part of the screen or drawing

media. On window devices, this identifier actually represents the backing store (or pixmap)

which is automatically copied to the visible window through internal procedures. On such

devices, selecting drawing area 0 may provided faster display times, but at the expense of

possible display loss by the overlap of windows from other applications. Note that, drawing

can be directed to the backing store only, through the operation of the

gStartBatchUpdate()/gEndBatchUpdate() routines.

Additional drawing areas may be selected where these have been successfully opened using the

routine gOpenAuxDrawingArea(). These auxiliary drawing area may be visible or invisible

depending on whether the identifier is even or odd. All (even numbered) visible drawing areas

will have an invisible drawing area associated with them (with the same operational criteria as

the default drawing area as described above), but (odd numbered) invisible drawing areas may

exist on their own. After selection, the current viewport and window limits are altered to match

the size of the selected drawing area and the current point is reset to 0,0, but other GINO

attributes remain unaltered.

The requested drawing area identifier must be within the permitted range for the currently

nominated device and represent a valid opened area. Any invalid identifier will generate an

error message and no change will be made to the currently selected area.

See Also Page 50

gOpenAuxDrawingArea

gEnqDeviceState

gStartBatchUpdate

gSelectPolygons

Syntax

C/C++: void gSelectPolygons(int list[], int n);

F90: subroutine gSelectPolygons(list, n)

integer, intent(in) :: list(*),n

Arguments list
Integer array containing a list of polygon identifiers

n
Number of items in list

= 0, Delete list

> 0, Create new list

Description The routine gSelectPolygons() specifies a current list of polygon identifiers. The list is copied

into a workspace. Allowance must be made for this workspace when calling

gSetWorkspaceLimit(). If n=0 the list is deleted. The list enables polygons to be selected (e.g.

for area fill). If no list is currently defined then all polygons are selected.

See Also Page 254

gSetWorkspaceLimit

654

gSelectPolygons ROUTINE SPECIFICATIONS

gSetAlphaMode

Syntax

C/C++: void gSetAlphaMode(void);

F90: subroutine gSetAlphaMode

Arguments None

Description The routine gSetAlphaMode() switches non-windowing graphical devices into alphanumeric

mode so that the user may read from or write to them via I/O systems other than GINO.

The routine gSetAlphaMode() forces out any graphic data held in device buffers, stores the

current position, and selects character mode.

When the next GINO routine is called the stored current drawing position is restored and

drawing may continue.

See Also Page 50, 51

gSetArcIncrement

Syntax

C/C++: void gSetArcIncrement(int nincs);

F90: subroutine gSetArcIncrement(nincs)

integer, intent(in) :: nincs

Arguments nincs
Arc increments

> 0, Number of increments to generate full circle

= 0, Reset to default tolerance

Description The routine gSetArcIncrement() sets the number of increments to be used to draw arcs unless

hardware arcs are being drawn. Arcs are generated by drawing an inscribed polygon which

would have nincs sides in a full circle. If nincs is less than 3 or greater than 32000 the default

arc tolerance takes effect. gSetArcIncrement() disables the drawing of hardware arcs.

This routine also controls the number of line segments used between successive points in

Akima and spline curves. A default of 15 is used if gSetArcIncrement() is not called or nincs is

less than 3 or greater than 32000.

See Also Page 89

655

ROUTINE SPECIFICATIONS gSetAlphaMode

gSetArcMode

Syntax

C/C++: void gSetArcMode(int sw);

F90: subroutine gSetArcMode(sw)

integer, intent(in) :: sw

Arguments sw
Arc generation switch

= GHARD, Hardware arcs (default)

= GSOFT, Software arcs

Description The routine gSetArcMode() switches the software generation of arcs on or off.

By default, hardware arcs are produced. When hardware arcs are requested, arcs will be

generated by hardware on devices with hardware arc generating facilities. If the device has no

hardware arcs, then software arcs will be generated.

Hardware arcs are subject to the current line mode, and can be windowed and transformed.

When transforming hardware arcs, if the resulting arc is not circular it will be generated using

software.

Routines gSetArcIncrement() and gSetArcTolerance() have no effect when hardware arcs are

being drawn.

See Also Page 89

gSetArcTolerance

Syntax

C/C++: void gSetArcTolerance(float tol);

F90: subroutine gSetArcTolerance(tol)

real, intent(in) :: tol

Arguments tol
Maximum distance in current units between the circumference of a smooth arc and straight line
segment generated as a representation of the arc

Description The routine gSetArcTolerance() controls the smoothness of arcs and standard GINO curves.

It sets the tolerance to which arcs must be drawn if hardware arcs are not being drawn.

GINO will approximate to arcs by drawing an inscribed polygon such that the maximum

distance between the required arc and the approximating polygon is tol. If tol = 0.0 the default

value is restored. The arc tolerance is ignored if hardware arcs are being drawn.

See Also Page 89

656

gSetArcMode ROUTINE SPECIFICATIONS

gSetBrokenLine

Syntax

C/C++: void gSetBrokenLine(int brk);

F90: subroutine gSetBrokenLine(brk)

integer, intent(in) :: brk

Arguments brk
Broken line type

= GSOLID, Solid (default)

= GSHORTDASHED, Short dashed

= GSHORTDOTTED, Short dotted

= GSHORTCHAINED, Short chained

= GLONGDASHED, Long dashed

= GLONGDOTTED, Long dotted

= GLONGCHAINED, Long chained

= GDOTTED, Dotted

= 8 - 256, User defined or device dependent

> 256, Solid or device dependent

Description The routine gSetBrokenLine() selects a broken line type for subsequent graphical output. If

brk is less than zero, a warning message is output and the absolute value of brk is used to set

the broken line type.

When brk is in the range 1 to 256, a further set of parameters come into effect. These

parameters explicitly define the appearance of the line type. Each line type is provided with a

set of default parameters which may subsequently be changed by calling

gDefineBrokenLineStyle(). Even if the device cannot generate the line type exactly as

specified, an equivalent hardware-generated line type may still be selected. Appendix B should

be consulted to see what line types the device can provide.

If brk is greater than 256, and the device cannot generate the requested line type (see

Appendix B), the solid line type will be used for subsequent graphical output.

The effect of a call to gSetBrokenLine() can depend on the capabilities of the device.

gSetBrokenLineMode() may be called to force GINO to generate all broken lines, thereby

ensuring that they are output correctly on any device.

See Also Page 116

gDefineBrokenLineStyle

gSetBrokenLineMode

gEnqBrokenLine

Appendix B

657

ROUTINE SPECIFICATIONS gSetBrokenLine

gSetBrokenLineMode

Syntax

C/C++: void gSetBrokenLineMode(int sw);

F90: subroutine gSetBrokenLineMode(sw)

integer, intent(in) :: sw

Arguments sw
Software broken line switch

=GHARD, Hardware-generated if possible (default)

=GSOFT, Software-generated

Description The routine gSetBrokenLineMode() allows the user to specify whether or not a device will be

allowed to generate broken lines after a call to gSetBrokenLine(). The default, corresponding

to a call to gSetBrokenLineMode(GHARD), is for broken lines to be generated if possible by

the device.

The appearance of hardware-generated broken lines will depend on the capabilities of the

device (see Appendix B). A call to gSetBrokenLineMode(GSOFT) will force GINO to generate

all broken lines. This may slow down the generation of broken lines, but it will ensure that they

will be output exactly as requested on any device.

See Also Page 116

gSetBrokenLine

Appendix B

gSetCharFont

Syntax

C/C++: void gSetCharFont(int font);

F90: subroutine gSetCharFont(font)

integer, intent(in) :: font

Arguments font
Font number

= 0, GDEFAULT

Software Fonts

= 1, GRoman_Simplex

= 2, GRoman_Duplex

= 3, GRoman_Complex

= 4, GRoman_Triplex

= 5, GItalic_Complex

= 6, GItalic_Triplex

= 7, GScript_Simplex

658

gSetBrokenLineMode ROUTINE SPECIFICATIONS

= 8, GScript_Complex

= 9, GGreek_Simplex

= 10, GGreek_Complex

= 11, GGothic_English

= 12, GGothic_German

= 13, GGothic_Italian

= 14, GCyrillic_Complex

= 15, GSwiss_Solid*

= 16, GDutch_Solid*

= 17, GWestern*

= 18, GComputer*

= 19, GDisplay*

= 20, GLatin*

= 21, GGreek_Font_1

= 22, GGreek_Font_2

= 23, GGreek_Font_3*

= 24, GGreek_Font_4*

= 25, GGreek_Font_5*

Symbol Fonts

= 70, GMaths_Symbols*

= 71, GHershey_Maths_Symbols

= 72, GHershey_Symbols_1

= 73, GHershey_Symbols_2

= 74, GSymbol1_normal*

= 75, GSymbol1_thick*

= 76, GSymbol1_filled*

= 77, GSymbol2_normal*

= 78, GSymbol2_filled*

= 79, GGINO_Dingbats*

Hardware and Software Fonts

= 100, GCourier (hardware only)

= 101, GHelvetica

= 102, GTimes

= 103, GAvant_Garde

= 104, GLublin_Graph

= 105, GNew_Century_Schoolbook

= 106, GSouvenir

= 107, GPalatino

= 108, GChancery

> 108, device specific hardware fonts

All fonts are proportional except 0 and 100
*=Polygon Font

Description The routine gSetCharFont() sets the current character font to be used by all subsequent

character and string output routines. The font may be selected by number or name. The current

font can also be selected using the *Fnnn escape sequence within the character string routines.

659

ROUTINE SPECIFICATIONS gSetCharFont

Font 0 is the default font and is always available in software and on most devices in hardware

as well. It is always a fixed pitch font.

Fonts 1 to 69 are reserved for software fonts of which the ones listed are currently available in

the GINO font file. They are all proportional fonts.

Fonts 70 to 99 are reserved for symbol fonts of which the ones listed are currently available in

the GINO font file. These fonts are primarily provided for use with the gDrawMarker() routine.

Additional hardware symbol fonts may be available on the current device.

Fonts 100 to 199 are reserved for fonts of which the ones listed are currently registered.

Registered fonts are increasingly available on a number of graphics devices but in some cases

only certain sizes are provided. With registered fonts (101-108) a software polygon font is also

provided in the GINO-F font file so that if software output is requested or the currently selected

device does not support this font, the appearance of text matches approximately that of the

requested font. Additional (non-registered) hardware fonts may be provided on the current

output device and users should consult the relevant Appendix B documentation for further

information on these. There is no software form of non-registered fonts.

The selection of hardware or software font is determined by the current setting of character

attributes. Where software fonts are used gSetFontForm() can be used to simplify their

representation during program development.

If the length of a string is required for a proportional font it is recommended that the routine

gReturnStrInfo() is used as it cannot be calculated by multiplying the number of characters by

the character width. Alternatively, gSetFontSpacing() can be used to force any font to be output

as if it were fixed pitch.

gSetFontFillStyle() can be used to select different font fill styles (e.g. outline and hatch fill) for

hardware fonts and software fonts marked with a *. gSetFontWeight() can be used to alter the

weight of all fonts.

The list of hardware fonts that are available on the current output device can be obtained

through the gEnqHardFontList() routine. If the font requested is not available, font zero is

used. Negative font numbers cause a warning message and font zero is selected.

See Also Page 141

gDrawMarker

gEnqHardFontList

gSetFontForm

gSetFontSpacing

gSetFontFillStyle

gSetFontWeight

gReturnStrInfo

660

gSetCharFont ROUTINE SPECIFICATIONS

gSetCharSize

Syntax

C/C++: void gSetCharSize(float width, float height);

void gSetCharSizePoint(float points)

F90: subroutine gSetCharSize(width, height)

subroutine gSetCharSizePoint(points)

real, intent(in) :: width,height

real, intent(in) :: points

Arguments width
Character width in current units

height
Character height in current units

points
Character size in points (1/72nd inch)

Description The routines gSetCharSize() and gSetCharSizePoint() sets the current character size to the

specified size. If width, height or points are less than or equal to zero, the current character

size is reset to the default character size and a warning message is output. The routine

gSetCharSizePoint() sets the width and height to the same dimension. The character width

specifies the distance between the start of one character and the next and the character height

specifies the height of upper-case characters.

The effect a call to either routine has when characters are output, depends on the character

mode at that time:

(a) gSetHardCharSize()

Neither routine has any effect.

(b) gSetHardChars()

Characters are correctly spaced, but their size may be very different.

(c) gSetMixedChars()

Character size may differ by up to 10% from the requested size.

(d) gSetSoftChars()

Characters are output exactly as requested.

(e) gSetCharTransformMode(GON)

Characters are transformed so size is modified by current scale.

661

ROUTINE SPECIFICATIONS gSetCharSize

See Also Page 147

gSetHardCharSize

gSetCharTransformMode

gSetHardChars

gSetMixedChars

gSetSoftChars

gSetCharTransformMode

Syntax

C/C++: void gSetCharTransformMode(int sw);

F90: subroutine gSetCharTransformMode(sw)

integer, intent(in) :: sw

Arguments sw
Character transforming switch

= GOFF, Off (default)

= GON, On

Description The routine gSetCharTransformMode() switches the transforming of characters on and off. The

call to gSetCharTransformMode() takes effect when characters are subsequently output

provided there has been no intervening call to gSetHardCharSize().

When the transforming of characters is switched on, all characters are generated by GINO to

exactly the size, orientation and italic angle requested. They are also drawn subject to the

current transformation, clipping/masking limits and line style (ie. according to the current line

width, broken line style and line end type).

If gSetCharTransformMode(GOFF) is called, the current character mode reverts to the

character mode set by the last call to gSetHardChars(), gSetMixedChars() (default) or

gSetSoftChars().

See Also Page 160, 239

gSetHardCharSize

gSetHardChars

gSetMixedChars

gSetSoftChars

gSetClippingMode

Syntax

C/C++: void gSetClippingMode(int sw);

F90: subroutine gSetClippingMode(sw)

integer, intent(in) :: sw

Arguments sw
Clipping mode

662

gSetCharTransformMode ROUTINE SPECIFICATIONS

= GNOCLIP, Switch off hardware and software clipping

= GHARD, Switch on hardware clipping

= GSOFT, Switch on software clipping

Description The routine gSetClippingMode() sets the clipping mode for all GINO drawing.

By default GINO will use hardware clipping if the current device has the facility in the driver.

Otherwise GINO will perform its own clipping. In both cases graphics is clipped to the current

window, this having been set using gSetWindow2D()/gSetWindow3D(), the current viewport

limits (if gSetViewportClipSwitch(GOFF) has been called) or the device limits if none of these

conditions apply.

Where a device has hardware clipping facilities, it should be noted that this will affect pixel

output, whereas the pixel primitives are not affected by software clipping. Hardware clipping

is, in most cases, more efficient than software clipping.

In the rare instance of not requiring hardware or software clipping, both operations can be

switched off by using GNOCLIP as the argument to gSetClippingMode(). Where this mode is

used, the effect of drawing outside the device limits vary from device to device and may

corrupt output. However, where it is known that output is restricted to within the device limits,

this mode of operation is likely to be significantly faster than with hardware or software

clipping switched on.

Very few devices have the capability of hardware clipping - use the routine gEnqDeviceState()

to check the settings for the current device.

See Also Page 222

gEnqClippingMode

gEnqDeviceState

gSetViewportClipSwitch

gSetWindow2D

gSetWindow3D

gSetColourInfo

Syntax

C/C++: void gSetColourInfo(int ndc, int ndt);

F90: subroutine gSetColourInfo(ndc, ndt)

integer, intent(in) :: ndc,ndt

Arguments ndc
Number of colours that can be separately defined or selected

= 0, Monochrome device

= 1, Monochrome device with background erase

> 1, Colour/greyscale device

ndt
Display type, identifying the colour/greyscale capabilities of the device

= 0, No colour/greyscale variation (i.e. Monochrome)

= ±1, Fixed colour/greyscale

663

ROUTINE SPECIFICATIONS gSetColourInfo

= ±2, Static colour/greyscale

= ±3, Dynamic colour/greyscale

= ±4, Direct colour/greyscale

N.B. Positive values indicate colour display, negative values indicate greyscale.

Description The routine gSetColourInfo() can be used to restrict the colour settings of the currently

nominated device. ndc and ndt define the number of colours and the colour type of the device

and these may be set to less than or equal to those defined by the device driver at device

initialisation. The maximum colour settings may be enquired through the routine

gEnqDeviceState() and the current settings may be enquired through the routine

gEnqColourInfo().

ndc defines the number of colours/greyscales that can be defined and selected (see

gDefineRGB() & gSetLineColour()). If ndc is set to zero, the device cannot display any

colours. ndt defines the colour/greyscale capabilities of the device as follows:

ndt= 0

No colours or greyscales are available.

ndt= ±1

The device has a fixed colour palette which cannot be redefined, gDefineRGB() has no effect.

ndt= ±2

The device has a static colour palette. gDefineRGB() can be used to redefine colours but

colours already drawn on the device will not be affected.

ndt= ±3

The device has a dynamic colour palette, gDefineRGB() can be used and redefining a colour

that has already been used will have immediate effect on the colour on the screen.

ndt= ±4

The device has a true colour capability and will associate an RGB value with each pixel on the

device instead of using a look-up table. A pseudo colour table will be maintained by GINO or

the device from which RGB values will be extracted where colour indices are used.

Only certain combinations of ndt can be set for any one device, for example if a device has ndt

set to 2 it cannot be changed to 3 and vice versa, however most devices can be restricted by

setting ndt to 0 or 1 and some can change from 2 to 4 and vice versa.

ndt can also be changed from positive to negative to force GINO to turn all colours into

greyscales.

This routine may only be called after a device has been nominated and before the start of the

first picture.

See Also Page 47, 209

gEnqColourInfo

gEnqDeviceState

gSetLineColour

gDefineRGB

664

gSetColourInfo ROUTINE SPECIFICATIONS

gSetCursorAction

Syntax

C/C++: void gSetCursorAction(int action, int lverts, GPOINT *points);

F90: subroutine gSetCursorAction(action, lverts, points)

integer, intent(in) :: action, lverts

type (GPOINT), intent(in) :: points(*)

Arguments action
Cursor action type

= GDEFAULT,

= GRUBBERBAND,

= GRUBBERBOX,

= GRUBBERSQUARE,

= GRUBBERELLIPSE,

= GRUBBERCIRCLE,

= GPOLYLINE,

lverts
Number of vertices if polyline cursor

points
Coordinates of polyline cursor

Description The routine gSetCursorAction() sets the action of the cursor or pointer when the

gGetCursorEvent() routine is used.

When action = GDEFAULT, the normal action of the cursor or pointer is set such that it marks

the current pointer position.

When action = GPOLYLINE an additional shape is displayed at the same time as the cursor

and is continually updated as the cursor is moved. The rubber shape is drawn in XOR mode

using the colour bakcol set by gSetCursorType() on most devices. Each shape has a static

position which is the current pen position when gGetCursorEvent() is called and has a variable

position which follows the cursor.

When action = GRUBBERBAND, or GRUBBERBOX a rubber line or box is displayed

between the two points. When action = GRUBBERSQUARE, a rubber square is displayed, the

dimension of each side being the minimum distance between the current pen position and the

cursor. When action = GRUBBERELLIPSE, a rubber ellipse is displayed within the bounding

rectangle whose centre is the current pen position and corner is the cursor position. When

action = GRUBBERCIRCLE, a rubber circle is displayed in the same way as the ellipse except

the bounding box is kept to a square centred at the current pen position.

665

ROUTINE SPECIFICATIONS gSetCursorAction

When action = GPOLYLINE, the user can define a polyline which will follow the current

pointer position. The number of vertices is set in lverts and the coordinates are placed in the

array points. The coordinates are defined in absolute picture coordinates. When

gGetCursorEvent() or gWaitForEvent() is called the coordinate (0.0,0.0) will follow the pointer

position. A maximum of 200 vertices can be sent to the device. If more that 200 vertices are

requested, a warning message is output and only the first 200 are used. The polyline is not

subject to any GINO windowing or masking.

If action is outside the above range an error message is output and no change is made to the

action type.

This routine only affects the shape of the cursor when action=GPOLYLINE, The routine

gSetCursorType() should be used to set other shapes.

The availability of cursor action types is hardware dependent and users should refer to the

relevant Appendix B document for the current device being used.

See Also Page 243

gGetCursorEvent

gSetCursorType

gWaitForEvent

Appendix B

gSetCursorPos

Syntax

C/C++: void gSetCursorPos(float x, float y);

F90: subroutine gSetCursorPos(x, y)

real, intent(in) :: x,y

Arguments x,y
Cursor start position in picture coordinates

Description A call to gSetCursorPos() defines the start position for the graphics pointer or cursor on

non-windowing devices. If cursor positioning is supported by the device (see Appendix B), the

pointer/cursor will appear at (x,y) when gGetCursorEvent() is next called.

The default for the pointer/cursor start position is the centre of the device limits. The cursor

start position is reset to the default after any call to gNewDrawing(). If a call to

gGetCursorEvent() is successful, the cursor start position may be set to the position returned by

gGetCursorEvent() depending on the device.

The position (x,y) should be specified to be within the device limits. If it is outside these, a

warning message is output and the cursor start position defaults to the centre of the device

limits.

The routine gSetMousePos() can be used to set the position (in pixels) of the graphics pointer

on windowing devices.

666

gSetCursorPos ROUTINE SPECIFICATIONS

See Also Page 242

gGetCursorEvent

gNewDrawing

gSetMousePos

Appendix B

gSetCursorType

Syntax

C/C++: void gSetCursorType(int type, int forcol, int bakcol);

F90: subroutine gSetCursorType(type, forcol, bakcol)

integer, intent(in) :: type,forcol,bakcol

Arguments type
Cursor Type

= GDEFAULT, Default

= GSMALLCROSS, Small cross

= GLARGECROSS, Large cross (full screen/window if available)

= GX, X

= GPOINTER, Pointer

> 4, Hardware dependent cursor types

forcol
Foreground colour index (default = 1)

bakcol
Background colour index (default = 0)

Description The routine gSetCursorType() sets the shape of the gGetCursorEvent() or pointer for use within

the gGetCursorEvent() or gWaitForEvent() routines.

When type = GDEFAULT, a default hardware cursor is defined. This may be a cross or pointer.

When type > 4, other cursor shapes can be defined most of which are dependent on the

facilities of the device being used. Refer to the appropriate Appendix B document for a list of

cursor types that are available.

If type is greater than the number of cursor types available on the current device (see

gEnqDeviceState()) the default hardware cursor shape is used.

The arguments forcol and bakcol define the foreground and background/outline colours that

are required for the cursor shape. The application of these colours is hardware dependent.

The shape of the cursor is changed either when the routine gGetCursorEvent() is called or

when any event types are enabled with gAddEventType(). When GINO returns from

gGetCursorEvent() or all event types are disabled (with gRemoveEventType()) the cursor is

removed from the screen or its shape reverts to some default shape. Note that when type =

GDEFAULT, the shape of the cursor is always different from that when GINO is not in cursor

or event mode.

667

ROUTINE SPECIFICATIONS gSetCursorType

Some devices can define a polyline cursor of up to 200 vertices. The routine

gSetCursorAction() is used for this option.

See Also Page 242

gGetCursorEvent

gEnqDeviceState

gSetCursorAction

gWaitForEvent

Appendix B

gSetCurveAttribs

Syntax

C/C++: void gSetCurveAttribs2D(float dxbeg, float dybeg, float dxfin, float dyfin, float xbeg,

float ybeg, float xfin, float yfin);

void gSetCurveAttribs3D(float dxbeg, float dybeg, float dzbeg, float dxfin, float dyfin,

float dzfin, float xbeg, float ybeg, float zbeg, float xfin, float yfin, float zfin);

F90: subroutine gSetCurveAttribs2D(dxbeg, dybeg, dxfin, dyfin, xbeg, ybeg, xfin, yfin)

subroutine gSetCurveAttribs3D(dxbeg, dybeg, dzbeg, dxfin, dyfin, dzfin, xbeg, ybeg,

zbeg, xfin, yfin, zfin)

real, intent(in) :: dxbeg,dybeg,dzbeg,dxfin,dyfin,dzfin

real, intent(in) :: xbeg,ybeg,zbeg,xfin,yfin,zfin

Arguments dxbeg,dybeg,dzbeg
Slope angle/derivative for start of the curve

dxfin,dyfin,dzfin
Slope angle/derivative for end of the curve

xbeg,ybeg,zbeg
Extra point defining start angle of curve

xfin,yfin,zfin
Extra point defining end angle of curve

Description The routines gSetCurveAttribs2D() and gSetCurveAttribs3D() specify the curve end conditions

which may be used in calls to the GINO 2D and 3D curve drawing routines respectively. The

curve end conditions define the direction of a curve at each end.

For the 2D piecewise cubic curves, the slopes are measured in terms of the cosine and sine of

the angles at each end, whereas for the 2D and 3D spline curves, the slope is measured in terms

of actual gradient and therefore will need to be scaled. For monotonic spline curves, it is

sufficient to set dxbeg, dxfin = 1.0 and dybeg, dyfin = y’(x) and the routine will compute the

correct values.

Alternatively, the direction may be defined by an extra point through which the curve would

pass if that point was included with those that actually specify the curve.

In the absence of a call to gSetCurveAttribs2D() or gSetCurveAttribs3D(), the start and end

slopes default to zero, i.e 1.0 and 0.0 for the cosine and sine of the angle, and the extra points

(xbeg,ybeg,zbeg) and (xfin,yfin,zfin) both default to (0.0,0.0,0.0).

668

gSetCurveAttribs ROUTINE SPECIFICATIONS

See Also Page 94, 100, 286, 287

gDrawAkimaBy2D

gDrawAkimaTo2D

gDrawCurveBy2D

gDrawCurveTo2D

gDrawSplineBy2D

gDrawSplineTo2D

gDrawSplineBy3D

gDrawSplineTo3D

gSetDebugSwitch

Syntax

C/C++: void gSetDebugSwitch(int sw);

F90: subroutine gSetDebugSwitch(sw)

integer, intent(in) :: sw

Arguments sw
Debug output switch

= GOFF, Switch debug output off

= GON, Switch debug output on (default if gDebug() is called)

Description Following the nomination of the gDebug() intermediate device driver, its output may be

controlled by switching its operation on and off using gSetDebugSwitch(). This allows the user

to select gDebug() output for the desired section of the application program.

See Also Page 32

gDebug

gSetDepthMode

Syntax

C/C++: void gSetDepthMode(int mode, float dinit);

F90: subroutine gSetDepthMode(mode, dinit)

integer, intent(in) :: mode

real, intent(in) :: dinit

Arguments mode
Depth test mode

= GNEVER, Never display output

= GLESSTHAN, Display if depth < value in depth buffer (default)

= GLESSTHANOREQUALTO, Display if depth <= value in depth buffer

= GEQUALTO, Display if depth = value in depth buffer

= GNOTEQUALTO, Display if depth >= value in depth buffer

669

ROUTINE SPECIFICATIONS gSetDebugSwitch

= GGREATERTHANEQUALTO, Display if depth >= value in depth buffer

= GGREATERTHAN, Display if depth > value in depth buffer

= GALWAYS, Always display output

dinit
Initial depth buffer setting (default = 1.0)

Description The arguments to the routine gSetDepthMode() control the operation of the depth buffer which

take effect when a flat or smooth shading mode is set in the next call to gSetShadingMode().

The setting of mode sets the test that is applied to each point that is to be displayed against the

value in the depth buffer.

The depth buffer is initialized to the value in dinit when the display area is next cleared with

gNewDrawing().

See Also Page 328

gSetShadingMode

gSetViewport3D

gSetDeviceFilename

Syntax

C/C++: void gSetDeviceFilename(char filename[], int ntype);

F90: subroutine gSetDeviceFilename(filename,ntype)

character*(*), intent(in) :: filename

integer, intent(in) :: ntype

Arguments filename
File name to be used for graphical output

ntype
Additional configuration/format information in connection with file

> 0, Not used

= 0, Unformatted output (default)

= -1, Formatted 80 character records

= -2, Expanded Ascii codes

= -3, Expanded Octal codes

= -4, Expanded Decimal codes

= -5, Expanded Hex codes

Description The routine gSetDeviceFilename() specifies an output file name and optional format for the

graphics output to be sent to. This only applies to metafile and plotter devices and some

graphics terminals as it is not possible to re-direct output from windowing devices.

Omitting to use gSetDeviceFilename() will result in device output being directed to a default

output source which for most devices is a file called xxxxxx.OUT where xxxxx is the

nomination routine name. Whether the default output source is used or that specified by this

routine, an internal file unit is used for the output.

670

gSetDeviceFilename ROUTINE SPECIFICATIONS

This routine may only be called after a device has been nominated and before the start of the

first picture.

See Also Page 44

Appendix A

Appendix B

gSetDeviceTitle

Syntax

C/C++: void gSetDeviceTitle(char title[]);

F90: subroutine gSetDeviceTitle(title)

character*(*), intent(in) :: title

Arguments title
Device title string

Description The routine gSetDeviceTitle() defines a device specific title string to be used as appropriate on

the output device. The title string will be output in the title bar on window devices or in the

header of metafiles.

This routine may be called during device qualification, ie. immediately after nominating the

required device, in which case the title string will be displayed as part of opening the device or

window. Some devices may allow the title or banner string to be changed while a device or

window is open, in which case this routine may be called at any time during an application.

See Also Page 52

Appendix B

gSetDialogueVis

Syntax

C/C++: void gSetDialogueVis(int diavis);

F90: subroutine gSetDialogueVis(diavis)

integer, intent(in) :: diavis

Arguments diavis
Dialogue area visibility

= GINVISIBLE, Dialogue area invisible

= GVISIBLE, Dialogue area visible

Description The routine gSetDialogueVis() sets the dialogue area to be visible or invisible. Setting it

invisible only switches it off, it does not delete it.

This routine will only function on windowing devices and screens with separate

graphics/dialogue planes (see Appendix B).

671

ROUTINE SPECIFICATIONS gSetDeviceTitle

See Also Page 51

gSetGraphicsVis

Appendix B

gSetDrawingLimits

Syntax

C/C++: void gSetDrawingLimits(GDIM *dim, int type);

F90: subroutine gSetDrawingLimits(dim ,type)

type (GDIM), intent(in) :: dim

integer, intent(in) :: type

Arguments dim
Physical dimensions of required drawing area in the current units:

= 0.0, Leave unaltered

type
Type of paper

Description The routine gSetDrawingLimits() allows the selection of a variety of paper sizes on plotters, or

window sizes on devices with window managers. This routine may only be called after a

device has been nominated and before the start of the first picture, or after a call to

gNewDrawing() and before the start of the next picture.

The default orientation can be changed on plotters/printers by calling gSetDrawingLimits()

with the horizontal and vertical limits interchanged. Thus, if the default drawing area

orientation is landscape and a call is made to gSetDrawingLimits() such that the vertical

dimension is greater than the horizontal, the orientation is changed to portrait. The orientation

can be changed from portrait to landscape in the same manner, but in reverse.

type can be used on some devices to select alternate paper trays - consult Appendix B for

further information.

See Also Page 45

Appendix B

gSetErrorFile

Syntax

C/C++: void gSetErrorFile(GFILE *fp);

F90: subroutine gSetErrorFile(unit)

integer, intent(in) :: unit

Arguments fp
Pointer to GINO-C Error/Tracer Message output file

672

gSetDrawingLimits ROUTINE SPECIFICATIONS

unit
Fortran 90 file unit

Description The routine gSetErrorFile() sets the output unit for subsequent error and tracer messages. The

default number is system dependent.

The required file should be opened prior to calling this routine using the function gFopen(),

with the file pointer or unit number passed as appropriate.

Note that it is not possible to change the unit on which the GINO banner message is output as

this routine does not take effect until after the banner has been produced.

See Also Page 31

gFopen

gSetTracerMode

gSetErrorMode

Syntax

C/C++: void gSetErrorMode(int sw);

F90: subroutine gSetErrorMode(sw)

integer, intent(in) :: sw

Arguments sw
Error and warning message switch

= GALLOFF, Error and warning messages are suppressed

= GERRORON, Warning messages are suppressed, error messages are
output

= GALLON, Error and warning messages are output (default)

Description GINO generates error messages and warning messages. The default is for GINO to output all

messages. A call to gSetErrorMode() can arrange for either warning messages or all messages

to be suppressed, according to the value of sw. Errors and warnings are always logged, even

when output of the corresponding messages is suppressed.

See Also Page 30

gSetErrorTrap

Syntax

C/C++: void gSetErrorTrap(int sw);

F90: subroutine gSetErrorTrap(sw)

integer, intent(in) :: sw

Arguments sw
Error trapping flag

673

ROUTINE SPECIFICATIONS gSetErrorMode

= GOFF, Disable error trapping (default)

= GON, Enable error trapping and reset error and warning count

Description The routine gSetErrorTrap() enables or disables error trapping, according to the value of sw.

The default is for error trapping to be switched off. When error trapping is enabled, any errors

or warnings that are generated are counted. The count is returned by gEnqNumberOfErrors()

and it is reset whenever gSetErrorTrap(GON) is called. The count maintained for the purposes

of error trapping is quite separate from the main error and warning count that is returned by

gEnqLastErrors().

See Also Page 30

gEnqLastErrors

gEnqNumberOfErrors

gSetEscapeChar

Syntax

C/C++: void gSetEscapeChar(char cha);

F90: subroutine gSetEscapeChar(cha)

character*(*), intent(in) :: cha

Arguments cha
Single character

Description The routine gSetEscapeChar() sets the escape character to cha. It is used in interpreting the

character argument in gDisplayStr(). The default escape character is *.

The escape character may be set to any non-control character (ie. Ascii codes 32-255) however

if that character has special significance to gDisplayStr(), that gDisplayStr() function will then

not be available. i.e. if the escape character is changed to the character F, a change of font will

not be possible within the gDisplayStr() routine.

See Also Page 158

gDisplayStr

gSetFacetFillStyle

Syntax

C/C++: void gSetFacetFillStyle(int fill);

F90: subroutine gSetFacetFillStyle(fill)

integer, intent(in) :: fill

Arguments fill
Facet fill style

= GHOLLOW, Draw boundary only

= GSOLID, Solid fill (default)

674

gSetEscapeChar ROUTINE SPECIFICATIONS

Description The routine gSetFacetFillStyle() sets the current facet filling mode.

Note that facet boundaries, on their own are NOT subject to hidden surface removal. In other

words, when boundaries are drawn it is only the lines that are hidden by closer objects, not the

surface they represent.

See Also Page 301

gDrawFacet

gSetFacetMaterialProps

Syntax

C/C++: void gSetFacetMaterialProps(int face, int amb, int diff, int spec, int emit, float shine,

float trans);

F90: subroutine gSetFacetMaterialProps(face, amb, diff, spec, emit, shine, trans)

integer, intent(in) :: face,amb,diff,spec,emit

real, intent(in) :: shine,trans

Arguments face
Facet face

= GFRONT, Sets material properties for front face

= GBACK, Sets material properties for back face

amb
Ambient reflection colour

diff
Diffuse reflection colour

spec
Specular reflection colour

emit
Emission colour

shine
Specular concentration (shininess) as percentage

trans
Translucence (filtering) (0.0-1.0)

Description The routine gSetFacetMaterialProps() sets the current facet material properties for either the

front or back faces of all subsequently drawn facets (or objects). This overrides any material

properties set using the material table using gSetMaterialIndex().

The parameters amb, diff, spec and emit are all integer values that may be indices into the

GINO colour table or 24-bit RGB true colour values as returned by the function gTrueCol(). If

any of the particular properties are not required the colour black (colour index 1 - GBLACK)

should be used.

675

ROUTINE SPECIFICATIONS gSetFacetMaterialProps

Translucence values less than 1.0 (opaque) are only utilized if surface blending is switched on

by the gSetShadingMode() routine.

See Also Page 342

gDrawFacet

gSetMaterialIndex

gSetShadingMode

gTrueCol

gSetFacetOffsetMode

Syntax

C/C++: void gSetFacetOffsetMode(int mode);

F90: subroutine gSetFacetOffsetMode(mode)

integer, intent(in) :: mode

Arguments mode
Facet offset mode

= GOFF, Switch off all facet offsets

= GBOUNDARYAWAY, Shift boundary away from view point

= GBOUNDARYNEAR, Shift boundary towards the view point

= GINTERIORAWAY, Shift interior away from view point

= GINTERIORNEAR, Shift interior towards the view point

Description The routine gSetFacetOffsetMode() sets an offset that facet interiors or boundaries are drawn

subject to the current view. When set to a value other than GOFF, the facet interior or the

boundary is shifted by a nominal amount nearer to or further from the view point. This affects

the objects visibility when depth buffering is used, in that the facet will have different depth

values to others drawn at the same distance from the viewer.

This routine has particular relevance when drawing facet interiors and boundaries (or other

surface detail) because ordinarily, whichever is drawn second is partially hidden by whichever

has been drawn first by the hidden surface removal software.

See Also Page 302

gDrawFacet

gSetDepthMode

gSetFillMode

Syntax

C/C++: void gSetFillMode(int sw);

F90: subroutine gSetFillMode(sw)

integer, intent(in) :: sw

676

gSetFacetOffsetMode ROUTINE SPECIFICATIONS

Arguments sw
Fill switch

= GHARD, Fill areas using hardware if possible (default)

= GSOFT, Area fill using software

Description Some devices have limitations on hardware area filling. However, GINO software filling is

device independent. A call to gSetFillMode(GSOFT) will ensure that all filling is performed

using software fill.

See Also Page 171

gSetFontFillStyle

Syntax

C/C++: void gSetFontFillStyle(GFNTFILSTY *style);

F90: subroutine gSetFontFillStyle(style)

type (GFNTFILSTY), intent(in) :: style

Arguments style.type
font style type

= GOUTLINE, Outline only

= GFILLED, Filled font using foreground and background fill and
line styles

= GOUTFILL, Filled font and outline

> 2, Hardware dependent

style.ffill
Font foreground fill style

= GNOFILL, No foreground filling

= GSOLID, Solid fill

= 1 - 256, Fill style index (hardware fill) or hatch style index
(software fill)

> 256, Fill style index (hardware fill) or solid fill (software
fill)

style.fline
Font foreground line style

= GCURRENT, Current line style

= 1 - 256, Line style index

> 256, Current line style

style.bfill
Font background fill style

= GNOFILL, No background filling

= GSOLID, Solid fill

677

ROUTINE SPECIFICATIONS gSetFontFillStyle

= 1 - 256 Fill style index (hardware fill) or hatch style index
(software fill)

> 256, Fill style index (hardware fill) or solid fill (software
fill)

style.bline
Font background line style

= GCURRENT, Current line style

= 1 - 256, Line style index

> 256, Current line style

Description The routine gSetFontFillStyle() sets the style for hardware and polygon fonts.

For hardware fonts, style.type sets the hardware font style. On most devices only solid fonts

are available in which case the filled font will be displayed in the current colour and this

routine will have no effect. However, on some devices a number of styles are available and

style.type may be used to select from those available. It is unlikely that the fill and line styles

will be used for hardware fonts.

For software fonts that are defined as polygon fonts style.type sets the style of the font. When

style.type = GOUTLINE or GOUTFILL the outline is drawn in the current colour. The

foreground and background fill and line styles are not used for style.type = GOUTLINE.

For fill styles GFILLED and GOUTFILL the foreground and background fill style can be

independently selected by setting the fill style to GNOFILL if it is not required. The fill style

and line styles are set using gDefineHatchStyle() and gDefineLineStyle() respectively. Filling

may be done in hardware or software depending on the capabilities of the device and the

setting of gSetFillMode().

See Also Page 144

gSetCharFont

gSetFillMode

gDefineHatchStyle

gDefineLineStyle

gSetFontForm

Syntax

C/C++: void gSetFontForm(int rep);

F90: subroutine gSetFontForm(rep)

integer, intent(in) :: rep

Arguments rep
Software font representation

= 0, Normal font representation (default)

= 1, Display as font 0

= 2, Display as boxes (type 1)

= 3, Display as font 0 and boxes (type 1)

= 4, Display as boxes (type 2)

= 5, Display as font 0 and boxes (type 2)

678

gSetFontForm ROUTINE SPECIFICATIONS

= 6, Display as boxes (type 3)

= 7, Display as font 0 and boxes (type 3)

Description The routine gSetFontForm() can be used to speed up the display of software fonts by

representing the output string using font 0 and/or a series of boxes showing the size of the

characters in the actual font.

Box type 1 is drawn with the width and height equal to the width and height of the character

alone.

Box type 2 is drawn with the width and height equal to the width and height of the full

character box including left and right bearings, and space above and below for underlining.

Box type 3 is drawn with the width equal to the width of the character and the height equal to

the space occupied by the full character box height.

Setting rep > 0 has the additional effect of characters always being drawn with the default pen

width, thus ignoring any setting of gSetFontWeight().

gSetFontForm() does not affect the default font 0 and hardware, Greek and symbol fonts are

not replaced by font 0 for odd values of rep.

If rep is outside the above range, a warning message is output and the default value of zero is

used.

See Also Page 146

gSetFontWeight

gSetFontSpacing

Syntax

C/C++: void gSetFontSpacing(int space);

F90: subroutine gSetFontSpacing(space)

integer, intent(in) :: space

Arguments space
Font spacing

= GNORMAL, Normal font spacing (default)

= GFIXEDPITCH, Force equal spacing

Description The routine gSetFontSpacing() can be used to force proportional fonts to be output as

non-proportional or fixed pitch fonts.

Where hardware proportional fonts are being used, and equal spacing is requested, the

character box for each character is adjusted so that each one is of equal size. Each character is

positioned separately on the base line but in the centre of the new box.

See Also Page 146

679

ROUTINE SPECIFICATIONS gSetFontSpacing

gSetFontWeight

Syntax

C/C++: void gSetFontWeight(int weight);

F90: subroutine gSetFontWeight(weight)

integer, intent(in) :: weight

Arguments weight
Font weight

< 0, Font thinning factor

= 0, Normal font weight (default)

> 0, Font weighting factor

Description The routine gSetFontWeight() sets the font weight for subsequent character output. For

software fonts, the width of vectors used to display the font or its boundary will be affected but

not the interior area of filled fonts. Its effect on hardware fonts is device dependent.

Positive weighting factors increase the width of vectors above the default pen width, whereas

negative weighting factors decrease the width (if vectors can be drawn thinner than the default

width). The increase/decrease factor is proportional to the character width thus maintaining

similar effects for each factor.

The following are suggested values for the standard font weights:

weight Description

-6 Extra Thin
-3 Thin
0 Normal

+3 Bold
+6 Extra Bold

gSetFontWeight() does not affect software transformed characters as these are drawn using the

current line style which included a thickness attribute. gSetFontWeight() is ignored on software

fonts if non default font representations are set with gSetFontForm().

See Also Page 145

gSetFontForm

gSetGraphicsVis

Syntax

C/C++: void gSetGraphicsVis(int vis);

F90: subroutine gSetGraphicsVis(vis)

integer, intent(in) :: vis

680

gSetFontWeight ROUTINE SPECIFICATIONS

Arguments vis
Graphics area visibility

= GINVISIBLE, Graphics area invisible

= GVISIBLE, Graphics area visible (default)

Description The routine gSetGraphicsVis() sets the graphics area to be visible or invisible. Making it

invisible only switches it off, it does not delete it.

This routine will only function on screens with separate graphics/dialogue planes (see

Appendix B).

See Also Page 51

gSetDialogueVis

Appendix B

gSetHardChars

Syntax

C/C++: void gSetHardChars(void);

F90: subroutine gSetHardChars

Arguments None

Description The routine gSetHardChars() switches the current character mode to hardware character mode.

This mode takes effect when characters are subsequently output provided there has been no

intervening call to gSetSoftChars() or gSetCharTransformMode(GON).

When hardware character mode is active, GINO tries to output characters using whatever

character-generation facilities the device might have. If the device cannot generate characters

within the limits required by gSetMixedChars(), non-italicized character-generation is

requested, and if this fails, GINO will search for the nearest size of characters that the device

can generate. If the device can generate no characters at all, they will be generated by GINO

just as if gSetSoftChars() was called. Appendix B specifies what character generation facilities

are provided by the device.

See Also Page 162

gSetCharTransformMode

gSetMixedChars

gSetSoftChars

Appendix B

gSetHardCharSize

Syntax

C/C++: void gSetHardCharSize(int nsize, int nhv);

F90: subroutine gSetHardCharSize(nsize, nhv)

integer, intent(in) :: nsize,nhv

681

ROUTINE SPECIFICATIONS gSetHardChars

Arguments nsize
Hardware character size index

= 0, Default character size

nhv
Hardware character orientation

= GHORIZ, Horizontal (0 degrees)

= GVERT, Vertical (90 degrees)

Description The routine gSetHardCharSize() is used to select hardware characters on older devices that

only had a preset number of sizes available. It selects a hardware character size and orientation

according to the values in nsize and nhv. If nsize is less than zero, a warning message is output

and the absolute value of nsize is used to determine the character size.

The character size should be converted by the device driver into an actual character width and

height. This can subsequently be enquired by calling gEnqCharAttribs(). Even if the device

cannot generate characters as requested, the device driver may still carry out the conversion.

GINO will then generate characters with a size suited to the device (pseudo-hardware character

generation). If no response is obtained from the device driver, the current character size is set

to the default character size. Available hardware character sizes for each device are given in

Appendix B.

A call to gSetHardCharSize() overrides the combined effect of any calls to gSetHardChars(),

gSetMixedChars(), gSetSoftChars(), gSetCharTransformMode(), gSetCharSize(),

gSetStrAngle() or gSetItalicAngle(). gSetHardCharSize() will remain in effect until any one of

these routines is called.

See Also Page 138

gSetStrAngle

gEnqCharAttribs

gSetCharSize

gSetCharTransformMode

gSetHardChars

gSetItalicAngle

gSetMixedChars

gSetSoftChars

Appendix B

gSetInterlineSpace

Syntax

C/C++: void gSetInterlineSpace(float drpfac);

F90: subroutine gSetInterlineSpace(drpfac)

real, intent(in) :: drpfac

Arguments drpfac
Inter-line spacing factor

682

gSetInterlineSpace ROUTINE SPECIFICATIONS

Description The routine gSetInterlineSpace() sets the current inter-line spacing factor for text blocks. Text

blocks are positioned using gStartTextBlock(), and new lines are started by either calling

gMoveToNextLine() or using the *N escape sequence within any of the string output routines.

The argument drpfac is a factor of the current character height (set by gSetCharSize()) by

which each line of a text block is placed below the preceding line. The default drpfac of 2.0

sets each line to be positioned 2.0 * character height below the preceding line.

drpfac can be any real value, positive, negative or zero with the corresponding effect on the

line spacing.

See Also Page 154

gStartTextBlock

gMoveToNextLine

gSetCharSize

gDisplayStr

gSetItalicAngle

Syntax

C/C++: void gSetItalicAngle(float slant);

F90: subroutine gSetItalicAngle(slant)

real, intent(in) :: slant

Arguments slant
Italic angle in degrees

Description The routine gSetItalicAngle() sets the current italic angle to the value in slant. The italic angle

is reduced to an equivalent angle between -90.0 and +90.0 degrees. The maximum possible

magnitude of the slant is 85.0 degrees. The italic angle is measured in a clockwise direction

from the character vertical.

What effect a call to gSetItalicAngle() has when characters are generated depends on the

character mode at that time:

(a) gSetHardCharSize()

Call to gSetItalicAngle() has no effect

(b) gSetHardChars()

Characters may be non-italicized if not supported by the device

(c) gSetMixedChars()

Italic angle may differ by up to 5 degrees from the requested angle

(d) gSetSoftChars()

Characters are italicized exactly as requested

(e) gSetCharTransformMode(GON)

683

ROUTINE SPECIFICATIONS gSetItalicAngle

Characters are italicized as requested and transformed, so angle may be modified by current

shear.

See Also Page 150

gSetHardCharSize

gSetCharTransformMode

gSetHardChars

gSetMixedChars

gSetSoftChars

gSetLightSwitch

Syntax

C/C++: void gSetLightSwitch(int light, int sw);

F90: subroutine gSetLightSwitch(light, sw)

integer, intent(in) :: light, sw

Arguments light
Light source number (1-8)

sw
Light switch

= GOFF, Off (default)

= GON, On

Description The routine gSetLightSwitch() switches the specified light source on or off. By default all light

sources are switched off.

The type and specification of a light source is defined using gDefineLightSource().

See Also Page 332

gDefineLightSource

gEnqLightAttribs

gSetLineColour

Syntax

C/C++: void gSetLineColour(int col);

F90: subroutine gSetLineColour(col)

integer, intent(in) :: col

Arguments col
Colour setting

= 0, GBACKGROUND

= 1, GBLACK

= 2, GRED

684

gSetLightSwitch ROUTINE SPECIFICATIONS

= 3, GORANGE

= 4, GYELLOW

= 5, GGREEN

= 6, GCYAN

= 7, GBLUE

= 8, GMAGENTA

= 9, GBROWN

= 10, GWHITE

> 10, Index up to device colour capability

Description The routine gSetLineColour() selects a colour for subsequent graphical output. The argument

col can be an index in the current GINO colour table or (on a true colour device) a 24bit RGB

triplet returned by the function gTrueCol().

The colour index values/constants described above represent the initial setting of the GINO

colour table, which may however be modified using one of the colour definition routines

gDefineRGB(), gDefineHSV() or gDefineHLS(). Whether a colour actually appears on a

device depends on the device’s hardware capabilities.

The background colour is selected by setting col=GBACKGROUND. Graphical output may be

erased from the picture by redrawing it with the background colour, provided that this is

supported by the device.

If a negative value is passed in col, a warning message is output and the absolute value of col is

used. When col is outside the range of colours of the device, a default colour is selected. A call

to gEnqSelectedPen() returns the colour actually provided.

See Also Page 117

gDefineHLS

gDefineHSV

gEnqSelectedPen

gDefineRGB

gTrueCol

gSetLineEnd

Syntax

C/C++: void gSetLineEnd(int end);

F90: subroutine gSetLineEnd(end)

integer, intent(in) :: end

Arguments end
Line end type

= GNONE, No ends (default)

= GSQUARE, Square ends

= GROUND, Round ends

> 2, No ends or device dependent ends

685

ROUTINE SPECIFICATIONS gSetLineEnd

Description The routine gSetLineEnd() specifies a line end type for subsequent graphical output. The

absolute value of end defines the end type. If end is less than zero, a warning message is

output. End types greater than 2 will default to no ends unless there are other end types

supported by the device (detailed in Appendix B). Round ends ensure that there is a smooth

join between thick lines.

See Also Page 120

gSetLineStyle

Syntax

C/C++: void gSetLineStyle(int line);

F90: subroutine gSetLineStyle(line)

integer, intent(in) :: line

Arguments line
Line style index

= 0, Current line style

= 1 - 256, Stored line style

Description The routine gSetLineStyle() sets the current line attributes to the values defined by the

specified line style. A call to gSetLineStyle() is equivalent to calling gSetLineVis(),

gSetBrokenLine(), gSetLineColour(), gSetLineWidth(), gSetPenType() and gSetLineEnd().

If line is zero, gSetLineStyle() does nothing. If line is out of range, an error message is output

and no further action is taken.

See Also Page 131

gSetBrokenLine

gSetLineColour

gDefineLineStyle

gSetLineEnd

gSaveLineStyle

gSetLineVis

gSetLineWidth

gSetPenType

gSetLineVis

Syntax

C/C++: void gSetLineVis(int vis);

F90: subroutine gSetLineVis(vis)

integer, intent(in) :: vis

Arguments vis
Line visibility

686

gSetLineStyle ROUTINE SPECIFICATIONS

= GINVISIBLE, Line invisible

= GVISIBLE, Line visible (default)

Description Normally lines are generated so that they are visible. No lines will appear on the device when

vis is set to GINVISIBLE with a call to gSetLineVis(). gSetLineVis() does not affect any of the

invisible drawing routines (e.g. gMoveTo2D()).

See Also Page 116

gSetLineWidth

Syntax

C/C++: void gSetLineWidth(float width);

F90: subroutine gSetLineWidth(width)

real, intent(in) :: width

Arguments width
Line width in current units

Description The routine gSetLineWidth() specifies a line width for subsequent graphical output.

When width is set to zero (0.0) the line width is set to the default width for the currently

nominated device. This would be equivalent to a single pixel’s width on raster devices or the

default pen width on plotters. In some cases a smaller line width is available in which case a

small positive value should be used to select the finest line width available on any device.

Where only discrete line/pen widths are possible, the nearest available width is selected and a

call to gEnqSelectedPen() will return the line width actually used.

If width is less than zero, a warning message is output. The absolute value of width is taken to

be the line width.

Line width only affects characters if gSetSoftChars() has been called and gSetFontWeight() has

not been called.

See Also Page 119

gEnqSelectedPen

gSetLineWidthMode

Syntax

C/C++: void gSetLineWidthMode(int sw);

F90: subroutine gSetLineWidthMode(sw)

integer, intent(in) :: sw

Arguments sw
Thick line generation mode

= GHARDWARE, Set hardware thick line generation mode

687

ROUTINE SPECIFICATIONS gSetLineWidth

= GMIXWARE, Set mixed hardware and software generation mode

= GSOFTWARE, Set software thick line generation mode

Description The routine gSetLineWidthMode() sets the thick line generation mode for lines greater than

one device unit wide as set by gSetLineWidth() or gDefineLineStyle().

Where hardware generation mode is selected, GINO only uses hardware line generation

facilities available on the current output device. Where hardware thick generation facilities

exist, thick broken lines with non-standard line ends may be generated incorrectly and line

ends may extend into GINO masks or out of GINO window limits. If the device does not have

hardware thick line generation facilities, no thick lines will be generated and all lines will be

the default thickness.

The default mode uses a mixture of hardware and software generation depending on the

capabilities of the output device and what sort of thick line is being output. That is, where a

device can generate hardware thick lines, these are used for all lines except thick broken lines

with non-standard line ends. (This is to ensure the line end is placed only on the end of each

line rather than on the end of each broken line segment.) Where a device has no hardware thick

line facilities all thick lines will be generated by software (see below). The default mode

therefore uses the most efficient mode to generate the output requested but which may not be

100% accurate.

Selecting software generation will force thick lines to be generated using an appropriate

emulation method for the current device driver. These include drawing lines parallel to the base

line (appropriate to pen plotters), generating a series of horizontal/vertical lines (appropriate to

raster displays) and using polygon fill where such facilities exist. The method selected by the

device driver may be enquired through the routine gEnqDeviceState(). This mode is guaranteed

to generate 100% accurate broken and thick lines.

See Also Page 119

gEnqDeviceState

gDefineLineStyle

gSetLineWidth

gSetLineWidthScaling

Syntax

C/C++: void gSetLineWidthScaling(float scale);

F90: subroutine gSetLineWidthScaling(scale)

real, intent(in) :: scale

Arguments scale
Line width scale factor

Description The routine gSetLineWidthScaling() sets a scale factor to be used for all future settings of line

width. These include gSetLineWidth() and internal settings for character underlining and font

weight.

If scale is less than or equal to 0.0 a warning message is output and the scale factor is set to

1.0.

688

gSetLineWidthScaling ROUTINE SPECIFICATIONS

See Also Page 119

gSetLineWidth

gSetMask2D

Syntax

C/C++: void gSetMask2D(GLIMIT *limit);

F90: subroutine gSetMask2D(limit)

type (GLIMIT), intent(in) :: limit

Arguments limit
Extent of mask limits in picture coordinates

Description The routine gSetMask2D() defines the limits of a 2-D rectangular mask. The limits are in

picture coordinates and are clipped to the current device limits. They are not transformable.

This routine also switches the state of masking on if the limits are within the device limits.

See Also Page 224

gSetMaskMode

gSetMaskMode

Syntax

C/C++: void gSetMaskMode(int sw);

F90: subroutine gSetMaskMode(sw)

integer, intent(in) :: sw

Arguments sw
Masking switch

= GOFF, Switches masking off

= GON, Switches masking on

Description Once a mask has been established using gSetMask2D() or gSetPolygonMask(), it may be

switched on or off using gSetMaskMode().

While masking is switched on no graphics output will appear within the mask area.

See Also Page 225

gSetMask2D

689

ROUTINE SPECIFICATIONS gSetMask2D

gSetMaterialColour

Syntax

C/C++: void gSetMaterialColour(int fcol, int bcol);

F90: subroutine gSetMaterialColour(fcol, bcol)

integer, intent(in) :: fcol, bcol

Arguments fcol
Front face material colour

bcol
Back face material colour

Description The routine gSetMaterialColour() sets the current material colour for the front and back faces

of facets. Both values may be indices into the GINO colour table or 24-bit RGB true colour

values returned from the function gTrueCol().

The material colour is multiplied by the current material table lighting coefficients (as set by

gSetMaterialIndex()) to calculate the actual material settings of either face.

Setting the facet material properties using gSetFacetMaterialProps() overrides any values set

by this routine and gSetMaterialIndex().

See Also Page 341

gSetFacetMaterialProps

gSetMaterialIndex

gTrueCol

gSetMaterialIndex

Syntax

C/C++: void gSetMaterialIndex(int fmat, int bmat);

F90: subroutine gSetMaterialIndex(fmat, bmat)

integer, intent(in) :: fmat, bmat

Arguments fmat
Front face material index

< 0, No change

= GOFF, No front face material (see below)

= 1-256, Set front face material coefficients from material table

bmat
Back face material index

< 0, No change

690

gSetMaterialColour ROUTINE SPECIFICATIONS

= GOFF, No back face material (see below)

= 1-256, Set back face material coefficients from material table

Description The routine gSetMaterialIndex() sets the current facet material coefficients from the material

table for both the front and back faces of facets. These are multiplied by the current material

colour settings (as set by gSetMaterialColour()) to give the actual material settings of either

face.

Entries in the material table are set through the routine gDefineMaterial().

When the back face material index is set to GOFF, no lighting calculations are performed on

back facing faces. When both the front and back face material indices are set to GOFF, facet

colours are switched to be set by the current line drawing colour (gSetLineColour()) and all

material information is ignored.

Setting the facet material properties using gSetFacetMaterialProps() overrides any values set

by this routine and gSetMaterialColour().

See Also Page 341

gDefineMaterial

gSetLineColour

gSetFacetMaterialProps

gSetMaterialColour

gSetMaxErrorLimit

Syntax

C/C++: void gSetMaxErrorLimit(int nerrs);

F90: subroutine gSetMaxErrorLimit(nerrs)

integer, intent(in) :: nerrs

Arguments nerrs
The maximum number of GINO errors allowed before the program is stopped (default 10)

= -1, No limit set

= 0, Any subsequent error stops the program

Description GINO keeps a count of the number of errors generated. If this count exceeds the limit set by

gSetMaxErrorLimit(), the program is stopped. Whenever GINO is initialized, the limit is set to

10, i.e. the 11th error stops the program. If nerrs is set to -1, no limit is set on the number of

errors. The error count is reset to 0 whenever gSetMaxErrorLimit() is called.

Note: GINO does not count warnings against the error limit.

See Also Page 30

691

ROUTINE SPECIFICATIONS gSetMaxErrorLimit

gSetMixedChars

Syntax

C/C++: void gSetMixedChars(void);

F90: subroutine gSetMixedChars

Arguments None

Description The routine gSetMixedChars() switches the current character mode to hardware/software

character mode. This mode takes effect when characters are subsequently output provided there

has been no intervening call to gSetHardChars(), gSetSoftChars() or

gSetCharTransformMode(GON). It is the default character mode.

When hardware/software character mode is active, GINO will try to use the device’s character

generation facilities. Characters will be generated by the device if they differ by less than 10%

of the requested size, by less than 1 degree from the requested orientation and by less than 5

degrees from the requested italic angle. Otherwise they will be generated by GINO just as if

gSetSoftChars() was called. Appendix B specifies what character generation facilities are

provided by the device.

See Also Page 162

gSetHardChars

gSetCharTransformMode

gSetSoftChars

Appendix B

gSetMousePos

Syntax

C/C++: void gSetMousePos(int env, int xpos, int ypos);

F90: subroutine gSetMousePos(env, xpos, ypos)

integer, intent(in) :: env,xpos,ypos

Arguments env
Mouse position environment

GSCREEN, Relative to screen or display area

GDRAWINGAREA, Relative to current window or drawing area

xpos,ypos
Mouse position in pixels

Description A call to gSetMousePos() moves the graphics pointer or mouse to the position specified in

xpos, ypos. The actual position is measured in pixels and is relative to the top left corner of the

specified environment set in env.

692

gSetMixedChars ROUTINE SPECIFICATIONS

Note that it is considered bad practice to continually move the mouse position in an interactive

graphics application, so this routine should only be used when assisting the user to take some

action by positioning the pointer over an item to be selected.

The routine gEnqPixelPos() can be used to translate a picture position on the current window

or drawing area into pixels and the routine gEnqMousePos() can be used to enquire the current

mouse position.

The routine gSetMousePos() differs from gSetCursorPos() in that the movement takes place

immediately and is not dependent on any action or event that has or is about to take place.

See Also Page 456

gSetCursorPos

gEnqMousePos

gEnqPixelPos

Appendix B

gSetPenType

Syntax

C/C++: void gSetPenType(int type);

F90: subroutine gSetPenType(type)

integer, intent(in) :: type

Arguments type
Pen type

= GDEFAULT, Undefined

= GERASER, Eraser

= GNOT, NOT mode

= GAND, AND mode

= GOR, OR mode

= GXOR, XOR mode

> 10, Device dependent

Description The routine gSetPenType() specifies a pen type or drawing mode for subsequent graphic

output. The absolute value of type defines the pen type.

If type is less than zero, a warning message is output. When the requested pen type is not

available, or if type=GDEFAULT, selection is left to the device.

A call to gEnqSelectedPen() will identify the pen type actually selected, which will be zero if

the device does not implement pen types.

See Also Page 120

gEnqSelectedPen

693

ROUTINE SPECIFICATIONS gSetPenType

gSetPixelDisplayMode

Syntax

C/C++: void gSetPixelDisplayMode(int mode);

F90: subroutine gSetPixelDisplayMode(mode)

integer, intent(in) :: mode

Arguments mode
Pixel display mode

= GOFF, Visibility off

= GON, Pixel information displayed (default)

= GBOUNDARY, Boundary box drawn

Description The routine gSetPixelDisplayMode() enables a quick display facility for pixel information. For

mode=GOFF and mode=GBOUNDARY the display of the pixel information is suppressed but

all pixel transformations and windowing is calculated, producing warning and error messages if

applicable.

See Also Page 197

gDrawPixelArea

gSetPixelReplication

Syntax

C/C++: void gSetPixelReplication(int xrep, int yrep);

F90: subroutine gSetPixelReplication(xrep, yrep)

integer, intent(in) :: xrep,yrep

Arguments xrep,yrep
Direction and number of pixels to be replicated

Description The routine gSetPixelReplication() specifies the replication area for a subsequent pixel array.

The values xrep, yrep represent the dimensions of a rectangular area into which any pixel

output from the routine gDrawPixelArea() is replicated (or clipped) so that the area is

completely filled.

Either or both of the dimensions may be negative, in which case the output and replication is

done in the negative direction from the pixel area origin for that dimension.

If either xrep or yrep is zero then replication will be switched off.

See Also Page 201

gDrawPixelArea

694

gSetPixelDisplayMode ROUTINE SPECIFICATIONS

gSetPixelTransform

Syntax

C/C++: void gSetPixelTransform(int ori, float xsca, float ysca);

F90: subroutine gSetPixelTransform(ori, xsca, ysca)

integer, intent(in) :: ori

real, intent(in) :: xsca,ysca

Arguments ori
An integer specifying the orientation of the pixel array

= 0, None

= 1, 90 degrees anti-clockwise

= 2, 180 degrees anti-clockwise

= 3, 270 degrees anti-clockwise

xsca,ysca
X and Y scaling factors

Description The routine gSetPixelTransform() specifies the orientation and scaling transformation of

subsequent pixel rectangles.

All subsequently drawn pixel rectangles will be subject to these transformations. The

orientation and scaling transformations occur independently from the pixel coordinate space

with the transformed pixel rectangle being drawn from the anchor point specified through

gDrawPixelArea().

The orientation variable, ori, will affect a rectangular pixel array for 90 and 270 degree

rotation by swapping the X and Y dimensions.

The X and Y scaling factors, xsca,ysca, scale along the X and Y pixel coordinate axes,

independently from the orientation characteristics.

See Also Page 199

gDrawPixelArea

gSetPointMode

Syntax

C/C++: void gSetPointMode(int switch);

F90: subroutine gSetPointMode(switch)

integer, intent(in) ::switch

Arguments switch
Point storage mode

695

ROUTINE SPECIFICATIONS gSetPixelTransform

= GOFF, Switch point storing off

= GSPACE, Store points in space coordinates

= GPICTURE, Store points in picture coordinates

= GCLEAR, Clear current point storage workspace

Description The routine gSetPointMode() sets the current point storage mode. When set to either GSPACE

or GPICTURE, the vertices of all subsequent 2D and 3D drawing routines are stored in the

point storage workspace. These include all internal vertices generated from the drawing of arcs,

curves and software characters according to the respective tolerance and/or tension. Points are

stored in either space (untransformed) or picture (transformed) mode according to the setting of

switch. Note that all arcs are drawn in software when point storage is switched on.

The point storage workspace is emptied if GCLEAR is used or a different mode is set.

Before using this routine, both the global workspace and point storage workspace must be

defined using the routines gSetWorkspaceLimit() and gDefinePointWorkspace().

Points can be returned to the application in either 2D or 3D using the functions

gReturnInternalPoints2D() or gReturnInternalPoints3D(). In the former case all Z-coordinates

are ignored.

See Also Page 104, 291

gDefinePointWorkspace

gReturnInternalPoints2D

gReturnInternalPoints3D

gSetWorkspaceLimit

gSetPolygonIdent

Syntax

C/C++: void gSetPolygonIdent(int ident);

F90: subroutine gSetPolygonIdent(ident)

integer, intent(in) :: ident

Arguments ident
Current polygon identifier

Description The routine gSetPolygonIdent() defines the current polygon identifier which is the number

assigned to a polygon when it is closed. The default current polygon identifier is 0.

See Also Page 249

gSetPolygonMask

Syntax

C/C++: void gSetPolygonMask(int list[], int n);

F90: subroutine gSetPolygonMask(list, n)

integer, intent(in) :: list(*),n

696

gSetPolygonIdent ROUTINE SPECIFICATIONS

Arguments list
Array of polygon identifiers

n
Number of entries in list

Description The routine gSetPolygonMask() selects a list of polygon identifiers to define a polygon mask.

The polygons are defined as moves or lines between calls to gStartPolygon() and

gEndPolygon() and the polygons are stored as a series of vertices in picture coordinates. The

list is also copied into a workspace and can be enquired with the routine

gEnqPolygonMaskList().

Additional temporary workspace is required by gSetPolygonMask() to store the list and a copy

of the polygons that are used to generate the polygonal mask. If gSetWorkspaceLimit() has not

been called or if there is not enough workspace to set up the polygonal mask the appropriate

error message is output and masking is switched off.

If n=0, no polygons are selected and masking is also switched off. A call to gSetMask2D() will

revert to a rectangular mask.

See Also Page 265

gSetWorkspaceLimit

gSetMask2D

gStartPolygon

gEndPolygon

gEnqPolygonMaskList

gSetPolygonMode

Syntax

C/C++: void gSetPolygonMode(int sw);

F90: subroutine gSetPolygonMode(sw)

integer, intent(in) :: sw

Arguments sw
Vertices storage switch

= GOFF, Ignore all vertices for the purposes of defining polygon
vertices

= GON, Store all vertices

Description The routine gSetPolygonMode() controls two switches that affect the storing of polygon

vertices:

(a) When called between gStartPolygon() and gEndPolygon() it controls the local switch which

when set to GOFF suspends the storing of vertices. This switch is set to GON when

gStartPolygon() is called.

(b) When called outside gStartPolygon/gEndPolygon() it controls the global switch which

when set to GOFF disables all definition of polygons. It suppresses the storing of vertices and

inhibits the action of gClearPolygonWorkspace(). This switch is initially set to GON.

697

ROUTINE SPECIFICATIONS gSetPolygonMode

See Also Page 247

gStartPolygon

gClearPolygonWorkspace

gEndPolygon

gSetPolygonWindow

Syntax

C/C++: void gSetPolygonWindow(int list[], int n);

F90: subroutine gSetPolygonWindow(list, n)

integer, intent(in) :: list(*),n

Arguments list
Array of polygon identifiers

n
Number of entries in list

Description The routine gSetPolygonWindow() selects a list of polygon identifiers to define a polygon

window. The polygons are defined as moves or lines between calls to gStartPolygon() and

gEndPolygon() and the polygons are stored as a series of vertices in picture coordinates. The

list is also copied into a workspace and can be enquired with the routine

gEnqPolygonWindowList().

Additional temporary workspace is required by gSetPolygonWindow() to store the list and a

copy of the polygons that are used to generate the polygonal window. If gSetWorkspaceLimit()

has not been called or if there is not enough workspace to set up the polygonal window the

appropriate error message is output and windowing is reverted to device/viewport limits.

If n=0, no polygons are selected and windowing is switched off. A call to gSetWindow2D() or

gSetWindowMode(GON2D) will revert to a rectangular clipping window.

See Also Page 264

gSetWorkspaceLimit

gSetWindow2D

gSetWindowMode

gStartPolygon

gEndPolygon

gEnqPolygonWindowList

gSetRandSeed

Syntax

C/C++: void gSetRandSeed(int seed);

F90: subroutine gSetRandSeed(seed)

integer, intent(in) :: seed

698

gSetPolygonWindow ROUTINE SPECIFICATIONS

Arguments seed
Random number seed value

Description The system utility gSetRandSeed() can be used in conjunction with gGetRand() to set a fixed

seed value to the pseudo random number generator.

See Also Page 466

gGetRand

gSetSegHit

Syntax

C/C++: void gSetSegHit(int nseg, int sens);

F90: subroutine gSetSegHit(nseg, sens)

integer, intent(in) :: nseg,sens

Arguments nseg
Picture segment or segment group number

> 0, Change sensitivity of segment(s) specified by nseg

= -1, Change sensitivity of all segments

< -1, Change sensitivity of all segments except those
specified by nseg

sens
Sensitivity status

= GNONSENSITIVE, Non hit-sensitive (default)

= GSENSITIVE, Hit-sensitive

Description The routine gSetSegHit() is used to change the hit-sensitivity of picture segments. Only

segments that are hit-sensitive may be selected using events 2 and 3 or gEnqSegHit().

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(GHARDWARE), no error message is generated. However, the device may

output a local error message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 431

gWaitForEvent

gEnqSegHit

gSetSegMode

699

ROUTINE SPECIFICATIONS gSetSegHit

gSetSegMarkColour

Syntax

C/C++: void gSetSegMarkColour(int col);

F90: subroutine gSetSegMarkColour(col)

integer, intent(in) :: col

Arguments col
Colour index for marked segments

Description The routine gSetSegMarkColour() sets the colour index which is used by the software

emulation of gMarkSeg().

By default gMarkSeg() uses the highest colour index available on the current device.

See Also Page 431

gMarkSeg

gSetSegMode

Syntax

C/C++: void gSetSegMode(int sw);

F90: subroutine gSetSegMode(sw)

integer, intent(in) :: sw

Arguments sw
Software Display File switch

= GHARDWARE, Segmentation by hardware (if available)

= GMIXWARE, Segmentation by hardware (if available) with software
backup

= GSOFTWARE, Segmentation by software emulation

Description The routine gSetSegMode() sets or changes the segmentation mode. Where an application

program is using segment facilities the correct operation of such a program depends on the

existence of a Software Display File for storing the segment information. There are not many

devices that have such facilities built into their hardware, so in order to make such a program

device independent GINO provides software emulation of a segmented display file by storing

the segment information either in a scratch file or program memory.

Because of the overheads of storing a Software Display File, the default operation is to rely on

hardware segment facilities (sw=GHARDWARE). The storing of a Software Display File is

activated by setting sw to GMIXWARE or GSOFTWARE in the call to gSetSegMode() and the

selection of storage in memory or on a disk file is made by gDefineSegWorkspace(). If

gDefineSegWorkspace() is not called the display file will be held on a scratch file.

700

gSetSegMarkColour ROUTINE SPECIFICATIONS

When sw=GMIXWARE the display file is stored by GINO and the hardware (if possible) and

all segment operations will be performed by the hardware if it is able to do so. If an operation

is not successful, GINO will emulate the operation from the Software Display File.

When sw=GSOFTWARE the display file is stored by GINO and no segment operations are

passed through to the hardware.

GINO’s Software Display File is maintained across device nominations, and therefore

segments can be used on devices other than those on which they were created.

Software emulation of segment facilities relies on the facility to remove a segment from the

display using background erase (ie. use of gSetLineColour(0)).

Unpredictable results can occur when changing segmentation mode while a segment is open. In

most cases the change is delayed until the close of that segment.

See Also Page 424

gDefineSegWorkspace

gSetSegTransform

Syntax

C/C++: void gSetSegTransform(int nseg, float xsca, float ysca, float ang, float xpos, float

ypos);

void gSetSegTransform2D(int nseg, GMAT2D a);

F90: subroutine gSetSegTransform(nseg, xsca, ysca, ang, xpos, ypos)

subroutine gSetSegTransform2D(nseg,a)

integer, intent(in) :: nseg

real, intent(in) :: xsca,ysca,ang,xpos,ypos

real, intent(in) :: a(6)

Arguments nseg
Picture segment or segment group number

> 0, Transform segment(s) specified by segment nseg

= -1, Transform all segments

< -1, Transform all segments except those specified by nseg

xsca
Scaling factor for X coordinates

ysca
Scaling factor for Y coordinates

ang
Angle of rotation about anchor point

xpos,ypos
Coordinates of new anchor point

701

ROUTINE SPECIFICATIONS gSetSegTransform

a
3 x 2 array containing a 2-D segment transformation matrix

Description The routines gSetSegTransform() and gSetSegTransform2D() sets the elements of a 2-D

segment transformation matrix either by means of separate components or as a complete 2D

matrix to be applied to segment nseg.

In the case of gSetSegTransform() the elements are applied in the order scale, rotation, and

then translation. The scale and rotation are applied about the segment anchor position. xpos

and ypos are assumed to be in picture coordinates and will not be affected by any modelling

transformation that may be current.

In the case of gSetSegTransform2D(), if a unit transformation matrix is set the segment will

appear in the original position it was created. The routines gBuildMatrix2D() and

gCombineMatrix2D() can be used to build or compose a suitable transformation matrix.

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(GHARDWARE), no error message is generated. However, the device may

output a local error message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 431

gEnqSegTransform

gSetSegVis

Syntax

C/C++: void gSetSegVis(int nseg, int vis);

F90: subroutine gSetSegVis(nseg, vis)

integer, intent(in) :: nseg,vis

Arguments nseg
Picture segment or segment group number

> 0, Set visibility of segment(s) specified by segment nseg

= -1, Set visibility of all segments

< -1, Set visibility of all segments except those specified by
nseg

vis
Visibility status

= GINVISIBLE, Invisible (not displayed)

= GVISIBLE, Visible (displayed)

Description The routine gSetSegVis() is called to change the display status of the specified picture segment.

When gSetSegVis(nseg,GINVISIBLE) is called, the picture segment ceases to be displayed on

the screen, or is removed by redrawing the segment in the background colour, but continues to

be held in the display file.

702

gSetSegVis ROUTINE SPECIFICATIONS

When the software emulation of picture segments is used and nseg does not exist an error

message is generated. When using this routine in the default hardware segmentation mode,

gSetSegMode(GHARDWARE), no error message is generated. However, the device may

output a local error message.

Some displays do not permit this segment operation on the currently opened segment.

See Also Page 430

gSetSegMode

gSetShadingMode

Syntax

C/C++: void gSetShadingMode(int mode, ...);

F90: subroutine gSetShadingMode(mode, gCulling, gBlending, gWinding)

integer, intent(in) :: mode

integer, optional, intent(in) :: gCulling, gBlending, gWinding

Arguments mode
Shading mode

= GNONE, Switch shading off (default)

= GFLAT, Switch on flat shading (using facet normals)

= GGOURAUD, Switch on smooth (Gouraud) shading (using vertex
normals)

= GPHONG, Switch on Phong shading (using interpolated normals)

Optional Args. gCulling
Culling mode

= GOFF, Two sided lighting (default)

= GBACK, Ignore back (clockwise) facing polygons

= GFRONT, Ignore front (anti-clockwise) facing polygons

gBlending
Blending mode

= GOFF, Disable blending (default)

= GON, Enable blending

gWinding
Facet winding mode

= GANTICLOCKWISE, Anti-clockwise winding = front face (default)

= GCLOCKWISE, Clockwise winding = front face

Description The routine gSetShadingMode() sets up the lighting and shading mode according to the

supplied arguments.

See Also Page 325

gSetDepthMode

703

ROUTINE SPECIFICATIONS gSetShadingMode

gSetSoftChars

Syntax

C/C++: void gSetSoftChars(void);

F90: subroutine gSetSoftChars

Arguments None

Description The routine gSetSoftChars() sets the current character mode to software character mode. This

mode takes effect when characters are subsequently output provided there has been no

intervening call to gSetHardChars(), gSetMixedChars or gSetCharTransformMode(GON).

When software character mode is active, all characters are generated by GINO to exactly the

size, orientation and italic angle requested. Characters are drawn using vectors of solid lines in

the current colour. The thickness of each vector is determined by the current setting of font

weight (gSetFontWeight()).

See Also Page 162

gSetHardChars

gSetCharTransformMode

gSetFontWeight

gSetSplineTension

Syntax

C/C++: void gSetSplineTension(float tension);

F90: subroutine gSetSplineTension(tension)

real, intent(in) :: tension

Arguments tension
Spline curve tension (default=0.0)

Description The routine gSetSplineTension() controls the tightness of 2D and 3D spline curves.

Values in the range -2 to 10 give reasonable levels of tension control, with figures approaching

10.0 producing a polyline. Values less than zero give a more rounded shape to the curve.

See Also Page 100, 287

gDrawSplineBy2D

gDrawSplineTo2D

gDrawSplineBy3D

gDrawSplineTo3D

704

gSetSoftChars ROUTINE SPECIFICATIONS

gSetStrAngle

Syntax

C/C++: void gSetStrAngle(float angle);

F90: subroutine gSetStrAngle(angle)

real, intent(in) :: angle

Arguments angle
Character orientation in degrees (default = 0.0)

Description The routine gSetStrAngle() sets the current character orientation to the value in angle. The

angle is measured in an anticlockwise direction from the positive x-axis.

What effect a call to gSetStrAngle() has when characters are output depends on the character

mode at that time:

(a) gSetHardCharSize()

Call to gSetStrAngle() has no effect

(b) gSetHardChars()

Characters are drawn at the correct orientation if possible, otherwise they are stepped

(c) gSetMixedChars()

Character orientation may differ by up to 1 degree from the requested orientation

(d) gSetSoftChars()

Characters are angled exactly as requested

(e) gSetCharTransformMode(GON)

Characters are angled as requested and transformed, so orientation may be modified by the

current rotation.

See Also Page 149

gSetCharTransformMode

gSetHardChars

gSetMixedChars

gSetSoftChars

gSetStrExponent

Syntax

C/C++: void gSetStrExponent(float relcw, float relch, float posexp, float posind);

F90: subroutine gSetStrExponent(relcw, relch, posexp, posind)

real, intent(in) :: relcw,relch,posexp,posind

705

ROUTINE SPECIFICATIONS gSetStrAngle

Arguments relcw
Relative character width of character string exponents and indices

relch
Relative character height of character string exponents and indices

posexp
Relative character height above the baseline at which exponents are drawn

posind
Relative character height below the baseline at which indices are drawn

Description The routine gSetStrExponent() sets the relative size and position of both string exponents and

indices. Exponents and indices are drawn by using the *E and *I escape sequences within any

of the character string output routines gDisplayStr(), gDisplayStrPolylineBy2D(),

gDisplayStrPolylineTo2D() and gFitCharStr().

A zero value for any of the arguments will return its value to default.

A negative argument will cause a warning message and the absolute value will be used.

See Also Page 155

gDisplayStr

gDisplayStrPolylineBy2D

gDisplayStrPolylineTo2D

gFitCharStr

gSetStrJustify

Syntax

C/C++: void gSetStrJustify(int jus);

F90: subroutine gSetStrJustify(jus)

integer, intent(in) :: jus

Arguments jus
String justification

= GLEFT, Left-justified (default)

= GCENTRE, Centre-justified

= GRIGHT, Right-justified

Description The routine gSetStrJustify() sets the current string justification.

Left justification (the default) is where the string is drawn starting from the current position

from left to right and the current position is left at the lower right end of the character string.

Centre justified strings are positioned such that the string is centred at the current position. The

current position after a centre justified string is left at the bottom centre of the string.

For right justified strings, the string is positioned such that the end is at the current position.

The current position after a right justified string is at the bottom left of the character string.

706

gSetStrJustify ROUTINE SPECIFICATIONS

Justification affects all string and numeric output except gDrawMarker() and the effect of

gMoveToNextLine().

See Also Page 153

gMoveToNextLine

gDisplayStr

gDisplayStrPolylineBy2D

gDisplayStrPolylineTo2D

gFitCharStr

gSetStrUnderscore

Syntax

C/C++: void gSetStrUnderscore(int und);

F90: subroutine gSetStrUnderscore(und)

integer, intent(in) :: und

Arguments und
String underscore switch

= GOFF, Underscore off (default)

= GON, Underscore on

Description The routine gSetStrUnderscore() switches underscoring of subsequent strings on or off.

Underscoring affects all string output using gDisplayStr(), gDisplayStrPolylineBy2D(),

gDisplayStrPolylineTo2D() and gFitCharStr().

When underscoring is switched on a solid line is drawn by GINO, using an appropriate line

width related to the character height. The line is drawn 0.4*character height below the base line

of the character string.

If und is neither GOFF or GON, a warning message is output and underscoring is switched off.

Underscoring can be temporary switched on and off using the *S and *A escape sequences

respectively. These are described under gDisplayStr().

See Also Page 152

gDisplayStr

gDisplayStrPolylineBy2D

gDisplayStrPolylineTo2D

gFitCharStr

gSetSysPriority

Syntax

C/C++: void gSetSysPriority(int pri);

F90: subroutine gSetSysPriority(pri)

integer, intent(in) :: pri

707

ROUTINE SPECIFICATIONS gSetStrUnderscore

Arguments pri
Task priority

= GREALTIME, Sets task to highest possible priority

= GHIGH, Sets task to higher than normal

= GNORMAL, (default)

= GLOW, Sets task to lower than normal (not available under
Windows)

= GIDLE, Sets task into idle state

Description The routine gSetSysPriority() sets the priority of the GINO application as described by the

above settings. The routine is system dependent and some settings may have no effect in some

environments.

Users should be warned that setting a task to GREALTIME will prevent all other applications

operating including some system tasks such as responding to mouse movement. This should be

used VERY sparingly.

The current system priority can be obtained using the routine gEnqSysPriority().

See Also Page 466

gEnqSysPriority

gSetTextureCoordGeneration

Syntax

C/C++: void gSetTextureCoordGeneration(int mode, ...);

F90: subroutine gSetTextureCoordGeneration(mode, gSVec, gTVec)

integer, intent(in) :: mode

type (GTEXVEC), optional, intent(in) :: gSVec,gTVec

Arguments mode
Texture coordinate generation mode

= GOFF, Switch off texture coordinate generation (default)

= GOBJECT, Use object coordinates

= GSPHERICAL, Generate spherical texture coordinates

Optional Args. gSVec, gTVec
Object coordinate transformation vectors for S and T texture coordinates

gSVec.trans, gTVec.trans
Object coordinate type

= GSPACE, Use untransformed object coordinates

= GPICTURE, Use transformed object coordinates

gSVec.xfactor, gTVec.xfactor
Scale factor for object’s X coordinate

708

gSetTextureCoordGeneration ROUTINE SPECIFICATIONS

gSVec.yfactor, gTVec.yfactor
Scale factor for object’s Y coordinate

gSVec.zfactor, gTVec.zfactor
Scale factor for object’s Z coordinate

gSVec.wfactor, gTVec.wfactor
Scale factor for object’s W coordinate

Description The routine gSetTextureCoordGeneration() sets the current GINO texture coordinate

generation mode which by default is off.

When the mode is set to GOBJECT the optional arguments gSVec and/or gTVec are used to

specify the transformation of the object’s coordinates required to generate the S and T texture

coordinates respectively. The structure, of type GTEXVEC, contains the object coordinate type

to be used and the scale factors to be applied to each of its coordinates.

Thus the texture coordinate at each vertex is calculated as:

S = svec.xfactor * x + svec.yfactor * y + svec.zfactor * z + svec.wfactor * w

and

T = tvec.xfactor * x + tvec.yfactor * y + tvec.zfactor * z + tvec.wfactor * w

where x,y,z,w are the objects’ untransformed or transformed coordinates at this vertex.

Note that C/C++ users should pass the address of the structure along with the gSVec and/or

gTVec arguments as shown in the example code in the section referenced below.

The GSPHERICAL mode generates texture coordinates based on a sphere centred around the

view centre. It should only be used, however, when a correctly prepared environment texture

map is available, representing the image of a scene taken through a very wide-angle lens.

See Also Page 351

gDefineTexture

gDrawFacet

gSetTextureMappingMode

Syntax

C/C++: void gSetTextureMappingMode(int mode, ...);

F90: subroutine gSetTextureMappingMode(mode, gBlendCol, gWraps, gWrapt, gMaxfil,

gMinfil, gBorderCol)

integer, intent(in) :: mode

integer, optional, intent(in) :: gBendCol,gWraps,gWrapt,gMaxfil,gMinfil,gBorderCol

Arguments mode
Texture mapping mode

= GOFF, Switch off texture mapping (default)

709

ROUTINE SPECIFICATIONS gSetTextureMappingMode

= GOVERLAY, Overlay texture on surface

= GMODULATE, Modulate texture colours with facet colour

= GBLEND, Blend texture colours with facet colour and a constant
colour gBlendCol

Optional Args. gBlendCol
Blend mode colour (default = current background colour)

gWraps
Texture wrapping switch in S direction

= GREPEAT, Repeat texture map (default)

= GCLAMP, Clamp texture map

gWrapt
Texture wrapping switch in T direction

= GREPEAT, Repeat texture map (default)

= GCLAMP, Clamp texture map

gMaxfil
Filter when enlarging texture map

= GNEAREST, Use nearest texel (default)

= GLINEAR, Use weighted average of 2x2 texels

gMinfil
Filter when reducing texture map

= GNEAREST, Use nearest texel (default)

= GLINEAR, Use weighted average of 2x2 texels

= GNEARESTNEAREST, Nearest mipmap using nearest texel filter

= GNEARESTLINEAR, Nearest mipmap using linear texel filter

= GLINEARNEAREST, Linear interpolate mipmap using nearest texel filter

= GLINEARLINEAR, Linear interpolate mipmap and linear texel filter

gBorderCol
Texture map border colour (default = current background colour)

Description The routine gSetTextureMappingMode() sets the current GINO texture mapping mode which

by default is off.

When set to GOVERLAY, the current texture assigned by gDefineTexture() is mapped onto

every facet or object subsequently displayed. When set to GMODULATE the current texture is

merged with the facet or objects own colour. When set to GBLEND the current texture is

merged with the facet colour and a constant colour defined in the optional argument

gBlendCol.

The optional arguments gWraps and gWrapt define the action to be taken, where supplied or

generated texture coordinates extend outside the default range of 0.0 to 1.0 in either the

horizontal (S) or vertical (T) direction.

710

gSetTextureMappingMode ROUTINE SPECIFICATIONS

The optional arguments gMaxfil and gMinfil define the filters used when determining the

texture map pixel (texel) to be displayed on the screen when enlarging or reducing the currently

defined image. The additional settings for gMinfil apply where multiple texture maps

(mipmaps) have been assigned using gDefineTexture() with levels greater than zero.

The optional argument gBorderCol is used to define a constant border colour, where no such

border is attached to the currently defined texture map. This border colour is used in clamped

images where the linear texel filtering option is also used.

Note that GOVERLAY mode only operates with textures with 3 or 4 bytes per pixel and

GBLEND mode only works with textures with 1 or 2 bytes per pixel.

See Also Page 345

gDefineTexture

gSetTracerMode

Syntax

C/C++: void gSetTracerMode(int sw);

F90: subroutine gSetTracerMode(sw)

integer, intent(in) :: sw

Arguments sw
Trace switch

= GOFF, Switch off tracing (default)

= GGINOCALLS, Switch on tracing for user calls to GINO library

= GLIBRARIES, Switch on tracing for user calls to GINO library and
GINO application libraries

= GALLCALLS, Switch on tracing for all calls to GINO library and
GINO application libraries

Description When sw is not GOFF, gSetTracerMode() switches the tracing facility on. With tracing

switched on GINO outputs a trace message which identifies routines from either the GINO

library or GINO application libraries as they are called.

When sw = GGINOCALLS all calls to the GINO library are traced. When sw = GLIBRARIES

user calls to GINO or GINO application libraries are traced, but internal calls to GINO by the

application library are not traced. When sw = GALLCALLS all user calls and internal calls to

GINO and any GINO application libraries used are traced.

See Also Page 31, 37

711

ROUTINE SPECIFICATIONS gSetTracerMode

gSetTransform

Syntax

C/C++: void gSetTransform(int sw);

void gSetTransform2D(GMAT2D a2);

void gSetTransform3D(GMAT3D a3);

F90: subroutine gSetTransform(sw)

subroutine gSetTransform2D(a2)

subroutine gSetTransform3D(a3)

integer, intent(in) :: sw

real, intent(in) :: a2(6),a3(16)

Arguments sw
Transformation switch

= GRESET, Initialize the current modelling transformation,
initialize the current viewing transformation,
initialize the viewing parameters (see gInitView()) and
switch transforming off

= GOFF, Switch transforming off

= GON, Switch transforming on

= GINIT, Initialize the current modelling transformation and
switch transforming on

a2,a3
2D or 3D transformation matrix

Description The gSetTransform set of routines set the current modelling transformation and/or switch

transforming on and off.

The routine gSetTransform() is used to either initialize the modelling transformation matrix

(and the viewing transformation matrix if GRESET is used) to unity and/or switch

transforming on or off without affecting the current modelling transformation matrix.

The routines gSetTransform2D(), gSetTransform3D() set the current modelling transformation

according to the supplied 2D or 3D matrix and switches transforming on. The supplied matrix

can either have been saved from a previous call to gGetTransform(), or composed using the

gBuildMatrix() or gCombineMatrix() routines. In the case of gSetTransform2D() the remaining

ten 3-D components of the complete transformation matrix are reinitialized.

See Also Page 240, 372

gBuildMatrix

gCombineMatrix

gGetTransform

gInitView

712

gSetTransform ROUTINE SPECIFICATIONS

gSetTransformMode

Syntax

C/C++: void gSetTransformMode(int sw);

F90: subroutine gSetTransformMode(sw)

integer, intent(in) ::sw

Arguments sw
Picture mode switch

= GSPACE, Switch modelling transforming into space mode

= GPICTURE, Switch modelling transforming into picture mode

Description When modelling transforming is in space mode (the default) each modelling transformation is

specified with respect to the most recent set of space axes (sometimes called current or local

axes). Subsequent changes to the transformation matrix are post-multiplied.

When in picture mode each modelling transformation is specified with respect to the picture (or

screen) axes. Subsequent changes to the transformation matrix are pre-multiplied.

The picture axes never change and have their origin at the bottom left-hand corner of the

picture, with X horizontal and to the right, Y vertical, positive upwards, and the Z axis

perpendicular to the plane of the picture, in the direction of the user.

See Also Page 239, 369, 382

gSetView

Syntax

C/C++: void gSetViewParams(GMATV vdata):

void gSetViewState(GVIEWSTATE vstate);

F90: subroutine gSetViewParams(vdata)

subroutine gSetViewState(vstate)

real, intent(in) :: vdata(15)

type (GVIEWSTATE), intent(in) :: vstate

Arguments vdata
Stored viewing array with at least 15 elements

vstate.mode
View mode

= 0, No view defined

= 1, Perspective view defined (gDefineSphericalView() or
gDefinePerspView())

= 2, Parallel view defined (gDefineParallelView())

713

ROUTINE SPECIFICATIONS gSetTransformMode

vstate.cflag
View centre flag

= 0, No view centre defined

= 1, Default view centre defined

= 2, User defined view centre (gPosViewCentre())

vstate.upflag
View up direction flag

= 0, Default view up vector (0.0,1.0,0.0)

= 1, User defined view up vector (gSetViewUpDirection())

vstate.dir
View direction vector

vstate.centre
View centre

vstate.dist
Perspective viewing distance

vstate.shift
View shift

vstate.upvec
View up direction vector

Description The routines gSetViewParams() and gSetViewState() set the viewing parameters to the values

stored in the appropriate structure. The current settings are obtained through the routines

gGetViewParams() or gGetViewState(). The new settings may subsequently be modified by

using one of the viewing routines but are only activated after updating the current view using

gUpdateView().

See Also Page 416

gGetViewParams

gGetViewState

gUpdateView

gSetViewAxis

Syntax

C/C++: void gSetViewAxis(int nh, int nv);

F90: subroutine gSetViewAxis(nh, nv)

integer, intent(in) :: nh,nv

Arguments nh
The axis to be horizontal

= GXAXIS, X axis

= GYAXIS, Y axis

= GZAXIS, Z axis

714

gSetViewAxis ROUTINE SPECIFICATIONS

nv
The axis to be vertical

= GXAXIS, X axis

= GYAXIS, Y axis

= GZAXIS, Z axis

Description The routine gSetViewAxis() selects the view so that the two specified axes are horizontal and

vertical respectively.

This permutes the rows of the modelling transformation matrix so that the nh axis is horizontal

and the nv axis is vertical.

See Also Page 229, 362

gSetViewEyeDistance

Syntax

C/C++: void gSetViewEyeDistance(float dist);

F90: subroutine gSetViewEyeDistance(dist)

real, intent(in) :: dist

Arguments dist
Perspective distance

= 0.0, Switch to parallel view

Description The routine gSetViewEyeDistance() calculates a new eye position, keeping the view plane

fixed, so that the perspective distance is equal to dist.

If dist<0.0, the new eye position is on the opposite side of the view plane, i.e. the direction of

viewing is reversed.

If dist=0.0, the view is set to a parallel view, using the current view direction and view plane.

See Also Page 404

gSetViewPlaneDistance

Syntax

C/C++: void gSetViewPlaneDistance(float dist);

F90: subroutine gSetViewPlaneDistance(dist)

real, intent(in) :: dist

Arguments dist
Perspective distance

Description The routine gSetViewPlaneDistance() calculates a new position for the view plane, keeping the

eye position fixed, so that the perspective distance is equal to dist.

715

ROUTINE SPECIFICATIONS gSetViewEyeDistance

If dist < 0, the position of the view plane is set so that the direction of viewing is reversed.

If dist = 0 or if the current view has no perspective defined, an error message is output and no

further action is taken.

See Also Page 404

gDefineParallelView

gDefinePerspView

gSetViewport

Syntax

C/C++: void gSetViewport2D(GLIMIT *piclim2, GLIMIT *viewlim);

void gSetViewport3D(GLIMIT3 *piclim3, GLIMIT *viewlim);

F90: subroutine gSetViewport2D(piclim2, viewlim)

subroutine gSetViewport3D(piclim3, viewlim)

type (GLIMIT), intent(in) :: piclim2,viewlim

type (GLIMIT3), intent(in) :: piclim3

Arguments piclim2
2D picture coordinate limits

piclim3
3D picture coordinate limits

viewlim
Viewport coordinate limits in current paper units

Description The routines gSetViewport2D() and gSetViewport3D() set up a viewport mapping from user

picture coordinates in 2D or 3D to device or paper coordinates. The picture limits may cover

any range but the viewport limits must lie within the range of the current device or paper

limits. Viewport limits are in millimetres unless gDefinePictureUnits() has been called.

Once a viewport mapping is set up, all subsequent drawing and enquiry routines are affected by

it. Thus any range of picture coordinates may be mapped onto any area of the device or paper.

The routine gSetViewportMode() controls the position of the viewport and whether the

requested mapping is allowed to deform the picture.

If the viewport limits have a zero range or are completely outside the device limits an error

message is output and the viewport transformation is unchanged. If the viewport limits are

larger than the device limits, the viewport is clipped to the device limits for windowing

purposes but the transformation is calculated according to the requested limits.

See Also Page 49, 219

gDefinePictureUnits

gSetViewportMode

716

gSetViewport ROUTINE SPECIFICATIONS

gSetViewportClipSwitch

Syntax

C/C++: void gSetViewportClipSwitch(int sw);

F90: subroutine gSetViewportClipSwitch(sw)

integer, intent(in) :: sw

Arguments sw
Viewport clipping switch

= GOFF, Do not clip to viewport limits

= GON, Clip to viewport limits (default)

Description The routine gSetViewportClipSwitch() determines the setting of window limits after a call to

gSetViewport2D(). When sw = GON, after a call to gSetViewport2D() the window limits are

restricted to the viewport limits, and therefore it will not be possible to draw outside these

limits. In these circumstances the setting of a viewport effectively becomes a mapping and

clipping operation. If a call is made to gSetViewportClipSwitch(GOFF), any viewport setting

will act simply as a mapping operation and window limits may extend outside the viewport

limits.

Note that gSetViewportClipSwitch() only affects subsequent calls to gSetViewport2D().

See Also Page 51, 221

gSetViewport2D

gEnqViewportState

gSetViewportMode

Syntax

C/C++: void gSetViewportMode(int sw);

F90: subroutine gSetViewportMode(sw)

integer, intent(in) :: sw

Arguments sw
Viewport scaling switch.

= GCENTRAL, Keep aspect ratio and centre in viewport (default)

= GBOTTOMLEFT, Keep aspect ratio and place at bottom left of viewport

= GDEFORMED, Allow deformation of picture

Description The routine gSetViewportMode() determines whether a viewport transformation set by

gSetViewport2D() should keep the aspect ratio of the picture coordinate area or allow

deformation.

717

ROUTINE SPECIFICATIONS gSetViewportClipSwitch

If sw = GCENTRAL the picture area is centred in the viewport in either the vertical or

horizontal direction as appropriate, whereas if sw = GBOTTOMLEFT the picture area is placed

at the bottom left of the viewport. In both these cases the aspect ratio of the picture is kept by

calculating the minimum scale value required to fit the picture coordinate area into the

viewport area.

If sw = GDEFORMED the exact values of both the picture and viewport limits are used to

calculate the viewport transformation which may allow different scales in the horizontal and

vertical directions and so deform the picture.

The routine gSetViewportMode() must be called before gSetViewport2D() to have an effect on

the viewport transformation.

If sw is out of range, a warning message is output and the default viewport scaling is used.

See Also Page 50, 220, 274

gSetViewport2D

gSetViewTransformMode

Syntax

C/C++: void gSetViewTransformMode(int mode);

F90: subroutine gSetViewTransformMode(mode)

integer, intent(in) :: mode

Arguments mode
Viewing/Transformation mode

= GHARD, Switch to hardware viewing/transformation mode

= GSOFT, Switch to software viewing/transformation mode

Description When operating on 3D devices, this routine can be used to switch between hardware and

software viewing/transformation modes. Where mode = GHARD (the default), all changes to

the current transformation and/or view are passed to the device in order for it to interpret 3D

coordinates directly. GINO does however maintain a copy of both the transformation and

viewing state so the appropriate enquiries can be made.

When mode is set to GSOFT, the 3D device is set back to a default transformation state, and

GINO will interpret all 3D coordinates through its own 3D pipeline.

This routine has no effect on 2D devices.

See Also Page 371

718

gSetViewTransformMode ROUTINE SPECIFICATIONS

gSetViewUpDirection

Syntax

C/C++: void gSetViewUpDirection(float dx, float dy, float dz);

F90: subroutine gSetViewUpDirection(dx, dy, dz)

real, intent(in) :: dx,dy,dz

Arguments dx,dy,dz
Vector to be projected parallel to the picture Y-axis

Description The routine gSetViewUpDirection() defines the vector (dx,dy,dz) which would be projected

parallel to the y-axis of the picture plane when gGenerateView() or gUpdateView() is called to

set up the view transformation. If a zero vector is specified, an error message is output and no

further action is taken.

The view up direction is internally modified by the routines which rotate the line of sight -

gViewRotate() and gViewTurn.

See Also Page 402

gGenerateView

gViewRotate

gViewTurn

gUpdateView

gSetWindow

Syntax

C/C++: void gSetWindow2D(GLIMIT *window2);

void gSetWindow3D(GLIMIT3 *window3);

F90: subroutine gSetWindow2D(window2)

subroutine gSetWindow3D(window3)

type (GLIMIT), intent(in) :: window2

type (GLIMIT3), intent(in) :: window3

Arguments window2,window3
Position of the window boundaries in picture coordinates

Description The routines gSetWindow2D() and gSetWindow3D() allow the user to define new 2D or 3D

window limits. The window limits are clipped to the current device limits and windowing is

switched on.

With windowing on, all movements outside the limits are noted, so the re-entry point can be

calculated.

See Also Page 223

719

ROUTINE SPECIFICATIONS gSetViewUpDirection

gSetWindowMode

Syntax

C/C++: void gSetWindowMode(int sw);

F90: subroutine gSetWindowMode(sw)

integer, intent(in) :: sw

Arguments sw
Windowing switch

= GOFF, Switch windowing off (default)

= GON, Switch on the windowing limits set prior to switching
off

= GON2D, Switch 2-D windowing on and set the limits to those of
the current viewport limits

= GON3D, Switch 3-D windowing on and set the limits to those of
the current viewport limits

Description The routine gSetWindowMode() switches windowing on or off, or sets the window limits to the

current device limits.

Windowing can be switched on or off at any time during the picture sequence. Initially the

windowing limits are set to the current device limits, so that the first time gSetWindowMode()

is called these will be its limits for an argument value of sw not equal to GOFF.

With windowing on, all movements outside the limits are noted, so the re-entry point can be

calculated.

The window limits are defined in picture coordinates and cannot be transformed.

See Also Page 222

gSetPolygonWindow

gEnqPolygonWindowList

gSetWindow2D

gSetWindow3D

gSetWindowMode

gSetWorkingDir

Syntax

C/C++: int gSetWorkingDir(char directory[]);

F90: integer function gSetWorkingDir(directory)

character*(*), intent(in) :: directory

Arguments directory
Directory pathname

720

gSetWindowMode ROUTINE SPECIFICATIONS

Description The system utility gSetWorkingDir() allows an application to change the current directory in

which it operates. The directory pathname must obviously be in the correct format for the

implementation, and thus may render the application implementation dependent.

The function returns a non zero value if the operation was not successful for any reason and

zero if successful.

Note that when the application finishes, the current directory will still be that set by

gSetWorkingDir() unless reset before application termination.

See Also Page 460

gEnqWorkingDir

gSetWorkspaceLimit

Syntax

C/C++: void gSetWorkspaceLimit(int n);

F90: subroutine gSetWorkspaceLimit(n1, n2)

integer, intent(in) :: n1,n2

Arguments n
Number of real words reserved for use as a workspace area

= 0, Workspace area is freed

n1,n2
Range of real words in global workspace area

= 0, Workspace area is freed

Description The routine gSetWorkspaceLimit() defines the size of GINO’s workspace area. The size of the

workspace area must be large enough to cope with the combined requirements of the

workspaces that exist at any given time. Workspaces are required for storing polygons (see

gDefinePolygonWorkspace()), for storing a list of polygon identifiers (see gSelectPolygons())

and for area-filling polygons (see gFillSelectedPolygons()). Additional space is also required if

software emulation of picture segments is required and this is to be held in memory rather than

in a scratch disk file (see gDefineSegWorkspace() and gSetSegMode()).

An existing workspace area may be enlarged by calling this routine a second or subsequent

time each with a larger value of n or n2. A smaller value does not reduce the area.

The complete workspace area is removed (and all its contents lost) when

gSetWorkspaceLimit() is called with all arguments = 0 and by gCloseGino(). However, any

workspace defined with gSetWorkspaceLimit() and its contents is maintained across device

nominations, and therefore does not need to be redefined for each device.

See Also Page 33, 51, 246

gFillSelectedPolygons

gDefinePolygonWorkspace

gSelectPolygons

gDefineSegWorkspace

gSetSegMode

721

ROUTINE SPECIFICATIONS gSetWorkspaceLimit

gShear

Syntax

C/C++: void gShear2D(int dep, float a);

void gShear3D(int dir, int dep, float a);

F90: subroutine gShear2D(dep, a)

subroutine gShear3D(dir, dep, a)

integer, intent (in) :: dep,dir

real, intent (in) :: a

Arguments dep
The dependent direction

= GXAXIS, X-axis

= GYAXIS, Y-axis

= GZAXIS, Z-axis

dir
The direction of the shear

= GXAXIS, X-axis

= GYAXIS, Y-axis

= GZAXIS, Z-axis

a
Shear factor

Description The routines gShear2D() and gShear3D() superimpose a shear factor a along the dependent

axis dep, such that the point one unit along the sheared axis is translated a distance a in a

parallel direction along another axis. The sign of the shear factor will indicate direction.

In the case of gShear2D(), the shear may be with respect to the X or Y axis only and the

direction will be parallel to the other axis. In the case of gShear3D(), the shear may be with

respect to any axis and in a direction parallel to the axis specified by dir, the third axis being

unaffected.

In space mode (the default) this factor is specified with respect to the current space axes, whilst

in picture mode (see gSetTransformMode()) the factor is specified with respect to the picture

axis.

If transforming is not on before this routine is called then gShear2D() switches it on.

See Also Page 231, 364

gSetTransformMode

722

gShear ROUTINE SPECIFICATIONS

gShift

Syntax

C/C++: void gShift2D(float dx, float dy);

void gShift3D(float dx, float dy, float dz);

F90: subroutine gShift2D(dx,dy)

subroutine gShift3D(dx,dy,dz)

real, intent (in) :: dx,dy,dz

Arguments dx,dy,dz
X,Y (and Z) displacement of origin in current units

Description The routines gShift2D() and gShift3D() move the transformation origin by the specified

amounts.

In space mode (the default) this increment is specified with respect to the current space axes,

whilst in picture mode (see gSetTransformMode()) the increment is specified with respect to

the picture axes.

If transforming is not on before this routine is called then gShift2D() switches it on.

See Also Page 228, 360

gSetTransformMode

gSkipCGMElement

Syntax

C/C++: void gSkipCGMElement(int element);

F90: subroutine gSkipCGMElement(element)

integer, intent(in) :: element

Arguments element
CGM element identifier

Description The routine gSkipCGMElement() skips a CGM element when interpreting a CGM metafile

element by element, having obtained the next element identifier using gGetCGMElement().

The CGM file must be opened using the routine gOpenCGMFile().

See Also Page 70

gOpenCGMFile

gGetCGMElement

723

ROUTINE SPECIFICATIONS gShift

gStartBatchUpdate

Syntax

C/C++: void gStartBatchUpdate(void);

F90: subroutine gStartBatchUpdate

Arguments None

Description The routine gStartBatchUpdate() is used to begin a batch of modifications to a display surface

or display file. No changes will be displayed on the screen until the batch has been ended via

gEndBatchUpdate().

If gStartBatchUpdate() is called while a batch of updates is in progress, GINO makes an

internal call to gEndBatchUpdate().

See Also Page 50

gEndBatchUpdate

gStartPolygon

Syntax

C/C++: void gStartPolygon(void);

F90: subroutine gStartPolygon

Arguments None

Description The routine gStartPolygon() causes a new polygon to be started. gStartPolygon() makes an

internal call to gSetPolygonMode(GON) i.e. it switches on the storing of polygon vertices. If

there is a previously defined polygon that was not closed by calling gEndPolygon(), then

gStartPolygon() closes it.

See Also Page 247

gEndPolygon

gSetPolygonMode

gStartTextBlock

Syntax

C/C++: void gStartTextBlock(float xbeg, float ybeg);

F90: subroutine gStartTextBlock(xbeg, ybeg)

real, intent(in) :: xbeg,ybeg

Arguments xbeg,ybeg
The absolute coordinates of the start of a text block

724

gStartBatchUpdate ROUTINE SPECIFICATIONS

Description The routine gStartTextBlock() moves the current drawing position to the specified coordinate

and indicates the start of a text block.

If character transformations are switched off the position is specified in picture coordinates. If

character transformation is switched on (using gSetCharTransformMode()) the position is

specified in the current units and with respect to the current axes.

Subsequent calls to gMoveToNextLine() or use of the *N escape sequence will cause a move to

the next line within the text block.

See Also Page 154

gMoveToNextLine

gDisplayStr

gSetCharTransformMode

gSuspendDevice

Syntax

C/C++: void gSuspendDevice(void);

F90: subroutine gSuspendDevice

Arguments None

Description The routine gSuspendDevice() suspends output to the currently nominated device. This may

result in the device remaining in graphics mode or the window remaining on the screen as

appropriate to the device. gSuspendDevice() is useful if control is required to be temporarily

suspended while output is directed to another device.

If any further pictures are to be drawn, a device must be nominated prior to calling any further

GINO routines.

If a new device is nominated without a previous call to gSuspendDevice() or if gCloseGino() is

called, output to the old device is terminated.

Note: Under Windows, gSuspendDevice() must be followed by a call to gCloseGino() for the

window to remain on the screen.

See Also Page 52

gCloseGino

gSwitchBrokenLineStyles

Syntax

C/C++: void gSwitchBrokenLineStyles(int switch);

F90: subroutine gSwitchBrokenLineStyles(switch)

integer, intent(in) :: switch

725

ROUTINE SPECIFICATIONS gSuspendDevice

Arguments switch
Broken line type

= GCONTDASH

= GDISCONTDASH

Description The routine gSwitchBrokenLineStyles() switches ALL the lines styles in the line style table to

the type defined in switch. The settings of repeat length, dash and dot lengths are not affected.

Individual entries in the line table can be changed using gDefineBrokenLineStyle().

See Also Page 128

gDefineBrokenLineStyle

gTimeDelay

Syntax

C/C++: void gTimeDelay(int wait);

F90: subroutine gTimeDelay(wait)

integer, intent(in) :: wait

Arguments wait
Delay time in milliseconds

Description The system utility gTimeDelay() provides a means to suspend the GINO application for a

specified amount of time. The time delay is only as accurate as the system clock.

See Also Page 463

gTransformHomogPoint3D

Syntax

C/C++: void gTransformHomogPoint3D(float xs, float ys, float zs, GPOINT3 *point, float

*wh);

F90: subroutine gTransformHomogPoint3D(xs, ys, zs, point, wh)

real, intent(in) :: xs,ys,zs

type (GPOINT3), intent(out) :: point

real, intent(out) :: wh

Arguments xs,ys,zs
3-D position in space coordinates

point
Transformed position in homogeneous coordinates

wh
Transformed position in homogeneous coordinates

726

gTimeDelay ROUTINE SPECIFICATIONS

Description The routine gTransformHomogPoint3D() transforms the point (xs,ys,zs) into homogeneous

coordinates using the current global transformation (modelling and viewing). If transforming is

switched off, point is set to xs,ys,zs and wh is set to 1.0 respectively. Homogeneous

coordinates are related to picture coordinates in the following way:

xp = point.x/wh;

yp = point.y/wh;

zp = point.z/wh;

If the modelling transformation contains no perspective, then by definition wh = 1.0. With

perspective in the modelling transformation, the view plane corresponds to wh = 1.0 and the

eye plane corresponds to wh = 0.0. All points on or behind the eye plane do not project into

picture coordinates. GINO clips all graphical output which lies behind the plane wh = 0.001.

See Also Page 239, 368

gTransformPoint

Syntax

C/C++: void gTransformPoint2D(float xs, float ys, GPOINT *point2);

void gTransformPoint3D(float xs, float ys, float zs, GPOINT3 *point3);

F90: subroutine gTransformPoint2D(xs, ys, point2)

subroutine gTransformPoint3D(xs, ys, zs, point3)

real, intent(in) :: xs,ys,zs

type (GPOINT), intent(out) :: point2

type (GPOINT3), intent(out) :: point3

Arguments xs,ys,zs
2D or 3D position in space coordinates

point2,point3
Transformed position in picture coordinates

Description The routines gTransformPoint2D() and gTransformPoint3D() transform the specified point into

picture coordinates according to the current global transformation matrix (modelling and

viewing). If transforming is switched off, the returned point is the same as the input point.

If the global transformation contains 3-D (in the case of gTransformPoint2D()) or perspective

terms (either routine), warning messages are output. In addition to this, (in the case of

gTransformPoint3D()) if the point lies behind the eye plane, which means that it does not

project into picture coordinates, point3 is returned set to zero and a warning message is output.

See Also Page 238

727

ROUTINE SPECIFICATIONS gTransformPoint

gTrueCol

Syntax

C/C++: int gTrueCol(float red, float green, float blue);

F90: integer function gTrueCol(red, green, blue)

real, intent (in) :: red,green,blue

Arguments red
Red intensity, 0.0 to 1.0

green
Green intensity, 0.0 to 1.0

blue
Blue intensity, 0.0 to 1.0

Description The function gTrueCol() returns a packed 24bit true colour value derived from the supplied

red, green and blue intensities.

The returned value contains 8 bits of colour information for each of the three primaries and can

be used for passing true colour information to the current device through routines such as

gSetLineColour() etc, when operating in true colour mode (as set by gSetColourInfo()).

Devices which can operate in true colour mode and have been set in that mode using

gSetColourInfo() can accept true colour information through gSetColourInfo(), gDrawPixel()

and gDrawPixelArea(). Users should refer to Appendix B to determine whether a device can

operate in true colour mode before using this routine.

See Also Page 217

gDrawPixel

gDrawPixelArea

gSetColourInfo

gSetLineColour

gTrueLen

Syntax

C/C++: int gTrueLen(char string[]);

F90: integer function gTrueLen(string)

character*(*), intent (in) :: string

Arguments string
Character string

Description The system utility gTrueLen() provides an implementation independent means of enquiring the

length of a character variable up to and including the last non-blank character. A null string

will return a length of zero.

728

gTrueCol ROUTINE SPECIFICATIONS

See Also Page 467

gUntransformHomogPoint3D

Syntax

C/C++: void gUntransformHomogPoint3D(float xh, float yh, float zh, float wh, GPOINT3

*point);

F90: subroutine gUntransformHomogPoint3D(xh, yh, zh, wh, point)

real, intent(in) :: xh,yh,zh,wh

type (GPOINT3), intent(out) :: point

Arguments xh,yh,zh,wh
Position in homogeneous coordinates

point
Untransformed 3-D position in space coordinates

Description The routine gUntransformHomogPoint3D() transforms the point (xh,yh,zh,wh) into space

coordinates using the inverse of the current modelling transformation. If transforming is

switched off, point is set to xh,yh,zh. There is redundant information in (xh,yh,zh,wh), i.e.

gUntransformHomogPoint3D() has to reduce four coordinate values down to three values. If

there is no perspective in the transformation, wh is ignored. Otherwise, a check is made to see

if the position in homogeneous coordinates is consistent with the current modelling

transformation. If not, a warning message is output.

Homogeneous coordinates are related to picture coordinates as follows:

xp = xh/wh;

yp = yh/wh;

zp = zh/wh;

The view plane corresponds to wh = 1.0 and the eye plane corresponds to wh = 0.0.

Homogeneous coordinates are obtained from calls to gTransformHomogPoint3D().

See Also Page 239, 368

729

ROUTINE SPECIFICATIONS gUntransformHomogPoint3D

gUntransformPoint

Syntax

C/C++: void gUntransformPoint2D(float xp, float yp, GPOINT *point2);

void gUntransformPoint3D(float xp, float yp, float zp, GPOINT3 *point3);

F90: subroutine gUntransformPoint2D(xp, yp, point2)

subroutine gUntransformPoint3D(xp, yp, zp, point3)

real, intent(in) :: xp,yp,zp

type (GPOINT), intent(out) :: point2

type (GPOINT3), intent(out) :: point3

Arguments xp,yp,zp
2D or 3D position in picture coordinates

point2,point3
Untransformed position in space coordinates

Description The routines gUntransformPoint2D() and gUntransformPoint3D() transform the specified point

into space coordinates according to the current global transformation matrix (modelling and

viewing). If transforming is switched off, the returned point is the same as the input point.

The routine gUntransformPoint2D() uses the inverse of the 2-D part of the current global

transformation. If the global transformation contains 3-D (in the case of

gUntransformPoint2D()) or perspective terms (either routine), warning messages are output

and the returned point is set to zero.

See Also Page 238, 369

gUpdateView

Syntax

C/C++: void gUpdateView(void);

F90: subroutine gUpdateView

Arguments None

Description The routine gUpdateView() updates the viewing transformation matrix from data specified by

the viewing routines. (It does not affect the modelling transformation matrix). The viewing

transformation is always pre-multiplied with the modelling transformation matrix to form the

complete transformation through which all subsequent drawing will pass.

730

gUntransformPoint ROUTINE SPECIFICATIONS

The default view is a parallel view pointing along the negative z-axis with the view centre at

the origin. It can be redefined by calls to gDefinePerspView(), gDefineSphericalView() or

gDefineParallelView() and modified by calls to gSetViewEyeDistance(), gMoveViewCentre(),

gViewShift() or gViewTurn(). The default view can be restored by calling gInitView(). If the

current view has perspective defined, it may also be modified by calls to

gSetViewPlaneDistance() or gViewRotate().

Unless gPosViewCentre() is called the view centre is projected onto the centre of the current

window limits. The window limits are set to the viewport limits unless a user-defined window

is currently specified (see gSetWindow2D(), gSetWindow3D() or gSetWindowMode()). If

gSetViewUpDirection() is not called, gGenerateView() attempts to project the 3-D y-axis

parallel to the screen y-axis, or if the 3-D y-axis is parallel to the view direction, then the 3-D

x-axis is projected parallel to the screen x-axis.

The viewing transformation matrix can be initialized either by calling gSetTransform() with an

argument of -1, or calling gInitView().

See Also Page 388

gSetTransform

gMoveViewCentre

gInitView

gDefineParallelView

gSetViewEyeDistance

gDefinePerspView

gPosViewCentre

gViewRotate

gViewShift

gDefineSphericalView

gViewTurn

gSetViewUpDirection

gSetViewPlaneDistance

gSetWindow2D

gSetWindow3D

gSetWindowMode

gViewRotate

Syntax

C/C++: void gViewRotate(int plane, float angle, float dist);

F90: subroutine gViewRotate(plane, angle, dist)

integer, intent(in) :: plane

real, intent(in) :: angle,dist

Arguments plane
Plane in which rotation is to take place

= GYZPLANE, YZ plane

= GXZPLANE, XZ plane

= GXYPLANE, XY plane

731

ROUTINE SPECIFICATIONS gViewRotate

angle
Angle of rotation in degrees

dist
Distance from eye position to centre of rotation

Description The routine gViewRotate() calculates a new eye position such that the line of sight is rotated

about a point of distance dist along the view direction from the eye position. The line of sight

is rotated by the specified angle in the specified plane. A positive rotation is anticlockwise

when looking at the positive side of the plane.

Rotating the line of sight has the side-effect or modifying the view-up direction in moost

circumstances.

If plane is not in range or if the current view has no perspective defined, an error message is

output and no further action is taken.

See Also Page 411

gSeViewUpDirection

gViewShift

Syntax

C/C++: void gViewShift(float dx, float dy, float dz);

F90: subroutine gViewShift(dx, dy, dz)

real, intent(in) :: dx,dy,dz

Arguments dx,dy,dz
Amount by which line of sight is to be shifted

Description The routine gViewShift() moves the line of sight by the specified vector increment along the

current view axes..

See Also Page 410

gViewTurn

Syntax

C/C++: void gViewTurn(float xr, float yr, float zr, float dx, float dy, float dz, float angle);

F90: subroutine gViewTurn(xr, yr, zr, dx, dy, dz, angle)

real, intent(in) :: xr,yr,zr,dx,dy,dz,angle

Arguments xr,yr,zr
Origin of rotation axis in space coordinates

dx,dy,dz
Rotation axis vector

732

gViewShift ROUTINE SPECIFICATIONS

angle
Angle of rotation in degrees

Description The routine gViewTurn() rotates the current view direction and view centre about an arbitrary

3-D rotation axis. The rotation axis points in the direction (dx,dy,dz) and goes through the

point (xr,yr,zr). The view is rotated in a right-handed sense with respect to the rotation axis by

an angle in degrees specified by angle.

Rotating the line of sight has the side-effect or modifying the view-up direction in moost

circumstances.

If a zero rotation axis vector is specified, an error message is output and no further action is

taken.

Unlike gViewRotate(), gViewTurn() can rotate a parallel view.

See Also Page 410

gSeViewUpDirection

gViewRotate

gWaitForEvent

Syntax

C/C++: void gWaitForEvent(int *intype);

F90: subroutine gWaitForEvent(intype)

integer, intent(out) :: intype

Arguments intype
The event type being returned

= GNULL, Null event type

= GKEYPRESS, Key or mouse button press

= GSEGMENT, Picture segment number

= GSEGMENTANDKEY, Picture segment number and key/mouse button

= GLOCATOR, Screen position and key/mouse button press

= GSTRING, Text string

= GREALS, String of real values

= GINTEGERS, String of integer values

= GMOVEMENT, Pointer, mouse or tablet movement

= GKEYRELEASE, Key or mouse button release

= GRESIZE, Window resize event

= GPOINTERLEAVING, Pointer leaving window

= GPOINTERENTERING, Pointer entering window

= GMOUSEWHEEL, Mouse wheel movement

Description The routine gWaitForEvent() reads the next discrete event on the event queue and passes back

its event type in intype. If the Null event has been enabled (gAddEventType(GNULL)),

gWaitForEvent() will return immediately, even if no event has occurred, otherwise the routine

will wait for a requested event to be placed on the event queue by the device and then returns

to the application.

733

ROUTINE SPECIFICATIONS gWaitForEvent

If events are not available on the current output device GINO will attempt to emulate the first 5

events through the following means. Only the last event enabled with gAddEventType() will be

emulated in this way and intype will return one of the following values. Events are emulated as

follows:

GKEYPRESS - Single key or cursor input

GSEGMENT - Cursor followed by gEnqSegHit()

GSEGMENTANDKEY - Cursor input followed by gEnqSegHit()

GLOCATOR - Cursor input

GSTRING - Input record

All other information returned by gWaitForEvent() is obtained by calling the routine

gGetEventRecord().

If gWaitForEvent() is called before calling routine gAddEventType() or no event of the types

requested have occurred, intype will be set to 0.

See Also Page 451

gGetEventRecord

gAddEventType

734

gWaitForEvent ROUTINE SPECIFICATIONS

Appendix A
MACHINE IMPLEMENTATIONS

GENERAL

This Appendix contains machine-specific and operating system-specific details.

Compiler-specific details can be found in the on-line documentation.

The following table shows the default word size and numeric range used by

GINO under the various implementations available.

Silicon Graphics SV1
Silicon Graphics

double-double precision
CVF, FTN95, LF90/95 &

SGI double-precision
All others

Default Integer *8 *8 *4 *4

Default Real *8 *8 *8 *4

Integer range -2**62+1 to 2**62-1 -2**62+1 to 2**62-1 -2**31+1 to 2**31-1 -2**31+1 to 2**31-1

Real range -1.0e2439 to 1.0e2439 -1.0e**307 to 1.0e**307 -1.0e**307 to 1.0e**307 -1.0e**37 to 1.0e**37

The following table shows the default Fortran channel numbers used by GINO

for the various file handling tasks. It also shows the GINO Configuration

Variable that can be used to change the default and also the maximum that can be

used.

Config.
Variable

VAX
ALPHA

OpenVMS
UNIX

Salford
FTN95

Absoft
Lahey

LF90/LF95

Compaq
Visual

Fortran

Screen Driver
Output

NDEVIC 5 6 Direct Direct Direct Direct

Plotter Driver
Output

NDEVIC 1 1 1 1 1 1

Metafile Output NSAVDF 7 7 7 7 7 7

Error Message
Input

NFMESS Any Any Any Any Any Any

Error Message
Output

NFERTR 6 0
[1]

6 6 6 6

735

MACHINE IMPLEMENTATIONS GENERAL

Software
Display File

NFSDF Any Any Any Any Any Any

Software
Font File

NFFONT Any Any Any Any Any Any

GINOMENU
Icon File

NFICON Any Any Any Any Any Any

GINO State
Stack File

NFSTAT Any Any Any Any Any Any

Highest Valid
File Unit

99 99 99 100 32767 32767

1 Unit 6 on HP/UX

This and additional compiler and machine specific information may be enquired

through the GINO enquiry routine gEnqImpAttriubs() which returns information

in a structure GIMPLEMENTATION.

Refer to Appendix B for details on how to use the configuration variables to

change the defaults if required.

UNIX

File Handling

If the routine gSetDeviceFilename() has not been used, GINO will write to a file

called xxxxxx.OUT where xxxxxx is the current device nomination routine.

Alternatively, under Fortran 90, the file name may be assigned by setting an

environment variable of the form FORTn, where n is the default file unit as

detailed above. Thus, ‘setenv FORT7 ginoex1.sav’ will assign an external file

name for a SAVDRA output file.

8-bit Data

Certain printing devices such as laser and dot-matrix printers use all ASCII

integer codes in the range 0-255 for graphics output.

The printing device must therefore be configured for 8 bit data and users should

ensure raw 8 bit data is passed to it. If data is passed directly to the device

through a /dev/gino_n port, the line should be configured to receive raw data and

a character size of 8 within the termcap
(5)
database. Alternatively, a line may be

configured temporarily by using the stty command as part of a shell script, eg:

(stty 9600 -parity tabs raw ixon;cat file)> /dev/ttya

736

UNIX MACHINE IMPLEMENTATIONS

OpenVMS

File Handling

If the routine gSetDeviceFilename() or an OPEN statement has not been used,

GINO will send the output to a logical name FOR0nn where nn is either the

default channel number as specified in the above table or is taken from the

configuration variable applicable to the current device.

If the logical name has not been assigned anywhere, a default file will be opened

of the name FOR0nn.DAT.

The logical name can be assigned to an alternative file or terminal port as

follows:

$ DEFINE FOR001 PLOT.DAT

$ DEFINE FOR001 TXA3:

File Format

The default file format used by GINO under OpenVMS is unformatted Fortran

carriage_control. i.e. each record begins with a ‘NULL’ character. (This type of

file is also created when calling gSetDeviceFilename() with ntype = 0). This

type of file can then be copied directly to the printer or plotter using the COPY,

TYPE or PRINT commands.

If the PRINT command is used with unformatted files either the /PASSALL

option must be used, eg:

$ PRINT/QUEUE=queuename/PASSALL PLOT.HPJ

or the default form associated with the queue must be defined with

/NOTRUNCATE/NOWRAP options to suppress any page control by the print

symbiont. This is achieved using the following steps (you must be System

Administrator):

$DEFINE/FORM/NOTRUNCATE/NOWRAP formname formnumber

$START/QUEUE/DEFAULT=FORM=formname/FORM_MOUNTED=formname
queuename

737

MACHINE IMPLEMENTATIONS OpenVMS

Exporting Files to other Systems

If the file is to be exported to another computer system, e.g. a PC to be read into

a DTP or word-processor package, formatted output files are recommended and

these are created either by calling gSetDeviceFilename() with ntype = -1 or there

may be a driver specific configuration setting which will ensure this type of file

is created by default. In each case each record is written with no carriage control

character (A format). This filetype will have LIST carriage_control attributes so

it can also be used on a local printer under OpenVMS.

CGM Files

GINO CGM files are opened as Direct-Access Unformatted with Fixed Records

of length 80 bytes.

The second parameter in the routine gSetDeviceFilename() is ignored and if an

OPEN statement is used, only the filename is looked at and the file is re-opened

internally by GINO. The CGM interpreter can read in files with records of any

length up to 512 bytes.

8-bit Data

Certain printing devices such as laser and dot-matrix printers use all ASCII

integer codes in the range 0-255 for graphics output.

The terminal line therefore must be configured for 8-bit output as the line driver

must pass everything through without interpreting any control characters. This is

achieved with the /PASTHRU qualifier to SET TERM:

$ SET TERM/PASTHRU/PERM TXA3:

Microsoft Windows

File Handling

If the routine gSetDeviceFilename() or an OPEN statement has not been used,

GINO will write to a file called xxxxxx.OUT where xxxxxx is the current device

nomination routine.

738

Microsoft Windows MACHINE IMPLEMENTATIONS

Appendix B
DEVICE DRIVERS

Device Drivers Introduction

This Appendix contains details of all the most commonly used device drivers in

GINO. - Check the file DRIVERS.LST in your installation directory or check

with your System Administrator for the list of drivers that are available at your

site.

The drivers are grouped in three sections; Screens, Printer/Plotters and

Device-independent Metafiles. Each driver has one table listing the available

nomination routines and a second table listing the characteristics and attributes of

each nomination routine.

It is important to note that the Characteristics table details the hardware

characteristics of that device. As the general GINO philosophy is to use a

hardware function if possible and if not, emulate it in software, a No in a table

will produce a software emulation of that function if possible.

There are advantages and disadvantages for using hardware or software features

such as; using software is recommended for consistent appearance on all devices,

but using hardware is recommended for speed, smaller file sizes and a more

professional appearance. For this reason, most features can be switched between

hardware and software and the following table lists the routines used for this

purpose.

The table also lists the routines used for selecting/setting a particular feature as

well as the enquiry routines used for checking the current settings. The general

enquiry routine gEnqDeviceState() can also be used to enquire what facilities are

available on any one device.

739

DEVICE DRIVERS Device Drivers Introduction

Selection/Setting Hard/Software switch Attributes Enquiry

Max Width x Height gSetDrawingLimits() N/A None

Default Width x
Height

gSetDrawingLimits() N/A gEnqDrawingLimits()

Colours / Pens gSetLineColour() N/A gEnqLineColour()

Colour Palette gDefineRGB()/gSetColourInfo() N/A gEnqRGB()/gEnqColourInfo()

Broken Linestyles gSetBrokenLine() gSetBrokenLineMode() gEnqBrokenLine()

Drawing Mode gSetPenType() None gEnqSelectedPen()

Thick Lines gSetLineWidth() gSetLineWidthMode() gEnqLineWidth()

Line Ends gSetLineEnd() gSetLineWidthMode() gEnqLineEnd()

Arcs gDrawArcxxx() gSetArcMode() None

Symbols gDrawMarker() gSetCharTransformMode() None

Fonts gSetCharFont()/gSetFontxxx() gSetCharTransformMode()/gSetSoftChars() gEnqFontStyle()

Character Sizes gSetCharSize() gSetCharTransformMode()/gSetSoftChars() gEnqCharAttribs()

Character Angles gSetStrAngle() gSetCharTransformMode()/gSetSoftChars() gEnqCharAttribs()

Italic Characters gSetItalicAngle() gSetCharTransformMode()/gSetSoftChars() gEnqCharAttribs()

Polygonal Filling
gFillRect()/gFillSelectedPolygons()/

gFillPolygonxxx()
gSetFillMode() None

Segments gxxxSeg() gSetSegMode() gEnqSegAttribs()

Image Handling gxxxPixel() None gEnqPixelxxx()

Cursor Types gSetCursorType() N/A gEnqCursorType()

Cursor Actions gSetCursorAction() N/A gEnqCursorAction()

Cursor Positioning gSetCursorPos() N/A None

Event Types gAddEventType() N/A None

Batch Updates gxxxBatchUpdate() N/A None

Clipping/Masking gSetWindowxxx()/gSetMaskxxx() gSetClippingMode()
gEnqWindowState()/
gEnqMaskState()

Transform/Viewing
gScalexx()/gRotatexx()/gShiftxx()/

gUpdateView()
gSetTransformSwitch()

gEnqTransformState()/
gGetViewParams()

Shading gSetShadingMode() N/A gEnqShadingMode()

Lights gDefineLight() N/A gEnqLightAttribs()

Texture Mapping gDefineTexture() N/A gEnqTextureMappingMode()

Auxiliary Drawing
Areas

gxxxAuxDrawingArea() N/A None

Window/Device
Titling

gSetDeviceTitle() N/A None

N\A Implies that there is no method of switching the feature into software

emulation

None Implies that there is no routine available for this purpose

740

Device Drivers Introduction DEVICE DRIVERS

Configuration File

The facility to change device driver output channels under F90 and other driver

settings is by way of the GINO configuration file GINO.CON (gino.config under

UNIX). GINO.CON is initially just supplied with serial numbers appropriate to

each licenced package. These encrypted serial numbers must not be altered as

each GINO package will not run if it detects an illegal number.

The configuration settings should be added on new lines in the following form:

VARIABLE=setting

where VARIABLE is up to 12 characters long (always in upper case) and setting

can be any string or value up to 50 characters.

All other records in the file are ignored and can be used for comments. Up to 50

configuration settings are permitted.

At the beginning of each subsequent driver section, there is a table listing all of

the available configuration settings for that group of devices.

See your Getting Started Guide for more details about the configuration file.

Dummy Device

Device Nominations

Nomination Routine Description of Device

A gDummy() Dummy device called if no other is nominated

Device Characteristics

A

Maximum Width No Limit

Maximum Height No Limit

Default Width (mm) 200.0

Default Height (mm) 200.0

Colours / Pens 255

Colour Palette Dynamic

Broken Linestyles No

Drawing Modes No

Thick Lines No

Line Ends No

741

DEVICE DRIVERS Configuration File

Arcs No

Symbols No

Fonts No

Character Sizes Pseudo-hardware in multiples of 1.5mm square

Character Angles 0 or 90°

Italic Characters No

Polygonal Filling No

Segments No

Image Handling No

Clipping No

Transform/Viewing No

Shading No

Lights No

Texture Mapping No

Window/Device Titling No

The gDummy() device-driver produces no graphical output or metafile but can be

used for checking the functionality of a program as all error-checking is still

performed.

GINO nominates the gDummy() driver if no device driver has been nominated by

the user’s program.

SCREENS AND WORKSTATIONS

This section includes graphics screen, terminals and workstation devices.

Output Filenames and Unit Numbers (Fortran only)

By default, all graphics output is sent directly to the screen using an

implementation-dependent Fortran unit number. On OpenVMS and UNIX

system, the screen output (except GLX and X Windows) can be sent to a file

which can then be TYPEed or ‘cat’ed at a later stage. If a file has not been

opened, a file will be created with a default name depending on the system, such

as FOR005.DAT on OpenVMS or eps.out under UNIX. A different unit number

can be used by setting the relevant GINO configuration variable for that device,

alternatively, the routine gSetDeviceFilename() can be used whereby the actual

filename is specified and GINO will automatically select the next available unit

number.

742

SCREENS AND WORKSTATIONS DEVICE DRIVERS

Screen Driver Configuration Settings

The following table lists all the available settings applicable to drivers in this

screens section:

Device Driver Config. Variable Settings Default Description

GLX GLXTITLE string Window title if not set by gSetDeviceTitle()

REGIS REGIS N (1-99) 6 F90 output channel for REGIS driver

WINDOWS NFERTR N (0-2) 0 Dialogue window iconized (0), visible (1), none (2)

WINDOWS MWINTITLE string Window title if not set by gSetDeviceTitle()

WOGL NFERTR N (0-2) 0 Dialogue window iconized (0), visible (1), none (2)

WOGL WOGLTITLE string Window title if not set by gSetDeviceTitle()

WOGL WOGLDEPTH N(16,24,32) 32 OpenGL depth buffer depth

XWIN XCOLS 1-256 64 Number of entries in colour palette

XWIN XWINTITLE string Window title if not set by gSetDeviceTitle()

GLX OpenGL Extension to X

Device Nominations

Nomination Routine Description of Device

A gGlx() Default GLX Window

B gGlxw(pause,double,xp,yp,width,height) User-defined GLX Window

C gGlxao(window_id,pixmap_id) Opens GINO using an existing bitmap

Device Characteristics

A B C

Default Width
2
/3Maximum User Defined Application Dependent

Default Height
2
/3Maximum User Defined Application Dependent

Devices A,B and C

Maximum Width Server Dependent

Maximum Height Server Dependent

Colours / Pens 1023

Colour Palette True colour GLX visual

Broken Linestyles No

Drawing Modes GERASER, GNOT, GAND, GOR, GXOR

Thick Lines Yes

Line Ends 16

Arcs Yes

743

DEVICE DRIVERS GLX OpenGL Extension to X

Symbols No

Fonts Server Dependent

Character Sizes Server Dependent

Character Angles Server Dependent

Italic Characters Server Dependent

Polygonal Filling Single Polygons & Solid only

Segments Yes

Image Handling All Functions

Cursor Types GHOURGLASS,GDEFAULT, GSMALLCROSS, GLARGECROSS, GX, GPOINTER & 74 X specific types

Cursor Actions
GPOLYLINE, GDEFAULT, GRUBBERBAND, GRUBBERBOX, GRUBBERSQUARE, GRUBBERELLIPSE,

GRUBBERCIRCLE

Cursor Positioning No

Event Types
GKEYPRESS, GLOCATOR, GMOVEMENT, GKEYRELEASE, GRESIZE, GPOINTERLEAVING,

GPOINTERENTERING

Batch Updates Yes

Clipping Yes

Transform/Viewing Yes

Shading Yes

Lights Yes

Texture Mapping Yes

Auxiliary Drawing
Areas

Yes (Up to 50 pairs)

Window/Device Titling Yes

Mouse Positioning Yes

Linking with GLX and Xlib Library

To satisfy all outstanding references made by this driver, the GL and XLIB

libraries needs to be referenced in your link statement:

UNIX:

f90 -o myprog myprog.o -lgino-f90 -lGL -lGLU -lX11

Some UNIX systems may require extra libraries to satisfy further references from

the X11 library. e.g. on Solaris:

f90 -o myprog myprog.o -lgino-f90 -lGL -lGLU -L/usr/openwin/lib

-R/usr/openwin/lib -lX11 -lXext -lXmu

Device Nomination

Three nomination routines are available with GLX-windows:

744

GLX OpenGL Extension to X DEVICE DRIVERS

gGlx()

This nomination routines opens a single buffered, standard window of 2/3 screen

size in the top left-hand corner.

gGlxw(pause,double,xp,yp,width,height)

This routine allows the user to set the position, size and action at program

termination where:

pause
= 0 specifies there is no pause at gCloseDevice() (default)

= 1 specifies that the process will pause with a prompt at
gCloseDevice()

= 2 specifies that the process will pause (without prompt) at
gCloseDevice()

double
= 0 GINO creates and controls backing store ensuring all

exposed areas are automatically repaired (default)

= 1 An OpenGL double buffered visual is used which is
often superior in performance but should only be used
where the whole window is continually being redrawn
by the application.

xp,yp
specify the pixel position of the top left of the window (default = 0,0)

width,height
specify the pixel width and height of the window (default = 2/3 of max.)

The graphics window, however will always be cleared at the end of the program.

The nomination routine gGlx() is equivalent to calling gGlxw() as follows:

gGlxw(0,0,0,0,width,height)

where width,height are equivalent to two-thirds the dimensions of the full

drawing area.

gGlxao(window_id,pixmap_id)

This routine allows GINO to draw to an existing window where window_id is the

identifier of the external window and pixmap_id is the identifier of a pixmap the

same size as the external window. If window_id or pixmap_id have a NULL

value then they will be created by GINO.

745

DEVICE DRIVERS GLX OpenGL Extension to X

The normal operation of the GLX-Windows driver is to open a window, map it,

clear it and set up a colour table. A pixmap is also created to act as a backing

store to enable the repainting of exposed regions.

When using gGlxao(), the window and pixmap are not created, but their

attributes are obtained and used by GINO’s initialization procedures. The

window is not blanked and the colour map is not overwritten.

The window set up externally will need to be mapped before entering GINO.

If external drawing is to be used within the window, a pixmap will need to be

created to allow damage repair on the window. To enable this all drawing must be

done to the pixmap as well as to the window so that they are a copy of each other.

Within the GINO gWaitForEvent()/gGetCursorEvent() loop, expose events on the

window are trapped and used to trigger XCopyArea commands to repaint the

window. If no external drawing is to be done, set pixmap_id to NULL and GINO

will create and maintain the pixmap until gCloseDevice().

Single and Double Buffer Modes of operation

As can be seen above, GINO provides for two operational modes with its GLX

driver.

I) Utilizing a GINO specific backing store (or pixmap)

ii) In OpenGL double buffered mode

The former works exactly the same as the XWIN driver which has the advantage

of the user not worrying about expose events or iconization as these are dealt

with by the driver, reparing and redrawing the appropriate areas from backing

store. In this mode OpenGL is instructed to work in single buffered mode, drwing

solely to the invisible backing store whilst GINO controls the copying of the

backing store to the screen as appropriate to the GINO application.

Operating in OpenGL dubble buffered mode often provides a performance

benefit, but at the expense of extra programming effort to cater for this mode of

operation (see below). In this mode GINO drawns to the OpenGL back buffer,

and on a call to gFlushGraphics or gEndBatchUpdate, OpenGL swps the

cointents of the front buffer (i.e. The screen) with that of the back buffer

providing almost instantaneous updates of the image. However, according to the

strict rules of OpenGL, after this update has been completed, the contents of the

back buffer are undefined and so the whole picture has to be redrawn to the back

buffer again ready for the next update.

746

GLX OpenGL Extension to X DEVICE DRIVERS

Unfortunately, different implementations of OpenGL on X workstations and PC

X emulators operate differently and do not always provide for the pixmap mode

of operation. The table below shows these in summary:

Environment Pixmap Mode Double Buffered Mode Back Buffer Lost

AIX No Yes No

CRAY Yes Yes Yes

HP/UX Yes Yes Yes

IRIX Yes Yes Yes)

Solaris No Yes No

L

Exceed Yes Yes Yes

MESA Yes Yes No

By default the gGlx nomination routine will create a pixmap and OpenGL will

work in single buffered mode except where such mode of operation is not

possible. Fortunately in these cases, the OpenGL implementation automatically

repairs exposed area (AIX) or the back buffer is not lost so GINO can carry out

the repairs on an expose event (Solaris), so the extra programming effort

normally required for double buffered modes is not needed.

Double buffered mode is available in all implementations of GINO and this can

be selected by calling the gGlxw with double set to 1. This mode should only be

used for animation type applications where the program is either in a hard loop

where the window is continually being cleared (using gNewDrawing()) and a

new image is being created, ending the loop with gFlushGraphics().

Alternatively, GINO events may be used, catering for key and mouse button

presses to control the animation.GINO example programs 10 and 11 are cases in

point. In this mode of operation the GLX driver causes an event type GRESIZE

whenever an expose event occurs (see below for exceptions) allowing the

application to redraw the complete contents of the window to repair the exposed

area. Such an event should be added to the event list using gAddEventType() and

progrmmed accordingly in any application that operates in double buffered mode.

GINO example program 9 shows this type of application.

Where the contents of the back buffer are not lost after swapping the contents

(AIX, PC MESA and SOLARIS), GINO will automatically repair areas after

expose events and iconization and not generate the GRESIZE event, but if your

application is to be machine independent the above guidelines should be

followed.

747

DEVICE DRIVERS GLX OpenGL Extension to X

Window & Pixmap Identifiers

The identifiers of the primary window and pixmap can be obtained though a

special device driver dependent routine:

gGlxid(window_id, pixmap_id)

These values may be passed to an appropriate X routine requiring such

information.

Window Size

If the user of the application changes the window size during operation, the

driver will ensure that the picture is updated by redrawing from the backing store,

but GINO is not able to take any further action until after a gNewDrawing() is

called. At this point the programmer can re-enquire the window size using

gEnqDrawingLimits() and take the appropriate action.

If the window size is changed by the user, this takes priority over the

programmers request for a change through gSetDrawingLimits().

Window Title

The default window title of a GINO application is a string composed of the

GINO version and license owner. This can be superceded in the following order

of precedence:

1) GINO config variable GLXTITLE

2) System environment variable GLXTITLE

3) Application call to gSetDeviceTitle()

Colour Map

GINO will attempt to open a Double Buffered, RGBA GLX Visual providing true

colour operation on the display. Most GLX extension will allow this even on 8

plane, indexed displays but the number of colours is obviously limited.

1024 entries in the GINO colour table are available to store colour definitions to

use as colour indices.

On an 8 plane device, the GLX visual will attempt to share colours with the

system colour map, possibly reducing the range of colours available for lighting.

The user may choose to allocate a provate colour map of 256 colours by setting

the number of colours to 256 through one of the following methods:

748

GLX OpenGL Extension to X DEVICE DRIVERS

1) Setting an environment variable GLXCOLS to 256

2) Calling the routine gSetColourInfo(ndc,ndt)

Graphics Visibility

The current graphics window can be popped to the front of the display or pushed

to the back of the display using the GINO routine gSetGraphicsVis().

e.g.

gSetGraphicsVis(GINVISIBLE)

Pushes the window to the back

gSetGraphicsVis(GVISIBLE)

Pops the window to the front

Character Fonts

The following hardware character fonts are accessible through the routine

gSetCharFont(font) where font can be one of the following:

0 or 100 adobe-courier (default)

101 adobe-helvetica

102 adobe-times

103 adobe-ITC Avant Garde Gothic

104 adobe-ITC Lubalin Graph

105 adobe-New Century Schoolbook

106 adobe-ITC Souvenir

170 adobe-Symbol

The availability of the fonts is server dependent. The font enquiry routine

gEnqHardFontList() can be used to enquire which fonts are available on the

server being used. Where one of the hardware fonts listed above (except font

170) is not available a software emulation is provided with similar character

proportions.

Bold and/or italic versions of fonts 100-106 can be selected using the routine

gSetFontWeight(weight) where weight>0 and the routine gSetItalicAngle(angle)

where 10�angle�20 degrees.

749

DEVICE DRIVERS GLX OpenGL Extension to X

Segment Facilities

The GLX driver supports some of GINO’s segment facilities in line with the

OpenGL Display List facilities. Thus the following segment routines operate

through this driver:

gOpenSeg() Open segment

gCloseSeg() Close segment

gDrawSeg() Draw segment

gDeleteSeg() Delete segment

gEnqSegHit() Enquire segment at hit point

gInsertSegRef() Insert reference to segment

gEnqSegAttribs() Enquire segment attributes (existence only)

Note that a segment must exist prior to making a reference to it using

gInsertSegRef() and segments are always visible and hit sensitive.

N.B. As hardware fonts are stored internally as segments by the GLX driver, any

change to the current character/font settings will close the currently opened

segment. Therefore it is essential that the required character/font attributes are set

before a GINO segment is opened and are not altered within a segment.

Mouse Pointer Types

When the window is first initialised the pointer icon is set to be an ‘hour glass’

indicating that no interaction can be performed. This is changed when either

gGetCursorEvent() is called, or one of the permitted event types is enabled. The

icon used at this point can be set using the routine:

gSetCursorType(type,forcol,bakcol)

750

GLX OpenGL Extension to X DEVICE DRIVERS

where type is the type number. Type -1 is an hour-glass, type 0 is a double cross,

type 1 is a single small cross and type 2 is a large cross extending the whole

height and width of the window. The following additional X cursor types are also

available.

forcol and bakcol can also be used to set the cursor foreground and background

colour numbers, remembering that cursors are drawn in XOR mode resulting in a

different appearance to the GINO colour numbers on the actual display.

Graphics Cursor

In addition to the usual key values returned for a cursor hit, some special values

of key are also returned as follows:

0 A call to gGetCursorEvent() has been made when the graphics window is iconized

1024 A resize event has taken place; the user should call gNewDrawing() and enquire the

new size of the window (through gEnqDrawingLimits()) and redraw as required

While waiting for a key or mouse button press, any expose events that take place

will cause an automatic update of the exposed area from the backing store. When

gGetCursorEvent() is called, the input focus of the device is set to be the graphics

window. When the key has been pressed, the focus is returned to the window

which had it before gGetCursorEvent() was called.

GLX Hard Copy

A GLX driver specific routine is available to create a PostScript image file from

the contents of the current window:

751

DEVICE DRIVERS GLX OpenGL Extension to X

3 to 14

15 to 26

27 to 38

39 to 50

51 to 62

63 to 74

75 to 79

gGlxeps(mode,filename,ier)

Where mode=0 to create a monochrome or =1 to create a colour image, filename

is the name of the PostScript file to be created and ier returns 0 if it has been

successfullt created.

GLX Driver Error Messages

The following errors specific to this device driver may occur:-

At Initialization:

GINO ERROR 310 - Cannot Open Display

GLX Not Supported

No Conforming Visual

These messages are generated if the GLX driver cannot open the GLX extension

library successfully, or that the display does not support any RGBA colour visual.

GINO ERROR 311 - Cannot Open Window

This is caused by an incorrect connection to the display or network problems.

After outputting the error, the program will continue but no further output will

take place.

At Initialization or gNewDrawing():

GINO ERROR 312 - Cannot obtain Window size

Character attribute setting:

GINO ERROR 313 - Cannot load required font

Iconized window at gCloseDevice():

GINO ERROR 314 - De-iconize Window

Regis Series Devices

Device Nominations

Nomination Routine Description of Device

A gVt125() Dec VT125 Terminal

B gVt240() Dec VT240 Terminal

752

Regis Series Devices DEVICE DRIVERS

C gVt241() Dec VT241 Terminal

D gVt330() Dec VT330 Terminal

E gVt340() Dec VT340 Terminal

F gRainbo() Dec Rainbow (running via POLY-REGIS)

G gProf() Dec Professional

H gGigi() Dec GIGI

I gLn01() Dec LN01 laser (running via PLOTLN)

J gLcp01() Dec LCP01 inkjet

K gLcg01() Dec LCG01 inkjet

L gLj250() Dec LJ250 inkjet (running via RETOS)

Device Characteristics

A B C D E F G H I J K L

Width (mm) 250 250 250 250 250 250 250 260 237 250 244 203

Height (mm) 156 149 149 149 149 149 149 140 150 149 183 297

X Resolution 768 800 800 800 800 800 800 768 2788 800 2872 2388

Y Resolution 480 476 476 476 476 476 476 414 1766 476 2154 3492

Colours / Pens 4 4 4 4Gr 16 4 4 8 1 4 8 256

Colour Palette Dyn. Dyn. Dyn. Dyn. Dyn. Dyn. Dyn. Fix. Fix. Fix. Dyn. Dyn.

Character Angles x45� x45� x45� x45� x45� x45� x45� x45� x90° x45� x45� x45�

Cursor Types 1 1 1 1 1 1 1 1 N N N N

Cursor Positioning Y Y Y Y Y Y Y Y N N N N

Event Types Y[1] Y[1] Y[1] Y[1] Y[1] Y[1] Y[1] Y[1] N N N N

1 GKEYPRESS and GLOCATOR only

Devices A to L

Broken Linestyles 4 (Dashed, dash-dotted, dotted, dash-dot-dotted)

Drawing Modes No

Thick Lines No

Line Ends No

Arcs YES

Symbols No

Fonts 1

Character Sizes 16 multiples of 1.5mm square (LN01), 16 various (all others)

Italic Characters 0.0, +/-27.0, +/-45.0

Polygonal Filling 4 patterns (LN01), 8 patterns (LCG01), Solid and up to 256 vertices (all others)

Segments No

Image Handling No

Cursor Actions No

753

DEVICE DRIVERS Regis Series Devices

Devices A to L

Batch Updates No

Clipping/Masking No

Transform/Viewing No

Shading No

Lights No

Texture Mapping No

Auxiliary Drawing
Areas

No

Window/Device
Titling

No

Colours and Greyscales

On GIGI or LCG01, colours 3 & 9 revert to the default colour.

On LCG01, colour 10 will select the background colour of white.

On LJ250, colour 0 & 10 do not imply ‘erase’ mode and have no effect.

On VT125 & VT240, default colour numbers are 0,1,2,3.

Graphics Cursor

VT125, PROF, RAINBOW:

The cursor is positioned using the arrow-keys in conjunction with the auxiliary

keypad. Pressing the arrow keys moves the cursor one pixel at a time. Pressing a

number ‘n’ (where ‘n’=1-9 or 0 for 10) on the auxiliary keypad followed by

subsequent arrow keys, moves the cursor ‘n’ pixels at a time. Due to the nature of

the software cursor, the following keys cannot be used to signify a cursor hit:

A,B,C,D (ASCII values 65-68).

VT240, VT241, GIGI:

The crosshair cursor is positioned using the arrow-keys in conjunction with the

<SHIFT> key. Pressing the arrow keys moves the cursor one pixel at a time.

Pressing the <SHIFT> key at the same time, accelerates the cursor movement.

VT330, VT340:

The crosshair cursor can be positioned either with the arrow keys in conjunction

with the <SHIFT> key as above, or with the mouse.

Outputting to the LN01 using PLOTLN

The drawing area given for the LN01 is when PLOTLN is used in landscape

mode. This is not the default for PLOTLN and therefore the switch must be

applied to the command:

PLOTLN/ORIENTATION=LANDSCAPE/REGIS

754

Regis Series Devices DEVICE DRIVERS

If PLOTLN is used in its default mode (portrait), then automatic scaling will

occur and the resulting size of the plot will be unpredictable.

PLOTLN does not recognise the REGIS code for screen clear (gNewDrawing())

for giving a fresh sheet of paper, therefore it is recommended that single plots are

created per program.

Outputting to the LJ250 using RETOS

The driver has been set up for the LJ250 with the background colour as white and

the default colour as black and secondly the drawing area has been set up to an

A4 media size rather than the assumed default of American A size. For this

reason, the RETOS command should be as follows:

RETOS/NOREVERSE/SIZE=(8.,11.3) filename

The drawing area is by default in portrait mode.

VGA and SVGA PC Screens (LF90 only)

This document covers the VGA/SVGA driver supplied with the DOS version of

GINO using the Lahey LF90 compiler.

Device Nominations

Nomination Routine Description of Device

A gSvga(ixres,iyres,ncols) SVGA using parameters (display mode > 255)

B gSvgac() SVGA using GINO.CON (display mode > 255)

C gSvgam(imode) SVGA using mode number (display mode > 255)

D gMvga() MVGA with colour monitor (display mode 19)

E gVga() VGA with colour monitor (display mode 18)

F gVgam() VGA with monochrome monitor (display mode 17)

G gEga() EGA with colour monitor (display mode 16)

H gEgam() EGA with monochrome monitor (display mode 15)

I gCgac() CGA with colour monitor (display mode 4)

J gCga() CGA with monochrome monitor (display mode 6)

K gHcga() Hercules monochrome (display mode 20)

Device Characteristics

A,B,C D E F G H I J K

X Resolution var 320 640 640 640 640 320 640 720

Y Resolution var 200 480 480 350 350 200 200 348

755

DEVICE DRIVERS VGA and SVGA PC Screens (LF90 only)

Colours / Pens 16/256 256 16 0 & 1 16 0 & 1 4 0 & 1 0 & 1

Fonts No No Yes No Yes No No No No

Devices A to K

Width (mm) 213.00

Height (mm) 159.67

Colour Palette Dynamic

Broken Linestyles 3

Drawing Modes GAND+GOR+GXOR - Not in MVGA

Thick Lines No

Line Ends No

Arcs Circles only

Symbols No

Fonts 1

Character Sizes See Fonts

Character Angles No

Italic Characters No

Filling No

Segments No

Image Handling Output only

Cursor Types GPOINTER only

Cursor Actions None

Cursor Positioning No

Event Types GKEYPRESS, GLOCATOR, GMOVEMENT, GKEYRELEASE

Batch Updates No

Clipping No

Transform/Viewing No

Shading No

Lights No

Texture Mapping No

Auxiliary Drawing
Areas

No

Window/Device
Titling

No

SVGA Nomination

To nominate a SVGA board as the current device, three routines are provided:

gSvga(ixres,iyres,ncols)

756

VGA and SVGA PC Screens (LF90 only) DEVICE DRIVERS

which selects the display by resolution and colour parameters

gSvgam(mode)

which selects the display by mode number

gSvgac()

which selects the display by resolution and colours set in the GINO configuration

file GINO.CON. Three configuration variables are required to be set:

• SVGAXRES = horizontal resolution (default=640)

• SVGAYRES = vertical resolution (default=480)

• SVGACOLS = number of colours (default=16)

Among the possible combinations for VESA compatible boards are the

following:

Resolution Colours Mode

640 x 400 256 256

640 x 480 256 257

800 x 600 16 258

800 x 600 256 259

1024 x 768 16 260

1024 x 768 256 261

1280 x 1024 16 262

1280 x 1024 256 263

It is possible, however, that either the display board or the monitor cannot be set

in the requested mode. If so, an error message is printed and output is paused.

Pressing a <CR> will continue processing and the board will revert to VGA

mode.

Two additional modes are available as follows:

gSvgam(11) SVGA, 16 colours

gSvgam(12) SVGA, 256 colours

Colours

GINO colour 10 maps onto hardware colour 7 and vice versa. This is so that

GINO colour 10 maps onto the default alpha text colour of white.

757

DEVICE DRIVERS VGA and SVGA PC Screens (LF90 only)

Fonts

1 font is available in multiples of 8 pixels.

Image Handling

Pixel values must be in the same range as the number of colours currently

defined. Note that the same pixel array will occupy a different portion of the

screen depending on the display mode because of the different number and size

of pixels for each mode.

Cursor Types

The pointer is drawn by the hardware in colour numbers 15 for the arrow and 0

for the outline. To change the colour of the pointer, use gDefineRGB() to redefine

either 15 or 0.

NB: As there is no XOR write operation in MVGA mode, the cursor cannot be

erased properly when dragging it across the screen. Therefore an impression of

the cursor is left wherever it is dragged to.

Cursor Control and Key Return

The cursor may be re-positioned using a mouse. The mouse will operate only if a

mouse driver has been installed prior to running the program. The arrow keys can

be used if no mouse driver is loaded. When a mouse is being used the arrows

keys will return their usual key value, but a shifted arrow key will move the

mouse position in an accelerating manner until the arrow key is released.

Any key can be used to signify a cursor hit with the corresponding ASCII value

being returned. The joy-stick buttons return ASCII 84 (T).

Alpha Text

There is no control over the position of Fortran input/output, however

gSetAlphaMode() will affect subsequent calls to the Lisk Output routine

IOutString.

758

VGA and SVGA PC Screens (LF90 only) DEVICE DRIVERS

Device Termination or Suspension

The programmer has the option of termination or suspension when closing down

the graphics output to the screen. The choice is provided through the routines

gCloseDevice() and gSuspendDevice(). The routine gCloseDevice() clears all

graphics output from the screen by returning the PC to TEXT MODE 3, while the

routine gSuspendDevice() leaves the PC in the current graphics mode. In both

cases no further graphics may be output to the screen unless the PC is nominated

again. If a subsequent nomination of the same graphics mode occurs after

suspending the device (with gSuspendDevice()), the new nomination will leave

the screen in the same mode and will leave the hardware colour table unaltered

since the previous nomination. The use of gSuspendDevice() is therefore

recommended prior to a temporary nomination of an output device within a

graphics application.

If the PC has been left in graphics mode, it can be reset using the command

MODE 80 or MODE CO80

Error Messages

REQUESTED SVGA MODE UNAVAILABLE - VGA SELECTED

An SVGA mode has been requested that is unavailable on this board type. VGA

will be selected instead. Try requesting a different resolution or number of

colours in the SVGA call.

ERROR ATTEMPTING TO SET GRAPHICS MODE

An SVGA mode has been detected as available but when attempting to select it,

the board has returned an error code and the program terminates. Try requesting a

different resolution or number of colours in the SVGA call.

Windows (Microsoft) System

Device Nominations (C/C++)

Nomination Routine Description of device

A gMwin(hInst,hPrevInst) Opens a default window

B gMwinw(hInst,hPrevInst,x,y,width,height) Opens a window at the specified position and size

C gMwinao(hInst,hPrevInst,hWnd,hDC) Opens GINO using an existing bitmap

D gMwinp (hInst,hPrevInst) Opens a Windows printer for GINO output

E gMwindp (hInst,hPrevInst) Opens the default Windows printer for GINO output

F
status=gMwinpp(hInst,

hPrevInst,mode,devname,dlen,filename,flen,n,prop)
Printing and Setup control for Windows printers

G gGuiwin() Window API graphics in GINOMENU

759

DEVICE DRIVERS Windows (Microsoft) System

Device Nominations (F90)

Nomination Routine Description of device

A gMwin Opens a default window

B gMwinw(x,y,width,height) Opens a window at the specified position and size

C gMwinao(hWnd,hDC) Opens GINO using an existing bitmap

D gMwinp Opens a Windows printer for GINO output

E gMwindp Opens the default Windows printer for GINO output

F status=gMwinpp(mode,devname,filename,n,prop) Printing and Setup control for Windows printers

G gGuiwin Window API graphics in GINOMENU

Device Characteristics

A B C D E F G

Default Width (of max) 3/4 variable variable Maximum Maximum Maximum variable

Default Height (of max) 3/4 variable variable Maximum Maximum Maximum variable

Image Handling (output,
input, copy)

Yes Yes Yes
Printer

Dependent
Printer

Dependent
Printer

Dependent
Yes

4

Cursor Types* Yes
1

Yes
1

Yes
1

No No No Yes
1

Cursor Actions* Yes
2

Yes
2

Yes
2

No No No Yes
2

Event Types* Yes
3

Yes
3

Yes
3

No No No No

Batch Updates* Yes Yes Yes No No No Yes

Auxiliary Drawing Areas
(up to 250 pairs)

Yes Yes Yes No No No Yes

Window/Device Titling Yes Yes No No No No No

Devices A to G

Maximum Width Variable

Maximum Height Variable

Colours / Pens Screen / printer dependent

Colour Palette <=256 colours = Dynamic, >256 = Direct

Broken Linestyles 3

Drawing Modes GDEFAULT, GERASER, GNOT, GAND, GOR, GXOR and 11-19 hardware specific

Thick Lines Yes

Line Ends 1

Arcs No

Symbols No

Fonts 3 (100,101,102,150,151,170)

Character Sizes Any size (16 pseudo sizes)

Character Angles Any angle

760

Windows (Microsoft) System DEVICE DRIVERS

A B C D E F G

Italic Characters Yes

Polygonal Filling Multi-polygon, solid fill, 1024 vertices

Segments No

Clipping Yes (Windowing only)

Transform/Viewing No

Shading No

Lights No

Texture Mapping No

Mouse Positioning Yes

* when using the gMwinao() nomination routine, the handle to the window must be provided

for these features to be available

Yes1 GHOURGLASS, GDEFAULT, GSMALLCROSS, GLARGECROSS, GX, GPOINTER,

GLARGEX, GSTOP (Colour control only on GLARGECROSS)

Yes2 GPOLYLINE, GRUBBERBAND GRUBBERBOX, GRUBBERSQUARE,

GRUBBERELLIPSE,GRUBBERCIRCLE

Yes3 GKEYPRESS, GLOCATOR, GMOVEMENT, GKEYRELEASE, GRESIZE,

GMOUSEWHEEL

Yes4 Input and copying is only available when the device is operating in direct colour mode (see

gSetColourInfo())

Device Nomination & Usage

Seven nomination routines are available for using Microsoft Windows or

Windows printers. When using the C routines, all except gGuiwin() require the

handle to the current instance of the program (hInst) and, if available, the handle

to the previous instance (hPrevInst) to be passed to the nomination routine as the

first two parameters. In a C program these parameters are available in the

WinMain() procedure. The nomination routines are described below:

gMwin

This nomination routine opens a standard window of 3/4 screen size at a default

position. The device driver will update the window after every five hundred calls,

upon a gFlushGraphics() / gCloseDevice() / gSuspendDevice(), before cursor or

event routines are called, or upon a Windows paint event. The following

examples show the nomination routine in the context of a program:

761

DEVICE DRIVERS Windows (Microsoft) System

#include <windows.h>
#include <gino-c.h>
int PASCAL WinMain(HANDLE hInst,
HANDLE hPrevInst,
LPSTR lpszCmdParam, int nCmdShow)
{

/* Nominate the device */
gMwin(hInst, hPrevInst);

/* Use GINO routines here */

/* Close the device */
gCloseDevice();
}

Program Main
use gino_f90

! Nominate the device
call gMwin

! use GINO routines here

.

! Close the device
call gCloseDevice
Stop
End

gMwinw

gMwinw() is essentially the same as gMwin(), however the size & position of the

window can be specified. x, y is the pixel position of the top left corner of the

window (coordinate (0, 0) is the top left of the screen) and width, height are the

width and the height of the required window in pixels. If width or height are less

than or equal to zero the default size is used. If the requested size is larger than

the screen then the size is automatically set to the same size as the screen.

gMwinao

This nomination routine is most useful when using this driver in a Windows

programming environment, allowing for greater flexibility, but at the loss of

some ease of use. Output can be directed to existing windows and/or device

contexts using Windows handles passed to this routine by argument. Details are

found in the section at the send of this driver description (see page 769).

gMwinp

This nomination routine will use a windows printer for output. A dialog box will

be displayed upon nomination allowing the user to select a printer. The form of a

call to this routine is the same as a call to gMwin().

gMwindp

This nomination routine will use the default windows printer for output. The

form of a call to this routine is the same a call to gMwin() or gMwinp().

Print Status Detection

A function gMwinst() is provided with this driver to detect the status of a print

job, used in conjunction with either gMwinp() or gMwindp(). gMwinst() can

return the following values:

762

Windows (Microsoft) System DEVICE DRIVERS

0 Print job OK

1 Print job cancelled

2 Could not find a default print device

3 Job cancelled while printing

status=gMwinpp

This nomination provides comprehensive control over the printer setup and

printing of GINO output through the Windows printer interface. The additional

arguments are:

mode
-2 Return current printer properties (returns status > 0)

-1 Restore default printer properties and return them
(returns status > 0)

0 Open Printer Setup Window (returns status > 0)

1 Restore default printer properties and print (same as
gMwindp())

2 Open Printer Dialogue and print (same as gMwinp())

3 Print using current/default printer

devname
Printer Device Name (input/output)

dlen
Length of devname (C/C++ only)

filename
Printer Output File name (in place of device) : used when PrinttoFile property = 1 in modes 2
and 3. If filename is blank when the PrinttoFile property is set, a file of the name
<application>.prn is generated.

flen
Length of filename (C/C++ only)

n
Number of elements in prop array (rounded down to nearest even number)

prop
Integer array of pairs of <property> and <setting> (see table below). The setting values are
used to change the current printer properties in modes 0, 2 and 3 but will be returned in all
modes. Thus if prop contains the values: 7,2,1,2 the printer properties will be changed to
landscape orientation and print 2 copies. If mode = -2 and prop contains the values: 2,0,8,0 the
(device name,) paper size and print quality of the current printer will be returned. If prop[0]<=0
the first n/2 of the property flags and their values are returned.

Property Property Description Settings

1 No. of copies Number of copies

763

DEVICE DRIVERS Windows (Microsoft) System

2
Paper size

(see Windows wingdi.h)

= 1, Letter
= 5, Legal
= 9, A4
= 256, User defined

3 Paper length Length in tenths of mm

4 Paper width Width in tenths of mm

5
Paper Source

(see Windows wingdi.h)

= 1, Default (Upper)
= 2, Lower
= 4, Manual
= 5, Envelope

6 Scale Factor Scale/100 (ie 50 = half size)

7 Orientation
= 1, Portrait
= 2, Landscape

8 DPI/Quality

> 0, DPI
= -1, Draft
= -2, Low
= -3, Medium
= -4, High Quality

9 Colour
= 1, Monochrome
= 2, Colour

10 Duplex
= 1, Simple
= 2, Duplex
= 3, Vertical

11 TTopt
= 1, Bitmap
= 2, Download (HP printers)
= 3, Substitute (PostScript printers)

20 PrinttoFile

= -2, Disable and hide Print to File toggle
= -1, Disable Print to File toggle
= 0, Leave toggle as is (default)
= 1, Select toggle and use filename

status
0 Printing in progress

1 Print Cancelled or not required

2 No default/current printer available

Return Status - If status > 0 the application should immediately call gCloseDevice() and
re-nominate another GINO device (eg. gMwin() or gMwinw()).

gGuiwin

This nomination routine is only used in GINOMENU applications, where

graphics frames are required to display GINO graphics in a Windows

environment. Further details are found in the GINOMENU User Guide.

764

Windows (Microsoft) System DEVICE DRIVERS

Window Size

If the gMwin() or gMwinw() routines have been used to nominate the device any

changes the user of the application makes to the window size during operation

will be handled by the driver. The driver will ensure that the picture is updated by

redrawing from the backing store and scroll bars added to the window, if needed.

However GINO is not able to take any further action until after gNewDrawing()

is called. At this point the driver will resize the drawing limits to fit the window

and these can be enquired by the application using the routine

gEnqDrawingLimits() if the user wishes to re-scale the picture.

If the window size is changed by the user, this takes priority over the

programmers request for a change through gSetDrawingLimits().

Window Title

The default window title of a GINO application is a string composed of the

GINO version and license owner. This can be superceded in the following order

of precedence:

1) GINO config variable MWINTITLE

2) System environment variable MWINTITLE

3) Application call to gSetDeviceTitle()

Colour Palette

When running a GINO application in one of the Windows 8bit (256) colour

modes, the driver will, by default, create and use a dynamic colour palette

(ndt=3) and the number of colours is set to the number of palette entries that

Windows reports as being available. In this mode, an exact colour match may not

always be possible as Windows will use the nearest match when no more palette

entries are available. There may also be some re-painting problems when other

high-colour applications are running (see below).

When running in one of the 16bit, 24bit or 32bit colour modes (>256 colours),

the driver will operate in direct mode (ndt=4), but an internal GINO palette with

1024 entries is still available. In this mode, gDefineRGB() can still be used but

will have no effect on graphics already drawn.

765

DEVICE DRIVERS Windows (Microsoft) System

An application may alter this default situation by using the routine

gSetColourInfo() to either reduce the number of palette entries (in dynamic

colour mode) or change to another colour mode which may give better results

when running with other applications. The routine gSetColourInfo() may also be

used to increase the number of colours with printing devices where Windows

reports that there is only one colour available but the printer is capable of

producing greyscales.

In all modes, changes to colour 0 (GBACKGROUND) may not be seen unless

followed by a call to gNewDrawing().

Drawing Modes

In addition to the GINO drawing modes 6-10, this driver implements a further

nine pen types:

11 The pen is always black [Output = Black]

12 The pen is always white [Output = White]

13 The inverse of the GINO AND pen [Output = ~(Pen & Screen)]

14 The inverse of the pen colour [Output = ~Pen]

15 The combination of colours common to the pen and the inverse of the screen[Output =

(~Screen) & Pen]

16 A combination of the screen and the inverse of the pen [Output = (~Pen) | Screen]

17 The inverse of the GINO OR pen [Output = ~(Pen | Screen)]

18 A combination of the pen & the inverse of the screen [Output = (~Screen) | Pen]

19 The inverse of the GINO XOR pen [Output = ~(Pen ^ Screen)]

Note that the effect of the different drawing modes varies according to the

Windows screen mode that the application is operating. When the device is in

indexed mode (ie. 256 colours), the resulting colour is determined from the bit

operation on the colour indices of the pen and the screen, whereas when

Windows is operating in Direct (True) colour mode (16bit, 24bit etc), the

resulting colour is determined by the bit operation on the RGB values of the pen

and screen.

Fonts

The default font used by the MWIN driver is a fixed pitch, modern font which

normally maps to Courier. Other fonts available are selected by number using

gSetCharFont() according to the following table:

Font Number Description

766

Windows (Microsoft) System DEVICE DRIVERS

0,100 Modern (fixed-pitch)

101 Swiss

102 Roman

150 Arial

151 Times New Roman

170 Symbol

Graphics Cursor

When gGetCursorEvent() is called, the input focus of the device is set to be the

graphics window. When the key has been pressed, the focus is returned to the

previous window before gGetCursorEvent() was called. This operation is not

supported when using the gMwinao() nomination routine.

Events

The following event types can be set through the routine gAddEventType(

intype): where intype can be one of the following:

GKEYPRESS Key or Mouse button press

GLOCATOR Screen position and Key/Mouse button press

GMOVEMENT Pointer/Mouse movement

GKEYRELEASE Key or Mouse button release

GRESIZE Window resize

GMOUSEWHEEL Mouse wheel movement

Multiple event types may be set concurrently. When the device has been

nominated by gMwin() or gMwinw(), events are requested with the routine

gWaitForEvent() with the resulting data for the event being returned through the

routine gGetEventRecord() (see page 447).

Information concerning events in conjunction with the gMwinao() nomination

routine are described in the Windows programming environment section below

(see page 769). Events are only supported if using the gMwinao() nomination

routine with a window handle.

767

DEVICE DRIVERS Windows (Microsoft) System

Device Termination

When using either gMwin() or gMwinw(), the action at device termination is to

halt GINO graphics and close the graphics window if gCloseDevice() has been

called. If gSuspendDevice() has been called, the graphics window will remain on

the screen and the program will pause at the call to gCloseGino(). The dialogue

window will be closed at the same time as GINO is closed.

When using gMwinao(), at device termination it is the application programmers

responsibility to release the bitmap device context.

Error Handling

When a GINO or other GINO library generates an error or warning message an

error window is created and displayed at the bottom left of the screen. All

subsequent error/warning messages are printed in this window. The user can alter

the initial state of this window through the configuration variable NFERTR set in

the configuration file GINO.CON as follows:

NFERTR
= 0 Visible(Default)

= 1 Iconized

= 2 Hidden

> 2 Errors are sent to a file “APPLICATION”.ERR

Window Visibility

The current graphics and dialogue windows can be made visible/invisible using

the routines gSetGraphicsVis() and gSetDialogueVis():

gSetGraphicsVis(gravis) Make graphics window visible/invisible

gSetDialogueVis(diavis) Make dialogue window visible/invisible

where gravis & diavis can be either GINVISIBLE or GVISIBLE to hide or show

the window.

The routine gSetGraphicsVis() will have no effect when the device has been

nominated by using the gMwinao() routine. Calls to gSetDialogueVis() apply in

all cases.

Application Icon

The GINO icon will be assigned to all windows created through these nomination

routines. An application can replace this with one of their choosing by adding an

icon resource of the name “GinoIcon” to their application. A typical resource file

should contain the line:

768

Windows (Microsoft) System DEVICE DRIVERS

GinoIcon ICON myapp.ico

where myapp.ico is the name of the user supplied application icon file.

Interacting with other Windows Applications

GINO graphics sent to the screen can be copied onto the Windows clipboard by

pressing <ALT> <PRINT SCREEN>. Transfer of graphics to other applications

via OLE or DDE is not supported.

Error Messages

The WINDOWS driver may at one time or another popup a message box. These

messages are mainly informational, but may effect the drivers behaviour. The

messages are described below:

UNABLE TO CREATE A PALETTE. SOME COLOURS MAY LOOK

WRONG.

When Windows memory or resources are low the WINDOWS driver will not be

able to create an internal palette of colours. The program will still function,

however the colours may not match the ones defined. Resolve this problem by

closing one or more applications & restarting the GINO application. If the

problem still persists, try restarting windows.

UNABLE TO CREATE THE MESSAGE WINDOW

Sometimes when an application has been improperly closed the dialogue window

will still exist in memory, although the dialogue window may not be visible. The

WINDOWS driver will not be able to use this instance or create a new instance,

hence there will not be a dialogue window. Reasons for this can be programs

crashing or being terminated part way through (i.e. by a debugger). The only

solution to this problem is to restart windows.

Using Windows Driver in Windows Programming Environment

The GINO Windows driver can be used to direct GINO output to windows or

device contexts that have been created through direct or indirect use of Windows

API routines in any programming language. This enables GINO to be used in a

wide variety of Windows programming environments or high level GUI systems

as long as the user has access to the handle of the relevent object where the

graphics is to be drawn. This is achieved by using the gMwinao() nomination

routine and passing the handle(s) via its arguments.

769

DEVICE DRIVERS Windows (Microsoft) System

There are three ways that this nomination routine can be called depending on the

usage or handle(s) available:

i) Window handle only

gMwinao(hInst, hPrevInst,
hWnd,NULL);

call gMwinao(hWnd,0)

When only the window handle of an existing window has been provided, the

device driver will create a backing store (bitmap) and periodically update the

window from the backing store (after every one hundred device driver calls).

Windows paint events will not be handled automatically unless the

mwinDefWindowProc() routine is used as the default window procedure, the next

section (Handling Windows Events) explains how to achieve this.

Normally the whole window is used for drawing by the device driver, however if

the window is resized the size of the drawing area will not change to fit the

window until the device is next cleared with a call to gNewDrawing().

ii) Window and device context handle

gMwinao(hInst, hPrevInst,
hWnd,hDC);

call gMwinao(hWnd,hDC)

When both the handle to the window and the handle to the device context are

provided, the device driver will draw to the device context and periodically

update the window (every one hundred device driver calls). See the next section

(Handling Windows Events) for handling of Windows paint events.

The size of the bitmap in the device context provides the size of the drawing area.

The drawing area will be displayed in the top left hand corner of the window.

However, unlike the previous case a call to gNewDrawing() will not resize the

drawing area to fit the window.

iii) gMwinao(hInst, hPrevInst, NULL, hDC)

gMwinao(hInst, hPrevInst,
NULL,hDC);

call gMwinao(0,hDC)

770

Windows (Microsoft) System DEVICE DRIVERS

If only the handle to a device context is provided the device driver will draw to

this. The device driver will not be able to update the window, this must be

handled by the applications’s window procedure. The following section

(Handling Window Events) explains how to handle updates in this case.

The best and most obvious place to nominate the Windows device, in this

environment, is when processing the Windows WM_CREATE message in the

application window procedure associated with the window. Similarly the device

should be closed at the WM_DESTROY message using the GINO routne

gCloseDevice(). Where a bitmap is created by the application for the purposes of

drawing to, this too should be deleted at the WM_DESTROY message. See

below for language specific programming examples.

Drawing to the desired window or device context can take place in one of three

locations within such an application.

i) When creating the window - where a static picture is required this can be

drawn immediately after nominating the device as long as repairing of this is

catered for through automatic or manual handling of the WM_PAINT message.

ii) Within the WM_PAINT message code - although more expensive in

processing time, utilizing a redraw function at this point ensures that the graphics

is always up-to-date.

iii) Elsewhere in the application - graphics can be built up and/or modified at any

point within an application again as long as repairing of this is catered for

through automatic or manual handling of the WM_PAINT message.

The drawing of any graphics should be terminated by a call to gFlushGraphics()

which will force an update of the window through a Window pait message

(WM_PAINT).

Handling Windows Events (Visual Fortran only)

Where a Visual Fortran user has written code to handle windows and menu

events using the Windows API directly, the Windows driver can be used to add

graphics using the first of the gMwinao() cases described above. If the

application wishes GINO to handle any Windows events the functions

mwinDefWindowProc() or mwinDefMDIChildProc() should be used as shown in

the skeleton window handling procedure below.

771

DEVICE DRIVERS Windows (Microsoft) System

integer function MainWndProc(hWnd, mesg, wParam, lParam)

use gdi32
use user32
use gino_f90
integer *4 hWnd, mesg, wParam, lParam

interface
integer*4 function mwinDefWindowProc(hWnd, mesg, wParam, lParam)

!DEC$ ATTTRIBUTES C,ALIAS : ‘_mwinDefWindowProc’ ::
mwinDefWindowProc

integer*4 hWnd, mesg, wParam, lParam
end function
end interface

select case (mesg)
case (WM_CREATE)

call gMwinao(hWnd, 0)
return

case (WM_DESTROY)
call gCloseDevice
call gCloseGino
call PostQuitMessage(0)
MainWndProc = 0
return

case DEFAULT
MainWndProc = mwinDefWindowProc(hWnd, mesg, wParam, lParam)

end select
end

Users are however recommended to use the GINOMENU library to greatly ease

the task of creating Fortran GUI applications.

Handling Windows Events (C/C++ only)

The nomination routines gMwin() and gMwinw() use an internal window

procedure provided by the device driver and automatically handle all Windows

events. Programs should nominate the device, draw the graphics and then

suspend or close the device, there is no need for any event handling code.

The gMwinao() nomination routine allows for the program, rather than the device

driver, to control the window procedure. For the device driver to handle Windows

events they must be passed on to the device driver, this is accomplished by

calling mwinDefWindowProc() or mwinDefMDIChildProc() in the window

procedure. The mwinDefWindowProc() routine takes the place of

DefWindowProc() when using a standard window and mwinDefMDIChildProc()

replaces DefMDIChildProc() when using the multiple document interface. The

following example shows mwinDefWindowProc() in use:

772

Windows (Microsoft) System DEVICE DRIVERS

/* The minimum window procedure for a GINO program using gMwinao()
*/
long FAR PASCAL MainWndProc(HWND hWnd, UINT message,
UINT wParam, LONG lParam)
{

switch(message) {
case WM_CREATE:

/* Nominate the current window as the output device */
gMwinao(hInst, hPrevInst, hWnd, NULL);
gNewDrawing();
return 0;

case WM_DESTROY :
/* Close device */
gCloseDevice();
PostQuitMessage(0);
return 0;

}

/* Pass on unhandled messages (such as WM_PAINT) */
return mwinDefWindowProc(hWnd, message, wParam, lParam);

}

The above example will handle window repaints when the gMwinao()

nomination routine provides the driver with a handle to a window (when the

hWnd parameter is not NULL). However, when the gMwinao() nomination

routine does not provide the driver with a handle to a window the device driver

cannot keep the window updated. In this case it is the application programmers

responsibility to update the window using the contents of the device context. The

following example shows a complete C program on how to accomplish this:

#include <windows.h>
#include <gino-c.h>

define ExportProc(x) (x)

int mwinRegisterClasses(void);
long WINAPI mwinProc(HWND, UINT, UINT, LONG);

HINSTANCE hInst, hPrevInst;
HDC newdc;
HBITMAP bits,oldbits;
int quit=0;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)

{
HWND hwnd;
MSG msg;

hInst=hInstance;
hPrevInst=hPrevInstance;

mwinRegisterClasses();

hwnd = CreateWindow("GINOProgram","Mwinao example",
WS_OVERLAPPEDWINDOW,0,10,640,480,
NULL,NULL,hInstance,NULL);

773

DEVICE DRIVERS Windows (Microsoft) System

ShowWindow(hwnd,SW_RESTORE);

while (!quit) {
GetMessage(&msg, NULL, 0, 0);
TranslateMessage(&msg);
DispatchMessage(&msg);

}
return 0;

}

int mwinRegisterClasses(void)
{

WNDCLASS wndclass;

/* Load The GINO Icon */
if (!hPrevInst) {

wndclass.style = CS_HREDRAW | CS_VREDRAW |
CS_SAVEBITS | CS_CLASSDC;

wndclass.lpfnWndProc = ExportProc(mwinProc);
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInst;
wndclass.hIcon = NULL;
wndclass.hCursor = NULL;
wndclass.hbrBackground = GetStockObject(WHITE_BRUSH);
wndclass.lpszMenuName = NULL;/* No class menu */
wndclass.lpszClassName = "GINOProgram";
return (RegisterClass(&wndclass));

} else {
return 1;

}
}

/* The main window procedure */
long CALLBACK mwinProc(HWND hwnd, UINT message, UINT wParam,

LONG lParam) {
HDC hdc;
PAINTSTRUCT ps;
GLIMIT limits = {10.0,50.0,10.0,50.0};

switch (message) {

/* Create window items */
case WM_CREATE:

hdc = GetDC(hwnd);
newdc = CreateCompatibleDC(hdc);
bits = CreateCompatibleBitmap(hdc,630,450);
oldbits = SelectObject(newdc, bits);
ReleaseDC(hwnd, hdc);

gMwinao(hInst, hPrevInst, NULL, newdc);

gNewDrawing();

gFillRect(GSOLID,2,&limits);

gSetLineColour(GBLUE);
gMoveTo2D(0.0,0.0);
gDrawLineTo2D(50.0,50.0);
gFlushGraphics();
return 0;

774

Windows (Microsoft) System DEVICE DRIVERS

/* Repaint client area */
case WM_PAINT:

hdc = BeginPaint (hwnd, &ps);
BitBlt(hdc,0,0,630,450,newdc,0,0,SRCCOPY);
EndPaint (hwnd, &ps);
return 0;

/* Window has been killed */
case WM_DESTROY :

gCloseDevice();
gCloseGino();

SelectObject(newdc, oldbits);
DeleteObject(bits);
DeleteDC(newdc);
PostQuitMessage(0);
quit=1;
return 0;

}

/* Pass on unhandled events */
return mwinDefWindowProc(hWnd, message, wParam, lParam);

}

NOTE: The Windows message number 0x7FFF is reserved for use by this driver.

Your program should not use this message number for its own purposes.

When using the gMwinao() nomination routine with GINO events, the device

must be nominated with a handle to a window. Events do not need to be

requested with gWaitForEvent(), instead a WM_GINOEVENT message should

be added to the event loop & processed in a similar way to the

WM_COMMAND message. The word parameter (wParam) passed to the

window procedure will contain the GINO event type. The following extract

shows a C program with a button to start events and a button to stop the events.

When the events are enabled a line will be drawn following the cursor:

/* A window procedure for a GINO program using GINO events */
long FAR PASCAL MainWndProc(HWND hWnd, UINT message,
UINT wParam, LONG lParam)
{

GEVEREC event;
switch(message) {
case WM_CREATE:

/* Create a start and a stop button */
CreateWindow(“button”, “Start”,

WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON, 0, 0, 60, 30,
hWnd, (HMENU)IDM_STARTEVENTS, hInst, NULL);

CreateWindow(“button”, “End”,
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON, 60, 0, 60, 30,
hWnd, (HMENU)IDM_ENDEVENTS, hInst, NULL);

/* Nominate the current window as the output device */
gMwinao(hInst, hPrevInst, hWnd, NULL);
gNewDrawing();
return 0;

775

DEVICE DRIVERS Windows (Microsoft) System

case WM_COMMAND:
switch(wParam) {
/* Switch on events */
case IDM_STARTEVENTS:

gAddEventType(GMOVEMENT);
break;

/* Switch off events */
case IDM_ENDEVENTS:

gRemoveEventType(GMOVEMENT);
break;

default:
break;

}
return 0;

case WM_GINOEVENT:
gGetEventRecord(wParam,&event);
switch(wParam) {
/* If a GMOVEMENT event then draw a line */
case GMOVEMENT:

gDrawLineTo2D(event.pos.x, event.pos.y);
gFlushGraphics();
break;

default:
break;

}
return 0;

case WM_DESTROY:
/* Close device */
gCloseDevice();
PostQuitMessage(0);
return 0;

}
/* Pass on unhandled messages (such as WM_PAINT) */
return mwinDefWindowProc(hWnd, message, wParam, lParam);

}

Using Windows driver in a Visual Basic Environment

GINO can make good use of the Visual Basic picture box control for its output.

Provided the AutoRedraw property of the picture control is set to True there is no

need to handle the paint events as they will be handled automatically by Visual

Basic. However, the picture controls Refresh method will need to be called after

drawing if an immediate update is required.

The best place to nominate a device is in the forms load procedure. The handle to

the programs instance is provided by the routine gGetHinstance().The following

example nominates a picture box control, called Picture1, as the output device.

The Picture1 object must already exist in the form:

Sub Form_Load ()
Dim hInst As Long
gMwinao 0, Picture1.hDC

End Sub

The most appropriate place to close the device is in the forms unload procedure:

776

Windows (Microsoft) System DEVICE DRIVERS

Sub Form_Unload (Cancel As Integer)
gCloseDevice

End Sub

After drawing to the picture box using GINO routines a call must be made to the

objects Refresh method, the following example will draw a square in the

nominated picture box when the button Command1 is pressed (clicked), but will

not be displayed until Picture1.Refresh is called:

Sub Command1_Click ()
gMoveTo2D 10, 10
gDrawLineTo2D 110, 10
gDrawLineTo2D 110, 110
gDrawLineTo2D 10, 110
gDrawLineTo2D 10, 10
Picture1.Refresh

End Sub

Alternatively a complete program can be contained in the form as follows:

Private Sub Form_Load()
Dim hInst As Long
Dim I As Long
Dim XPAP As Single
Dim YPAP As Single
Dim ipap As Long
Dim paper As GDIM
Dim papertype As Long

gOpenGino
Rem Open The GINO Device
gMWINAO 0, Picture1.hdc
gEnqDrawingLimits paper, papertype
Rem Colours
gDefineRGB 0, 1#, 0#, 0.75
gNewDrawing
gSetLineColour 4
gMoveTo2D 10#, 10#
gDrawLineTo2D paper.XPAP / 2#, paper.YPAP / 2#
ggAddGrid GNONE, GTICKS, GANNOTATION, GANNOTATION
gCloseDevice
gCloseGino
End Sub

All calls to GINO routines have to be made via a Declarations Module which

details the interface between VB and the GINO DLL. Declarations are provided

for every GINO, GINOGRAF and GINOSURF routine in the files *vbd.bas, but

a subset just for the above program would look as follows:

777

DEVICE DRIVERS Windows (Microsoft) System

Attribute VB_Name = “Module1"
‘ Direct GINO declarations
Declare Sub gOpenGino Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GOPENGINO@0" ()
Declare Sub gMWINAO Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GMWINAO@8" (ByRef hwnd As Long, ByRef hdc As
Long)
Declare Sub gEnqDrawingLimits Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GENQDRAWINGLIMITS@8" (ByRef paper As GDIM, ByRef
papertype As Long)
Declare Sub gCloseDevice Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GCLOSEDEVICE@0" ()
Declare Sub gCloseGino Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GCLOSEGINO@0" ()
Declare Sub gMoveTo2D Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GMOVETO2D@8" (ByRef X As Single, ByRef Y As
Single)
Declare Sub gDrawLineTo2D Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GDRAWLINETO2D@8" (ByRef X As Single, ByRef Y As
Single)
Declare Sub gDefineRGB Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GDEFINERGB@16" (ByRef I As Long, ByRef X As
Single, ByRef Y As Single, ByRef Z As Single)
Declare Sub gSetLineColour Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GSETLINECOLOUR@4" (ByRef I As Long)
Declare Sub gNewDrawing Lib ”ginlibdg.dll" Alias
“_GINO_F90_mp_GNEWDRAWING@0" ()
Declare Sub ggAddGrid Lib ”ggrafdg.dll" Alias
“_GRAF_F90_mp_GGADDGRID@16" (ByRef style1 As Long, ByRef style2
As Long, ByRef anx As Long, ByRef anyy As Long)

To send the graphics to a printer, either the GINO routine gMwinp can be called

and the graphics calls would need to be called again, or you can print directly

from the Picture1 control as follows:

Private Sub Command4_Click()
Printer.PaintPicture Picture1.Image, 0 0
Printer.EndDoc
End Sub

Windows OpenGL (Microsoft) System

Device Nominations (C/C++)

Nomination Routine Description of device

A gWogl(hInst,hPrevInst) Opens a default window

B gWoglw(hInst,hPrevInst,x,y,width,height) Opens a window at the specified position and size

C gWoglao(hInst,hPrevInst,hWnd,hDC) Opens GINO using an existing bitmap

778

Windows OpenGL (Microsoft) System DEVICE DRIVERS

D gWoglp (hInst,hPrevInst) Opens a Windows printer for GINO output

E gWogldp (hInst,hPrevInst) Opens the default Windows printer for GINO output

F
status=gWoglpp(hInst,

hPrevInst,mode,devname,dlen,filename,flen,n,prop)
Printing and Setup control for Windows printers

G gOglwin() OpenGL graphics in GINOMENU

Device Nominations (F90)

Nomination Routine Description of device

A gWogl Opens a default window

B gWoglw(x,y,width,height) Opens a window at the specified position and size

C gWoglao(hWnd,hDC) Opens GINO using an existing bitmap

D gWoglp Opens a Windows printer for GINO output

E gWogldp Opens the default Windows printer for GINO output

F status=gWoglpp(mode,devname,filename,n,prop) Printing and Setup control for Windows printers

G gOglwin OpenGL graphics in GINOMENU

Device Characteristics

A B C D E F G

Default Width (of max) 3/4 variable variable Maximum Maximum Maximum variable

Default Height (of max) 3/4 variable variable Maximum Maximum Maximum variable

Image Handling (output,
input, copy)

Yes Yes Yes
Printer

Dependent
Printer

Dependent
Printer

Dependent
Yes

Cursor Types* Yes
1

Yes
1

Yes
1

No No No Yes
1

Cursor Actions* Yes
2

Yes
2

Yes
2

No No No Yes
2

Event Types* Yes
3

Yes
3

Yes
3

No No No No

Batch Updates* Yes Yes Yes No No No Yes

Auxiliary Drawing Areas
(up to 250 pairs)

Yes Yes Yes No No No Yes

Window/Device Titling Yes Yes No No No No No

Devices A to G

Maximum Width Variable

Maximum Height Variable

Colours / Pens Screen / printer dependent

Colour Palette Direct

Broken Linestyles 16

Drawing Modes None

Thick Lines Yes

Line Ends 1

Arcs No

779

DEVICE DRIVERS Windows OpenGL (Microsoft) System

A B C D E F G

Symbols No

Fonts 3 (100,101,102,150,151,170)

Character Sizes Any size (16 pseudo sizes)

Character Angles Any angle

Italic Characters Yes

Polygonal Filling Multi-polygon, solid fill, 1024 vertices

Segments Yes

Clipping Yes (Windowing only)

Transform/Viewing Yes

Shading Yes

Lights Yes

Texture Mapping Yes

Mouse Positioning Yes

* when using the gWoglao() nomination routine, the handle to the window must be provided

for these features to be available

Yes1 GHOURGLASS, GDEFAULT, GSMALLCROSS, GLARGECROSS, GX, GPOINTER,

GLARGEX, GSTOP (Colour control only on GLARGECROSS)

Yes2 GPOLYLINE, GRUBBERBAND GRUBBERBOX, GRUBBERSQUARE,

GRUBBERELLIPSE,GRUBBERCIRCLE

Yes3 GKEYPRESS, GLOCATOR, GMOVEMENT, GKEYRELEASE, GRESIZE,

GMOUSEWHEEL

Device Nomination & Usage

The Windows OpenGL driver operates under any of the Microsoft Windows

environments (Windows 95,98, NT and 2000) using a combination of the

Windows API and the OpenGL API to provide a fully functional 3D GINO

driver. The driver requires access to OPENGL32.DLL and GLU32.DLL.

Many of the features provided by this driver are the same as the standard

Windows driver to which several sections below will refer.

Seven nomination routines are available for using the Windows OpenGL driver.

When using the C routines, all except gOglwin() require the handle to the current

instance of the program (hInst) and, if available, the handle to the previous

instance (hPrevInst) to be passed to the nomination routine as the first two

parameters. In a C program these parameters are available in the WinMain()

procedure. The nomination routines are described below:

780

Windows OpenGL (Microsoft) System DEVICE DRIVERS

gWogl

This nomination routine opens a standard window of 3/4 screen size at a default

position. The device driver will only update the screen upon a call to

gFlushGraphics() / gCloseDevice() / gSuspendDevice(), before cursor or event

routines are called, or upon a Windows paint event. The following examples

show the nomination routine in the context of a program:

#include <windows.h>
#include <gino-c.h>
int PASCAL WinMain(HANDLE hInst,
HANDLE hPrevInst,
LPSTR lpszCmdParam, int nCmdShow)
{

/* Nominate the device */
gWogl(hInst, hPrevInst);

/* Use GINO routines here */

/* Close the device */
gCloseDevice();
}

Program Main
use gino_f90

! Nominate the device
call gWogl

! use GINO routines here

.

! Close the device
call gCloseDevice
Stop
End

gWoglw

gWoglw() is essentially the same as gWogl(), however the size & position of the

window can be specified. x, y is the pixel position of the top left corner of the

window (coordinate (0, 0) is the top left of the screen) and width, height are the

width and the height of the required window in pixels. If width or height are less

than or equal to zero the default size is used. If the requested size is larger than

the screen then the size is automatically set to the same size as the screen.

gWoglao

This nomination routine allows for greater flexibility, but at the loss of some ease

of use. Existing windows and device contexts can be used for output enabling

GINO to send its output to other applications, however a device context should

always contain a valid bitmap. Usage of this routine in F90, C and Visual Basic

is the same as the gMwinao() routine in the standard Windows driver. Refer to

this section for further information (see page 769).

gWoglp

This nomination routine will use a windows printer for output. A dialog box will

be displayed upon nomination allowing the user to select a printer. The form of a

call to this routine is the same as a call to gWogl().

781

DEVICE DRIVERS Windows OpenGL (Microsoft) System

gWogldp

This nomination routine will use the default windows printer for output. The

form of a call to this routine is the same a call to gWogl() or gWoglp().

Print Status Detection

A function gWoglst() is provided with this driver to detect the status of a print

job, used in conjunction with either gWoglp() or gWogldp(). The function

gWoglst() can return the following values:

0 Print job OK

1 Print job cancelled

2 Could not find a default print device

3 Job cancelled while printing

status=gWoglpp

This nomination provides comprehensive control over the printer setup and

printing of GINO output through OpenGL and the Windows printer interface.

The additional arguments are:

mode

-2 Return current printer properties (returns status > 0)

-1 Restore default printer properties and return them
(returns status > 0)

0 Open Printer Setup Window (returns status > 0)

1 Restore default printer properties and print (same as
gWogldp())

2 Open Printer Dialogue and print (same as gWoglp())

3 Print using current/default printer

4 Print to BMP file (default = 800x600 pixels)

devname

Printer Device Name (input/output)

dlen

Length of devname (C/C++ only)

filename

Printer Output File name (in place of device) : used when PrinttoFile property = 1 in modes 2
and 3. If filename is blank when the PrinttoFile property is set, a file of the name
<application>.prn is generated. Also used in mode 4 for BMP filename. In this mode, if the
filename is blank <application>.bmp is generated.

782

Windows OpenGL (Microsoft) System DEVICE DRIVERS

flen

Length of filename (C/C++ only)

n

Number of elements in prop array (rounded down to nearest even number)

prop

Integer array of pairs of <property> and <setting> (see table below). The setting values are
used to change the current printer properties in modes 0, 2 and 3 but will be returned in all
modes. Thus if prop contains the values: 7,2,1,2 the printer properties will be changed to
landscape orientation and print 2 copies. If mode = -2 and prop contains the values: 2,0,8,0 the
(device name,) paper size and print quality of the current printer will be returned. If prop[0]<=0
the first n/2 of the property flags and their values are returned.

Property Property Description Settings

1 No. of copies Number of copies

2
Paper size

(see Windows print.h)

= 1, Letter
= 5, Legal
= 9, A4
= 256, User defined

3 Paper length
Output length (in tenths of mm for printers or pixels for BMP
files)

4 Paper width
Output width (in tenths of mm for printers or pixels for BMP
files)

5
Paper Source

(see Windows print.h)

= 1, Default (Upper)
= 2, Lower
= 4, Manual
= 5, Envelope

6 Scale Factor Scale/100 (ie 50 = half size)

7 Orientation
= 1, Portrait
= 2, Landscape

8 DPI/Quality

> 0, DPI
= -1, Draft
= -2, Low
= -3, Medium
= -4, High Quality

9 Colour
= 1, Monochrome
= 2, Colour

10 Duplex
= 1, Simple
= 2, Duplex
= 3, Vertical

11 TTopt
= 1, Bitmap
= 2, Download (HP printers)
= 3, Substitute (PostScript printers)

20 PrinttoFile

= -2, Disable and hide Print to File toggle
= -1, Disable Print to File toggle
= 0, Leave toggle as is (default)
= 1, Select toggle and use filename

status

0 Printing in progress

1 Print Cancelled or not required

783

DEVICE DRIVERS Windows OpenGL (Microsoft) System

2 No default/current printer available

Return Status - If status > 0 the application should immediately call gCloseDevice() and
re-nominate another GINO device (eg. gWogl() or gWoglw())

gOglwin

This nomination routine is only used in GINOMENU applications, where

graphics frames are required to display GINO graphics in a Windows OpenGL

environment. Further details are found in the GINOMENU User Guide.

Window Size

If the gWogl() or gWoglw() routines have been used to nominate the device any

changes the user of the application makes to the window size during operation

will be handled by the driver. The driver will ensure that the picture is updated by

redrawing from the backing store and scroll bars added to the window, if needed.

However GINO is not able to take any further action until after gNewDrawing()

is called. At this point the driver will resize the drawing limits to fit the window

and these can be enquired by the application using the routine

gEnqDrawingLimits() if the user wishes to re-scale the picture.

If the window size is changed by the user, this takes priority over the

programmers request for a change through gSetDrawingLimits().

Window Title

The default window title of a GINO application is a string composed of the

GINO version and license owner. This can be superceded in the following order

of precedence:

1) GINO config variable WOGLTITLE

2) System environment variable WOGLTITLE

3) Application call to gSetDeviceTitle()

Depth Buffer

The accuracy of hidden surface removal depends on the size of depth buffer in

the OpenGL driver. By default this is set to be 32 bits (giving the highest quality

output), but some graphics hardware will operate more efficiently using a smaller

depth buffer (at the cost of lower quality output). The OPENGL32 DLL that is

used by the WOGL driver always provides a 32bit option, but some hardware

enhanced modes only work with 24bit or even 16bit depth buffers.

784

Windows OpenGL (Microsoft) System DEVICE DRIVERS

The default size of the depth buffer can be modified using the environment

variable or GINO config variable, WOGLDEPTH.

Colour Palette

This driver only operates when windows is running in one of the 16bit, 24bit or

32bit colour modes (>256 colours). The driver is therefore always operating in

direct mode (ndt=4), but an internal GINO palette with 1024 entries is still

available. In this mode, gDefineRGB() can still be used but will have no effect on

graphics already drawn.

Changes to colour 0 (the background colour) may not be seen unless followed by

a call to gNewDrawing().

Fonts

The default font used by the Wogl driver is a fixed pitch, modern font which

normally maps to Courier. Other fonts available are selected by number using

gSetCharFont() according to the following table:

Font Number Description

0,100 Modern (fixed-pitch)

101 Swiss

102 Roman

150 Arial

151 Times New Roman

170 Symbol

Segment Facilities

The Windows OpenGL driver supports some of GINO’s segment facilities in line

with the OpenGL Display List facilities. Thus the following segment routines

operate through this driver:

gOpenSeg() Open segment

gCloseSeg() Close segment

gDrawSeg() Draw segment

gDeleteSeg() Delete segment

gEnqSegHit() Enquire segment at hit point

gInsertSegRef() Insert reference to segment

gEnqSegAttribs() Enquire segment attributes (existence only)

785

DEVICE DRIVERS Windows OpenGL (Microsoft) System

Note that a segment must exist prior to making a reference to it using

gInsertSegRef() and segments are always visible and hit sensitive.

N.B. As hardware fonts are stored internally as segments by the WOGL driver,

any change to the current character/font settings will close the currently opened

segment. Therefore it is essential that the required character/font attributes are set

before a GINO segment is opened and are not altered within a segment.

Graphics Cursor

When gGetCursorEvent() is called, the input focus of the device is set to be the

graphics window. When the key has been pressed, the focus is returned to the

previous window before gGetCursorEvent() was called. This operation is not

supported when using the gWoglao() nomination routine.

Events

The following event types can be set through the routine gAddEventType(intype)

where intype can be one of the following:

GKEYPRESS Key or Mouse button press

GLOCATOR Screen position and Key/Mouse button press

GMOVEMENT Pointer/Mouse movement

GKEYRELEASE Key or Mouse button release

GRESIZE Window resize

GMOUSEWHEEL Mouse wheel movement

Multiple event types may be set concurrently. When the device has been

nominated by gWogl() or gWoglw(), events are requested with the routine

gWaitForEvent() with the resulting data for the event being returned through the

routine gGetEventRecord() (see page 447).

Information concerning events in conjunction with the gWoglao() nomination

routine are described in the Windows programming environment section (see

page 769). Events are only supported if using the gWoglao() nomination routine

with a window handle.

786

Windows OpenGL (Microsoft) System DEVICE DRIVERS

Device Termination

When using either gWogl() or gWoglw(), the action at device termination is to

halt GINO graphics and close the graphics window if gCloseDevice() has been

called. If gSuspendDevice() has been called, the graphics window will remain on

the screen and the program will pause at the call to gCloseGino(). The dialogue

window will be closed at the same time as GINO is closed.

When using gWoglao(), at device termination it is the application programmers

responsibility to release the bitmap device context.

Error Handling

When a GINO or other GINO library generates an error or warning message an

error window is created and displayed at the bottom left of the screen. All

subsequent error/warning messages are printed in this window. The user can alter

the initial state of this window through the configuration variable NFERTR set in

the configuration file GINO.CON as follows:

NFERTR

= 0 Visible(Default)

= 1 Iconized

= 2 Hidden

> 2 Errors are sent to a file “APPLICATION”.ERR

Window Visibility

The current graphics and dialogue windows can be made visible/invisible using

the routines gSetGraphicsVis() and gSetDialogueVis():

gSetGraphicsVis(gravis) Make graphics window visible/invisible

gSetDialogueVis(diavis) Make dialogue window visible/invisible

where gravis & diavis can be either GINVISIBLE or GVISIBLE to hide or show

the window.

The routine gSetGraphicsVis() will have no effect when the device has been

nominated by using the gWoglao() routine. Calls to gSetDialogueVis() apply in

all cases.

787

DEVICE DRIVERS Windows OpenGL (Microsoft) System

Application Icon

The GINO icon will be assigned to all windows created through these nomination

routines. An application can replace this with one of their choosing by adding an

icon resource of the name “GinoIcon” to their application. A typical resource file

should contain the line:

GinoIcon ICON myapp.ico

where myapp.ico is the name of the user supplied application icon file.

Interacting with other Windows Applications

GINO graphics sent to the screen can be copied onto the Windows clipboard by

pressing <ALT> <PRINT SCREEN>. Transfer of graphics to other applications

via OLE or DDE is not supported.

Error Messages

The WINDOWS driver may at one time or another popup a message box. These

messages are mainly informational, but may effect the drivers behaviour. The

messages are described below:

UNABLE TO CREATE THE MESSAGE WINDOW

Sometimes when an application has been improperly closed the dialogue window

will still exist in memory, although the dialogue window may not be visible. The

WINDOWS driver will not be able to use this instance or create a new instance,

hence there will not be a dialogue window. Reasons for this can be programs

crashing or being terminated part way through (i.e. by a debugger). The only

solution to this problem is to restart windows.

Using Windows OpenGL Driver in Windows Programming Environment

The GINO Windows OpenGL driver can be used to direct GINO output to

windows or device contexts that have been created through direct or indirect use

of Windows API routines in any programming language. This enables GINO to

be used in a wide variety of Windows programming environments or high level

GUI systems as long as the user has access to the handle of the relevent object

where the graphics is to be drawn.

This is achieved by using the gWoglao() nomination routine and passing the

handle(s) via its arguments and is exactly comparable with the standard Windows

driver as described in that section (see page 769).

788

Windows OpenGL (Microsoft) System DEVICE DRIVERS

References to gMwinao() should be replaced by gWoglao() and where the device

driver is to handle Windows events they must be passed to the functions

WoglDefWindowProc() or WoglDefMDIChildProc() as appropriate.

The only exception is when handling a WM_PAINT message in an application

window procedure, the routine SwapBuffers() must be called prior to updating

the screen as shown below:

/* window procedure to update screen from device context */
long FAR PASCAL MainWndProc(HWND hWnd, UINT message,UINT wParam,
LONG lParam) {

PAINTSTRUCT ps;
switch(message) {
case WM_CREATE:

/* Create a device context to store the picture,
the device context contains a bitmap of
400 by 400 pixels */

hdc = GetDC(hWnd);
newdc = CreateCompatibleDC(hdc);
bits = CreateCompatibleBitmap(hdc, 400, 400);
oldbits = SelectObject(newdc, bits);
ReleaseDC(hWnd, hdc);
/* Nominate device */
gWoglao(hInst, hPrevInst, NULL, newdc);
/* Clear the device */
gNewDrawing();
return 0 ;

case WM_PAINT:
/* Paint the window */
hdc = BeginPaint(hWnd, &ps) ;
/* swap buffers to flush all graphics to screen */
SwapBuffers(hdc);
/* Copy GINO output to the window at x=10, y=10 */
BitBlt(hdc, 10, 10, 400, 400, newdc, 0, 0, SRCCOPY);
EndPaint(hWnd, &ps);
return 0;

case WM_DESTROY :
/* Close device */
gCloseDevice();
gCloseGino();
/* Free bitmap & device context */
SelectObject(newdc, oldbits);
DeleteObject(bits);
DeleteDC(newdc);
PostQuitMessage(0);
return 0;

}

/* Pass on unhandled events */
return WoglDefWindowProc(hWnd, message, wParam, lParam);

}

789

DEVICE DRIVERS Windows OpenGL (Microsoft) System

X Windows System

Device Nominations

Nomination Routine Description of Device

A gXwin() Default X-Window

B gXwinw(pause,clear,xp,yp,width,height) User-defined X-Window

C gXwinao(window_id,pixmap_id) Opens GINO using an existing bitmap

Device Characteristics

A B C

Default Width
2
/3Maximum User Defined Application Dependent

Default Height
2
/3Maximum User Defined Application Dependent

Devices A,B and C

Maximum Width Server Dependent

Maximum Height Server Dependent

Colours / Pens Server Dependent (Default = 64)

Colour Palette Server Dependent

Broken Linestyles No

Drawing Modes GERASER, GNOT, GAND, GOR, GXOR

Thick Lines Yes

Line Ends 3

Arcs Yes

Symbols No

Fonts Server Dependent

Character Sizes Server Dependent

Character Angles Server Dependent

Italic Characters Server Dependent

Polygonal Filling Single Polygons & Solid only

Segments No

Image Handling All Functions

Cursor Types GHOURGLASS,GDEFAULT, GSMALLCROSS, GLARGECROSS, GX, GPOINTER & 74 X specific types

Cursor Actions
GPOLYLINE, GDEFAULT, GRUBBERBAND, GRUBBERBOX, GRUBBERSQUARE, GRUBBERELLIPSE,

GRUBBERCIRCLE

Cursor Positioning No

Event Types
GKEYPRESS, GLOCATOR, GMOVEMENT, GKEYRELEASE, GRESIZE, GPOINTERLEAVING,

GPOINTERENTERING

Batch Updates Yes

Clipping Yes

790

X Windows System DEVICE DRIVERS

Transform/Viewing No

Shading No

Lights No

Texture Mapping No

Auxiliary Drawing Areas Yes (Up to 50 pairs)

Window/Device Titling Yes

Mouse Positioning Yes

Linking with Xlib Library

To satisfy all outstanding references made by this driver, the XLIB library needs

to be referenced in your link statement:

UNIX:

f90 -o myprog myprog.o -lgino-f90 -lX11

Some UNIX systems may require extra libraries to satisfy further references from

the X11 library. e.g.

f90 -o myprog myprog.o -lgino-f90 -lX11 -lbsd

Device Nomination

Three nomination routines are available with X-windows:

gXwin()

This nomination routines opens a standard window of 2/3 screen size in the top

left-hand corner.

gXwinw(pause,clear,xp,yp,width,height)

This routine allows the user to set the position, size and action at program

termination where:

pause

= 0 specifies there is no pause at gCloseDevice() (default)

= 1 specifies that the process will pause with a prompt at
gCloseDevice()

= 2 specifies that the process will pause (without prompt) at
gCloseDevice()

791

DEVICE DRIVERS X Windows System

clear

(Not Used)

xp,yp

specify the pixel position of the top left of the window (default = 0,0)

width,height

specify the pixel width and height of the window (default = 2/3 of max.)

The graphics window, however will always be cleared at the end of the program.

The nomination routine gXwin() is equivalent to calling gXwinw() as follows:

gXwinw(0,0,0,0,width,height)

where width,height are equivalent to two-thirds the dimensions of the full

drawing area.

gXwinao(window_id,pixmap_id)

This routine allows GINO to draw to an existing window where window_id is the

identifier of the external window and pixmap_id is the identifier of a pixmap the

same size as the external window. If window_id or pixmap_id have a NULL

value then they will be created by GINO.

The normal operation of the X-Windows driver is to open a window, map it, clear

it and set up a colour table. A pixmap is also created to act as a backing store to

enable the repainting of exposed regions.

When using gXwinao(), the window and pixmap are not created, but their

attributes are obtained and used by GINO’s initialization procedures. The

window is not blanked and the colour map is not overwritten.

The window set up externally will need to be mapped before entering GINO.

If external drawing is to be used within the window, a pixmap will need to be

created to allow damage repair on the window. To enable this all drawing must be

done to the pixmap as well as to the window so that they are a copy of each other.

Within the GINO gWaitForEvent()/gGetCursorEvent() loop, expose events on the

window are trapped and used to trigger XCopyArea commands to repaint the

window. If no external drawing is to be done, set pixmap_id to NULL and GINO

will create and maintain the pixmap until gCloseDevice().

792

X Windows System DEVICE DRIVERS

Window & Pixmap Identifiers

The identifiers of the primary window and pixmap can be obtained though a

special device driver dependent routine:

gXwinid(window_id, pixmap_id)

These values may be passed to an appropriate X routine requiring such

information.

Window Size

If the user of the application changes the window size during operation, the

driver will ensure that the picture is updated by redrawing from the backing store,

but GINO is not able to take any further action until after a gNewDrawing() is

called. At this point the programmer can re-enquire the window size using

gEnqDrawingLimits() and take the appropriate action.

If the window size is changed by the user, this takes priority over the

programmers request for a change through gSetDrawingLimits().

Window Title

The default window title of a GINO application is a string composed of the

GINO version and license owner. This can be superceded in the following order

of precedence:

1) GINO config variable XWINTITLE

2) System environment variable XWINTITLE

3) Application call to gSetDeviceTitle()

Colour Map

GINO will open each window with the same colour attributes as the default

display visual whether it be monochrome, pseudo, dynamic or true colour.

Special conditions apply on dynamic/pseudo colour displays, where a palette of

256 colours is usually available. On this type of display GINO allocates a default

number of 64 colours from the system colour map, allowing multiple applications

to operate without affecting the colours of each window. This default value can

however be changed in one of three ways:

1) Setting an environment variable XNCOLS

793

DEVICE DRIVERS X Windows System

2) Setting a variable XCOLS in the GINO configuration file

3) Calling the routine gSetColourInfo(ndc,ndt)

where the number of colours can be set to any value from 2 to 255. If the driver

cannot obtain the requested number of colour cells from the Window Manager

(being dependent on the number of cells allocated to other applications), it will

use what it can or revert to monochrome output. Users should always use the

routine gEnqColourInfo() to determine how many colours have been actually

allocated in these circumstances.

If the value equals 256 then, rather than using the shared system colour map, a

private colour map with 256 colours is allocated to the application. Whilst

providing more colours to the GINO application, moving the mouse pointer in

and out of the GINO window will cause an immediate colour change as the

different colour palettes are loaded into memory.

Graphics Visibility

The current graphics window can be popped to the front of the display or pushed

to the back of the display using the GINO routine gSetGraphicsVis().

e.g.

gSetGraphicsVis(GINVISIBLE)

Pushes the window to the back

gSetGraphicsVis(GVISIBLE)

Pops the window to the front

Character Fonts

The following hardware character fonts are accessible through the routine

gSetCharFont(font) where font can be one of the following:

0 or 100 adobe-courier (default)

101 adobe-helvetica

102 adobe-times

103 adobe-ITC Avant Garde Gothic

104 adobe-ITC Lubalin Graph

105 adobe-New Century Schoolbook

106 adobe-ITC Souvenir

794

X Windows System DEVICE DRIVERS

170 adobe-Symbol

The availability of the fonts is server dependent. The font enquiry routine

gEnqHardFontList() can be used to enquire which fonts are available on the

server being used. Where one of the hardware fonts listed above (except font

170) is not available, a software emulation is provided with similar character

proportions.

Bold and/or italic versions of fonts 100-106 can be selected using the routine

gSetFontWeight(weight) where weight>0 and the routine gSetItalicAngle(angle)

where 10�angle�20 degrees.

Mouse Pointer Types

When the window is first initialised the pointer icon is set to be an ‘hour glass’

indicating that no interaction can be performed. This is changed when either

gGetCursorEvent() is called, or one of the permitted event types is enabled. The

icon used at this point can be set using the routine gSetCursorType():

gSetCursorType(type,forcol,bakcol)

where type is the type number. Type -1 is an hour-glass, type 0 is a double cross,

type 1 is a single small cross and type 2 is a large cross extending the whole

height and width of the window. The following additional X cursor types are also

available.

forcol and bakcol can also be used to set the cursor foreground and background

colour numbers, remembering that cursors are drawn in XOR mode resulting in a

different appearance to the GINO colour numbers on the actual display.

795

DEVICE DRIVERS X Windows System

3 to 14

15 to 26

27 to 38

39 to 50

51 to 62

63 to 74

75 to 79

Graphics Cursor

In addition to the usual key values returned for a cursor hit, some special values

of key are also returned as follows:

0 A call to gGetCursorEvent() has been made when the graphics window is iconized

1024 A resize event has taken place; the user should call gNewDrawing() and enquire the

new size of the window (through gEnqDrawingLimits()) and redraw as required

While waiting for a key or button press, any expose events that take place will

cause an automatic update of the exposed area from the backing store. When

gGetCursorEvent() is called, the input focus of the device is set to be the graphics

window. When the key has been pressed, the focus is returned to the window

which had it before gGetCursorEvent() was called.

XWIN Hard Copy

A XWIN driver specific routine is available to create a PostScript image file from

the contents of the current window:

gXwineps(mode,filename,ier)

Where mode=0 to create a monochrome or =1 to create a colour image, filename

is the name of the PostScript file to be created and ier returns 0 if it has been

successfullt created.

XWIN Driver Error Messages

The following errors specific to this device driver may occur:-

At Initialization:

GINO ERROR 310 - Cannot Open Display

GINO ERROR 311 - Cannot Open Window

These are caused by an incorrect connection to the display or network problems.

In both cases, after outputting the error, the program will continue but no further

output will take place.

At Initialization or gNewDrawing():

GINO ERROR 312 - Cannot obtain Window size

Character attribute setting:

796

X Windows System DEVICE DRIVERS

GINO ERROR 313 - Cannot load required font

Iconized window at gCloseDevice():

GINO ERROR 314 - De-iconize Window

Using X-Windows from a remote host

When running an application using the X-Windows driver from a remote host, it

is necessary to set permissions on the local workstation/terminal and set the

correct display name on the remote host processor. This is achieved by carrying

out the following steps:

Under UNIX:

On the local workstation / terminal

xhost + to allow access from all hosts OR

xhost <hostname> to allow access from a specific host

then login to the remote host using TELNET or rlogin

telnet <remote host name> or rlogin

login:

password

and set the display name:

setenv DISPLAY <local display name>:0.0

PRINTERS AND PLOTTERS

This section includes hard copy devices such as pen-plotters, laser-printers and

inkjet printers.

Output Filename and Unit Numbers (Fortran only)

By default, all printer/plotters use Fortran unit number 1 when creating a plot

file. If the routine gSetDeviceFilename() or an OPEN statement has not been

used, a file will be created with a default name such as FOR001.DAT under

OpenVMS or HPGL.OUT under UNIX. A different unit number can be used by

setting the relevant GINO configuration variable for that device as detailed

below.

797

DEVICE DRIVERS PRINTERS AND PLOTTERS

Printer and Plotter Configuration Settings

The following table lists all the available settings applicable to drivers in the

printer/plotter section:

Device Driver Config. Variable Settings Default Description

CC907 CC907 N (1-99) 1 F90 output channel for CC907 driver

CCHANDSH String (TRUE/FALSE) FALSE ACK/NAK (TRUE), XON/XOFF (FALSE)

CCCHECKSM String (TRUE/FALSE) FALSE Enable checksum data

CCSYNC N (1-127) 2 Set plotter SYNC character (ASCII)

CCEOB N (1-127) 3 Set plotter EOB character (ASCII)

CCCONTROL N (906, 907)
Plotter-depend

ent
Set plotter controller mode

HPGL HPGL N (-8 to 99) 1 F90 output channel for HPGL driver

HPHANDSH String (P1, P2, P3) P1
Set handshaking to XON/OFF (P1), ACK (P2)

or hardwire (P3)

HPGLFORMAT String (YES/NO) NO Sets output file to be formatted

HPGL2 HPGL2 N (-8 to 99) 1 F90 output channel for HPGL2 driver

HPGL2FORMAT String (YES/NO) NO Sets output file to be formatted

HPLJ HPLJ N (-8 to 99) 1 F90 output channel for HPLJ driver

HPLJNOFEED String (YES/NO) NO
Suppresses formfeed character at

gCloseDevice()

HPPJ HPPJ N (-8 to 99) 1 F90 output channel for HPPJ driver

HPPJNOFEED String (YES/NO) NO
Suppresses formfeed character at

gCloseDevice()

LN03/LA100 LN03 N (1-99) 1 F90 output channel for LN03 driver

LN03NOFEED String (YES/NO) NO
Suppresses formfeed character at

gCloseDevice()

POSTSCRIPT POSTSCRIPT N (-8 to 99) 1 F90 output channel for POSTSCRIPT driver

POSTFORMAT String (YES/NO) NO Sets output file to be formatted

POSTHEAD N or String (ALL) 0 Output job creator/date on page N or ALL

798

PRINTERS AND PLOTTERS DEVICE DRIVERS

Intermediate Vector File

Printers that are driven by raster output rather than vector output utilise an

internal GINO vector to raster pre-processor to create the output for the device.

Normally this conversion is done in a large memory area where such resources

are available. However, where the drawing area is larger than the default an

intermediate vector file is used and the output is banded. This file is written to

and read from any output unit number that is available at device initialisation and

then removed at gCloseDevice(). The output is not affected when banded in such

a way except that pixel output is not available and a simple box is drawn to

represent the pixel area. Drivers that use an Intermediate Vector File are as

follows:

• HPLJ

• HPPJ

• LN03

8-bit data

Certain drivers produce code as 8-bit data. Whether output to the printer is direct

or via a disk file, it is essential that the transmission is in raw 8 bit mode with no

interpretation or conversion of characters. This may require special configuration

of the printer, the communications line and/or the spool/plot command. (See

Appendix A for the relevant implementation specific commands).

Drivers that use 8-bit data are as follows:

• HPLJ

• HPPJ

Calcomp 907 Series Plotters

Device Nominations

Nomination Routine Description of Device

A gCc1023() Calcomp 1023 Plotter

B gCc5220() Calcomp 5520 Plotter

C gCc5725() Calcomp 5725 Monochrome Electrostatic Plotter

D gCc5835() Calcomp 5835 Colour Electrostatic Plotter

E gCc5912() Calcomp 5912 Colour Electrostatic Plotter

F gCc5735() Calcomp 5735 Monochrome Electrostatic Plotter

G gCcplot() Calcomp PLOTMASTER

799

DEVICE DRIVERS Calcomp 907 Series Plotters

H gCc5745() Calcomp 5745 Plotter

I gCc563(), gCc565() Calcomp 563 and 565 Plotters

J gCc1012() Calcomp 1012 Plotter

K gCc1036(), gCc1039() Calcomp 1036 and 1039 Plotters

L gCc1037() Calcomp 1037 Plotter

M gC1051n() Calcomp 1051 Plotter with Narrow Paper

N gCc1051() Calcomp 1051 Plotter

O gCc1055() Calcomp 1055 Plotter

P gCc945() Calcomp 945 Plotter

Q gCc960() Calcomp 960 Plotter

R gCc965() Calcomp 965 Plotter

S gCc1041() Calcomp 1041 Plotter

T gCc1042() Calcomp 1042 Plotter

U gCc1043() Calcomp 1043 Plotter

V gCalcmp(),gC1044n() Calcomp 1044 Plotter with Narrow Paper

W gCalwid(),gC1044w() Calcomp 1044 Plotter with Wide Paper

X gCc1077() Calcomp 1077 Plotter

Device Characteristics

A B C D E F G H I J K L

Max. X Dimension (mm) 876 12m 12m 12m 406 12m 253 12m 12m 12m 12m 12m

Max. Y Dimension (mm) 610 858 597 895 256 895 195 1106 858 275 858 858

Default X Dimension 876 1500 1500 1500 406 1500 253 1500 1500 1500 1500 1500

Default Y Dimension 610 858 597 895 256 895 195 1106 858 275 858 858

Resolution (dots/cm) 800
200d
pi

800 800
200d
pi

800
200d
pi

800 200 200 200 200

Colours / Pens 8 16 16 999 999 16 8 16 1 4 3 1

Colour Palette (fixed(F)
or dynamic(D))

F F F D D F F F F F F F

Broken Linestyles 6 No 6 6 6 No 6 6 No No 6 No

Arcs Yes No Yes Yes Yes Yes No Yes No No Yes No

Polygonal Filling (solid
only)

No No No Yes Yes No No No No No No No

Image Handling (output
only)

No No No Yes Yes No No No No No No No

Devices A to L

Thick Lines No

Line Ends No

Symbols No

Fonts 1

Character Sizes Any Square Size and 4 Pseudo-hardware sizes in multiples of 1.5mm square

800

Calcomp 907 Series Plotters DEVICE DRIVERS

A B C D E F G H I J K L

Character Angles 0 or 90°

Italic Characters No

M N O P Q R S T U V W X

Max. X Dimension (mm) 12m 12m 12m 1520 1520 1520 1205 1270 1189 12m 12m 12m

Max. Y Dimension (mm) 275 858 858 841 841 864 594 858 858 275 858 858

Default X Dimension 1500 1500 1500 1500 1500 1500 1205 1270 1189 1500 1500 1500

Default Y Dimension 275 858 858 841 841 864 594 858 858 275 858 858

Resolution (dots/cm) 400 400 800 800 800 800 800 800 800 800 800 800

Colours / Pens 4 4 4 2 2 4 8 8 8 8 8 4

Devices M to X

Colour Palette Fixed

Broken Linestyles 6 (dashed, short-dotted, short-chained,long-dashed, long-dotted, long-chained)

Thick Lines No

Line Ends No

Arcs Yes

Symbols No

Fonts 1

Character Sizes Any Square Size & 4 Pseudo-hardware sizes in multiples of 1.5mm square

Character Angles 0 or 90°

Italic Characters No

Polygonal Filling No

Image Handling No

Paper Advance

A call to gNewDrawing() or gCloseDevice() on pen-plotters will advance the

paper and re-origin the pen, 12.7cm beyond the maximum X dimension of the

previous plot. On the PLOTMASTER, 5700’s, 5835 and 5912, a call to

gNewDrawing() or gCloseDevice() will begin the rasterising and will eject the

plot when finished. If gNewDrawing() has been called, a new sheet of paper will

automatically be loaded.

Pen Selection

Models 5725, 5735, 5745

On monochrome electrostatic plotters, col can be in the range 1-16 referring to

line thickness.

801

DEVICE DRIVERS Calcomp 907 Series Plotters

Models 5835, 5912

On the colour electrostatic plotter, model 5835 and the 5912 thermal plotter, col

can be in the range 0-999 and in both line mode and fill mode, col = 0-10 give

the standard GINO colours. col = 11-999 give the default hardware dither

patterns. These can be redefined using gDefineRGB().

Communication Settings

The default configuration for communication to the Calcomp plotter required by

this driver is:

• XON/XOFF handshaking

• No checksum data

• One SYNC character set to 2 (STX)

• End of message code set to 3 (ETX)

To change the above, one or more of the following configuration settings may be

used:

CCHANDSH=TRUE

If software handshaking is required (plotter should be set to ACK/NAK handshaking mode).

CCCHECKSM=TRUE

If plotter requires checksum data as part of input record.

CCSYNC=N

To set plotter SYNC character to ASCII value N.

CCEOB=N

To set plotter EOB character to ASCII value N.

CCCONTROL=906 or 907

To set plotter controller if different to default.

Hewlett-Packard Series Plotters (HPGL)

Device Nominations

Nomination
Routine

Description of Device
Maximum

Width
Maximum

Height
Default
Width

Default
Height

A gAb6610() Advance Bryans 6610 A1 Plotter 884mm 580mm Max Max

802

Hewlett-Packard Series Plotters (HPGL) DEVICE DRIVERS

B gAb6680() Advance Bryans 6680 A1 Plotter 884mm 580mm Max Max

C gAb6910() Advance Bryans 6910 A0 Plotter 1151mm 864mm Max Max

D gAb6980() Advance Bryans 6980 A0 Plotter 1151mm 864mm Max Max

E gB1002() Benson 1002 A4/A3 Plotter 410mm 287mm 270mm 170mm

F gB1062() Benson 1062 A3 Plotter 410mm 287mm Max Max

G gDxy880() Roland DXY880 A3 Plotter 380mm 270mm Max Max

H gDx1100() Roland DXY11/12/1300 A3 Plotters 431mm 297mm Max Max

I gDs7() Gould DS7 A4 Plotter 260mm 198mm Max Max

J gDs10() Gould DS10 A3 Plotter 360mm 280mm Max Max

K gG6310() Gould 6310 A4 Plotter 260mm 190mm Max Max

L gG6320() Gould 6320 A3 Plotter 360mm 280mm Max Max

M gF4550() Facit 4550 A4 Plotter 274mm 191mm Max Max

N gF4551() Facit 4551 A3 Plotter 401mm 274mm Max Max

O gLvp16() DEC LVP16 with A4 Paper 274mm 191mm Max Max

P gLvp16w() DEC LVP16 with A3 Paper 401mm 274mm Max Max

Q gHp7220() Hewlett Packard 7220 A3 Plotter 400mm 285mm Max Max

R gHp7225() Hewlett Packard 7225 A4 Plotter 285mm 203mm Max Max

S gHp7470() Hewlett Packard 7470 A4 Plotter 274mm 191mm Max Max

T gHp7475() Hewlett Packard 7475 with A4 Paper 274mm 191mm Max Max

U gH7475w() Hewlett Packard 7475 with A3 Paper 401mm 274mm Max Max

V gHp7440() Hewlett Packard 7440 A4 Plotter 271mm 190mm Max Max

X gHp7550() Hewlett Packard 7550 with A4 Paper 271mm 190mm Max Max

Y gH7550w() Hewlett Packard 7550 with A3 Paper 399mm 271mm Max Max

Z gA47580() Hewlett Packard 7580 with A4 Paper 278mm 171mm 262mm 151mm

AA gA37580() Hewlett Packard 7580 with A3 Paper 401mm 286mm 360mm 262mm

BB gA27580() Hewlett Packard 7580 with A2 Paper 599mm 385mm 559mm 361mm

CC gA17580() Hewlett Packard 7580 with A1 Paper 822mm 583mm 782mm 559mm

DD gHpa4r() HP7575/76/85/86/Benson 1834 - A4 254mm 195mm 238mm 175mm

EE gHpa3r() HP7575/76/85/86/Benson 1834 - A3 425mm 262mm 385mm 238mm

FF gHpa2r() HP7575/76/85/86/Benson 1834 - A2 575mm 409mm 535mm 385mm

GG gHpa1r() HP7575/76/85/86/Benson 1834 - A1 845mm 559mm 805mm 535mm

HH gHpa4() HP7575/76/85/86/Benson 1834 - A4 278mm 171mm 262mm 151mm

II gHpa3() HP7575/76/85/86/Benson 1834 - A3 401mm 286mm 360mm 262mm

JJ gHpa2() HP7575/76/85/86/Benson 1834 - A2 599mm 385mm 559mm 361mm

KK gHpa1() HP7575/76/85/86/Benson 1834 - A1 822mm 583mm 782mm 559mm

LL gHpa0() HP7575/76/85/86/Benson 1834 - A0 1170mm 830mm 1130mm 806mm

MM gHp96a4() Hewlett-Packard 7596 with A4 Paper 260mm 198mm 260mm 151mm

NN gHp96a2() Hewlett-Packard 7596 with A2 Paper 599mm 385mm Max Max

OO gRn7586() HP7585/86/96/Benson 1834 - 11" Roll 420mm 286mm 286mm 210mm

PP gRm7586() HP7585/86/96/Benson 1834 - 24" Roll 841mm 574mm 574mm 420mm

803

DEVICE DRIVERS Hewlett-Packard Series Plotters (HPGL)

QQ gRw7586() HP7585/86/96/Benson 1834 - 36" Roll 1189mm 841mm 841mm 578mm

RR gV8536() Versatec 8536 electrostatic A0 Plotter 1219mm 893mm Max Max

SS gLa7586() HP 7586 Long Axis Plotter 30m 841mm 1189mm 817mm

TT gX4030() Xerox 4030 Laser Printer 297mm 210mm Max Max

UU gSe7220() Generic lower-left origin plotter 25m 25m 400mm 285mm

VV gSehpa0() Generic centre-origin plotter 25m 25m 1130mm 806mm

Device Characteristics

A C E F I J K L
M,N,O,

P

Colours / Pens 1 1 4 9 7 10 7 10 6

Devices A to P

Resolution (dot/cm) 400

Broken Linestyles 6 (dotted, short-dashed, long-dashed, dash-dotted, dash-long-dotted, dash-dot-dotted)

Thick Lines No

Line Ends No

Arcs Yes

Symbols No

Fonts 1

Character Sizes Any and 4 Pseudo-hardware in sizes of 1.5mm square

Character Angles Any

Italic Characters Any

Polygonal Filling Solid & Rectangular only

Image Handling No

Q R S T & U V RR SS TT UU VV
All

Other
s

Colours / Pens 8 1 2 6 8 1 8 1 256 256 8

Arcs Yes Yes Yes Yes Yes Yes Yes Yes

Polygonal Filling
(Rectangular)

No No No Yes No Yes Yes Yes No Yes Yes

Devices Q , R, S, T, U, V, RR, SS, TT, UU, VV, and all others

Broken Linestyles 6 (dotted, short-dashed, long-dashed, dash-dotted, dash-long-dotted, dash-dot-dotted)

Thick Lines No

Line Ends No

Symbols No

Fonts 1

Character Sizes Any and 4 Pseudo-hardware in sizes of 1.5mm square

Character Angles Any

Italic Characters Any

804

Hewlett-Packard Series Plotters (HPGL) DEVICE DRIVERS

Image Handling No

gHpa4r()/gHpa3()/gHpa2r()/gHpa1()/gHpa0() draw on paper loaded with the

long axis vertical.

gHpa4()/gHpa3r()/gHpa2()/gHpa1r() draw on paper loaded with the long axis

horizontal.

The nomination routines gSe7220() and gSehpa0() are provided for generic

HPGL devices with lower-left origin and centre-origin coordinate systems

respectively. Apart from the maximum drawing area and number of pens

available, they behave as per the devices gHp7220() and gHpa0().

Drawing Area

On plotter model 7586 and B1834, if using roll-media, the default drawing area is

A4 landscape (gRn7586()), A2 landscape (gRm7586()) or A1 landscape

(gRw7586()) and the drawing will be automatically rotated to fit across the paper.

If using single-sheet media on models 7570/75/76/80/85/86/96 the default

drawing area is as stated above.

The maximum drawing area on models 7570/75/76/80/85/95/96 includes drawing

beyond the pinch wheels and allows for the use of oversize sheets. If using

standard size sheets, gSetDrawingLimits() should be called with values no more

than 18mm less than the maximum X dimensions listed overleaf so as not to shift

the origin off the bottom of the paper. In all cases the area defined by

gSetDrawingLimits() is placed centrally within the current hard clip limits of the

plotter. type can be any value and is ignored.

Paper Advance

A call to gNewDrawing() or gCloseDevice() will automatically wind the paper

on or select a new sheet of paper on all plotters with this facility. On the Gould

plotters, the paper is wound on only by however much has been used. On all

other paper advance plotters, the wind-on is by a half-page or full-page (full page

only on gB1062()).

On the HP7586 when using Roll-Media, a half-page or full-page advance is used

depending on the size of the next required drawing area. For this reason, the

advance is only done at the beginning of a plot and at a gNewDrawing(), but not

at gCloseDevice().

805

DEVICE DRIVERS Hewlett-Packard Series Plotters (HPGL)

Handshaking & File Format

The following configuration settings can be made to alter the default handshaking

and file format:

HPHANDSH=P1 P2 or P3

Force handshaking mode to be Xon-Xoff, ENQ/ACK or Hardwire respectively

HPGLFORMAT=YES

Sets the default output file format to be formatted and therefore suitable for some

spooler systems. This setting is overridden by application programs that use the

routine gSetDeviceFilename().

Hewlett-Packard Series Plotters (HPGL-2)

Device Nominations

Nomination Routine Description of Device

A gHplj3() Hewlett Packard LaserJet III

B gHpmx() Hewlett Packard DraftMaster MX, RX and SX

C gH76250() Hewlett Packard 7600 Electrostatic Plotter Model 250

D gH76255() Hewlett Packard 7600 Electrostatic Plotter Model 255

E gH76355() Hewlett Packard 7600 Electrostatic Plotter Model 355

F
gHpgl2(xmax, ymax, xdef, ydef,

npens)
Generic Routine (Portrait Printers/Plotters)

G
gHpgl2r(xmax, ymax, xdef, ydef,

npens)
Generic Routine (Landscape Printers/Plotters)

Device Characteristics

A B C D E F G

Maximum Width (mm) 388.6 1163.2 836.6 1117.6 1117.6 †† ††

Maximum Height (mm) 266.0 882.4 558.8 863.6 863.6 †† ††

Default Width (mm) 271.0 238.0 297.0 297.0 297.0 †† ††

Default Height (mm) 197.0 177.0m 210.0 210.0 210.0 †† ††

Resolution 300dpi 400dots/cm 406dpi 406dpi 406dpi † †

Colours / Pens 1 8 255 Grey 255 Grey 255 †† ††

Colour Palette Static Static Dynamic Dynamic Dynamic † †

Thick Lines Yes No Yes Yes Yes † †

Line Ends 3 0 3 3 3 † †

Fonts (0-courier,
101-Universal, 102-CG
Times)

Yes Yes Yes Yes Yes † †

806

Hewlett-Packard Series Plotters (HPGL-2) DEVICE DRIVERS

Devices A to G

Broken Linestyles 16

Arcs Yes

Symbols No

Character Sizes Any & 16 Pseudo-hardware in multiples of 1.5mm square

Character Angles Any

Italic Characters No

Polygonal Filling Multi-polygon, solid only

Image Handling No

† Device-dependent

†† User defined

Generic Routines

In order to use this driver for the large number of devices with HPGL/2

emulations, the following two generic routines are provided:

gHpgl2(xmax,ymax,xdef,ydef,npens) for Portrait printer/plotters

gHpgl2r(xmax,ymax,xdef,ydef,npens) for Landscape printer/plotters

Where

xmax
Maximum width of paper in mm.

ymax
Maximum height / length of paper in mm.

xdef
Default width of plot in mm.

ydef
Default height / length of plot in mm.

npens
Number of pens / colours available.

807

DEVICE DRIVERS Hewlett-Packard Series Plotters (HPGL-2)

Drawing Area and Orientation

On the DraftMaster range of pen plotters the origin of the plot according to the

hardware is set at half the drawable width of the media defined by the hardware

taking physical measurements and half the length as defined by GINO plus the

margin. This origin will be the centre point of a GINO drawing. GINO plots are

drawn along the direction of paper travel. As the orientation of GINO plots is

landscape, the paper must be loaded into a DraftMaster pen plotter with its

longest side along the direction of paper travel. If the command

gSetDrawingLimits() is called with parameters corresponding to a portrait plot,

the plot will be automatically rotated in order to give greater paper usage

efficiency.

Paper Advance

A call to gNewDrawing() or gCloseDevice() will eject the paper on or select a

new sheet of paper. On plotters with automatic layout facilities a new suitable

area for the next plot will be found if it follows within the specified time limits

for the layout facility.

Colours

Colour 0 will select background erase except on the DraftMaster pen plotters.

Hardware Fonts

The default font is available in a variety of font weights which can be selected

using the routine gSetFontWeight(weight) where weight can have values between

-7 and 7 for weights varying from Ultra Thin to Ultra Black (with 0 being the

default). Both the proportional fonts can be displayed either filled or in outline

form and at 2 different font weights by using the routines gSetFontFillStyle() and

gSetFontWeight():

gSetFontFillStyle(style)

gSetFontWeight(weight)

where style.type can be set to GOUTLINE or GFILLED for outline and filled

fonts respectively, and weight can be set to 0 or 1 for normal and bold weights

respectively. The remaining arguments to gSetFontFillStyle() have no effect on

the font style.

File Format

The following configuration setting can be made to alter the default file format:

808

Hewlett-Packard Series Plotters (HPGL-2) DEVICE DRIVERS

HPGL2FORMAT=YES

Sets the default output file format to be formatted and therefore suitable for some

spooler systems. This setting is overridden by application programs that use the

routine gSetDeviceFilename().

Hewlett-Packard Laserjet Series Printers (HPLJ)

Device Nominations

Nomination Routine Description of Device

A gHpljr() Hewlett Packard LaserJet Printers using run-length encoding (Series III onwards)

B gHpljp() Hewlett Packard LaserJet Printers using compressed encoding (Series IIP)

C gHplj() Hewlett Packard LaserJet Printers using uncompressed encoding (Series I & II)

D gHplj6() 600cpi Hewlett Packard LaserJet Printers using run-length encoding (Series IV onwards)

Device Characteristics

A, B and C D

Max. X Dimension (mm) 388.6 253.9

Max. Y Dimension (mm) 266.0 196.7

Default X Dimension (mm) 280.4 280.4

Default Y Dimension (mm) 196.7 196.7

Resolution (dpi) 300 600

Devices A to D

Colours / Pens 0 (erase) & 16 dithered greys

Broken Linestyles No

Thick Lines No

Line Ends No

Arcs No

Symbols No

Fonts No

Character Sizes 4 Pseudo-hardware in multiples of 1.5mm square

Character Angles 0 or 90°

Italic Characters No

Polygonal Filling No

Image Handling Yes but not when using Intermediate Vector File

809

DEVICE DRIVERS Hewlett-Packard Laserjet Series Printers (HPLJ)

Paper Size and Tray Selection

Where multiple paper trays or paper sizes are available on the nominated printer

to which the HPLJ file is sent, the type argument to the routine

gSetDrawingLimits() can be used to make the desired selection.

Values 1-99 select a paper/envelope size according to the PCL list which

includes:

• 1 = executive

• 2 = letter

• 3 = legal

• 26 = A4

Values 100,200,300,400,500 and 600 select the paper source according to the

PCL list which includes:

• 100 = First tray

• 200 = Manual feed - paper

• 300 = Manual feed - envelope

Note that this list may vary from printer to printer and version of PCL.

Formfeed at End of Output

The following configuration setting can be made to suppress the formfeed at

gCloseDevice():

HPLJNOFEED=YES

Suppresses the formfeed character sent at gCloseDevice() for use when form feed

is already sent by the print spooler.

Hewlett-Packard Paintjet and Deskjet Printers (HPPJ)

Device Nominations

Nomination Routine Description of Device

A gDj500m() Hewlett Packard DeskJet using the black ink cartridge

B gDj500c() Hewlett Packard DeskJet using the colour ink cartridge

C gDj510() Hewlett Packard DeskJet 510

810

Hewlett-Packard Paintjet and Deskjet Printers (HPPJ) DEVICE DRIVERS

D gDj550c() Hewlett Packard DeskJet 550 using both cartridges

E gDj560c() Hewlett Packard DeskJet 560

F gDj1200() Hewlett Packard DeskJet 1200

G gDj690() Hewlett Packard DeskJet 690 monochrome

H gDj690c() Hewlett Packard DeskJet 690 colour

I gDj890c() Hewlett Packard Deskjet 890 colour

Device Characteristics

A B C D E F G H I

Max. X dimension (mm) 288.8 288.8 215.9 228.6 228.6 228.6 228.6 228.6 228.6

Max Y dimension (mm) 279.4 279.4 252.0 279.4 279.4 279.4 9144.0 9144.0 9144.0

Default X dimension
(mm)

203.2 203.2 203.2 203.2 203.2 203.2 203.2 203.2 203.2

Default Y dimension
(mm)

266.7 266.7 252.0 266.7 266.7 266.7 247.65 247.65 247.65

Resolution (dpi) 300 300 300 300 300 300 600/300 600/300 600

Colours / Pens 16gr 255 16gr 255 255 255 16gr 255 255

Devices A to I

Broken Linestyles 16

Thick Lines No

Line Ends No

Arcs No

Symbols No

Fonts No

Character Sizes 4 Pseudo-hardware in multiples of 1.5mm square

Character Angles 0 or 90�

Italic Characters No

Polygonal Filling No

Image Handling Yes, but not when using Intermediate Vector File

Colour

On monochrome printers, 16 dithered greys can be obtained. On the colour

printers, colours can be defined using gDefineRGB().

When printing using the gDj550c() nomination, the black ink may bleed into the

colour ink due to differing chemical compositions of the inks. Two solutions are

to use special glossy HP paper or switch to using the gDj500c() nomination

which only uses 1 cartridge (the black will then appear as a dark green colour!)

811

DEVICE DRIVERS Hewlett-Packard Paintjet and Deskjet Printers (HPPJ)

Formfeed at End of Output

The following configuration setting can be made to suppress the formfeed at

gCloseDevice():

HPPJNOFEED=YES

Suppresses the formfeed character sent at gCloseDevice() for use when form feed

is already sent by the print spooler.

DEC LA100 andLN03 Series Printers

Device Nominations

Nomination Routine Description of Device

A gLa50() DEC LA50 Dot Matrix Printer

B gLa75() DEC LA75 Dot Matrix Printer

C gLa100() DEC LA100 Dot Matrix Printer

D gLa210() DEC LA210 Dot Matrix Printer

E gLn03() DEC LN03/LN03+ Laser Printer

F gLg31() DEC LG31 Dot Matrix Printer

Device Characteristics

A B C D E F

Max. X Dimension (mm) 215.0 215.0 332.7 332.7 286.0 332.7

Max. Y Dimension (mm) 1016.0 1016.0 1016.0 1016.0 203.0 1016.0

Default X Dimension
(mm)

203.2 203.2 332.7 332.7 285.9 332.7

Default Y Dimension
(mm)

152.4 152.4 254.0 254.0 197.9 254.0

Resolution (dpi) 144x72 144x72 132x72 132x72 300x300 132x72

Devices A to F

Colours / Pens 0 (Background erase) & 16 dithered greys

Broken Linestyles No

Thick Lines No

Line Ends No

Arcs No

Symbols No

Fonts No

Character Sizes 4 Pseudo-hardware of multiples of 1.5mm square

Character Angles 0 or 90°

Italic Characters No

812

DEC LA100 andLN03 Series Printers DEVICE DRIVERS

Polygonal Filling No

Image Handling Yes but not when using Intermediate Vector File

Formfeed at End of Output

The following configuration setting can be made to suppress the formfeed at

gCloseDevice():

LN03NOFEED=YES

Suppresses the formfeed character sent at gCloseDevice() for use when form feed

is already sent by the print spooler.

Postscript Series Printers

Device Nominations

Nomination Routine Description of Device

A gLn03r() DEC LN03R Postscript Laser Printer

B gLaserw() Apple/Sun Laser Writer

C gLps40() DEC Print Server 40

D gD12150() DEC Laser 2150

E gEps(cflag, xoff, yoff, xsize, ysize, xdef, ydef) Generic Routine (for printers)

F gEpsexp(xsize, ysize, xmarg, ymarg, n, prop) Generic Routine (for import filters)

Device Characteristics

A B C D E F

Max X Dimension (mm) 284.5 284.5 431.8 290.5 User Defined User Defined

Max Y Dimension (mm) 197.3 201.0 297.0 198.0 User Defined User Defined

Default X Dimension (mm) 284.5 284.5 293.0 290.5 User Defined User Defined

Default Y Dimension (mm) 197.3 197.0 206.0 198.0 User Defined User Defined

Resolution (dpi) 300 300 300 300
Device
dependent

Device
dependent

Colours / Greyscales 255 255 255 255 User Defined User Defined

Colour Palette
Static (default)
or Direct

Static (default)
or Direct

Static (default)
or Direct

Static (default)
or Direct

User Defined User Defined

Devices A to F

Broken Linestyles 16

Thick Lines Yes (Default=0.0)

Line Ends 3

Arcs Yes

Symbols Yes

813

DEVICE DRIVERS Postscript Series Printers

Fonts 11

Character Sizes Any + 16 Pseudo-hardware in multiples of 1.5mm square

Character Angles Any

Italic Characters Any

Polygonal Filling Solid only and maximum of 1500 Points

Image Handling Yes (Output only)

Clipping No

Window/Device Titling Yes

The PostScript code produced by this driver conforms to the EPSF (Encapsulated

PostScript File) format specified by Adobe Systems Inc., enabling GINO output

to be exported to other applications such as desktop publishing systems (DTP).

This driver provides one generic nomination routine gEps() for printers, one

generic nomination routine gEpsexp() for import filters plus a number of specific

nomination routines for older printers.

The default orientation when using any of the printer nomination routines is for

the picture to be drawn in landscape mode, but the default for the gEpsexp()

routine is portrait. In both cases the orientation can be changed by switching the

X and Y paper size (either in the nomination routine, by calling

gSetDrawingLimits() or by setting the necessary flag in gEpsexp()).

In the case of the generic PostScript export nomination routine, the application

can control various properties of the PostScript file through the arguments, so

that they are suitable for the import filter being used. Users are referred to the

chapter on ‘Importing and Exporting’ to enquire the requirements and options of

the most popular import filters that accept PostScript files.

Device Nomination

The following generic printer routine is available with this driver:

gEps(cflag,xoff,yoff,xsize,ysize,xdef,ydef)

The parameters have the following values:

cflag

Int Colour flag (+’ve = Colour, -’ve = Greyscales, 0 =
Monochrome). See Colour Setting section below.

xoff,yoff

Float Shortest distance in millimetres of drawable area from
the PostScript origin.

814

Postscript Series Printers DEVICE DRIVERS

xsize,ysize

Float Maximum size of drawing area in millimetres.

xdef,ydef

Float Default size of drawing area in millimetres.

The above diagram shows the definition of xsize and ysize which is the same for

xdef and ydef. Note that the xoff and yoff distances are reversed depending on

the orientation of the GINO picture. It must also be realised that the PostScript

origin may not be the same as the paper origin on some devices.

A second generic routine is available aimed at exporting PostScript files from

GINO to be read by WP, DTP import filters and PostScript viewers:

gEpsexp(xsize, ysize, xmarg, ymarg, n, prop)

The parameters have the following meanings:

xsize,ysize

Float Print area in millimetres.

xmarg,ymarg

Float Horizontal and vertical margins (added to Bounding
Box limits).

815

DEVICE DRIVERS Postscript Series Printers

n

Int Number of elements in prop array (rounded down to the
nearest even number)

prop

Int [] EPS properties array containing PAIRS of property
flags and their settings according to the table below.

Property Property Description Settings

1 Initial Colour Mode (NDT)

= -2, Indexed Greyscale
= 0, Monochrome
= 2, Index Colour (Default)
= 4, True Colour

2 Rotation Flag

= -1, Auto rotation (0
o
or 270

o
)

= 0, No rotation (Default)
= 1, 90

o
rotation

= 2, 180
o
rotation

= 3, 270
o
rotation

3 Bounding Box Flag
= 0, Print area at start of file
= 1, Drawing area at end of file (Default)
= 2, Drawing area at start of file

4 TIFF header = 0, No TIFF header (Default)

The PostScript file generated through the gEpsexp() nomination routine will

represent an area defined by xsize,ysize and contain optional margins as specified

by the argument xmarg, ymarg. Additional properties, if different from the

defaults, may be specified by passing a property and its setting, in pairs, through

the prop array. Thus if an import filter required a monochrome PostScript file

with the actual drawing limits at the start of the file, the values 1,0,3,2 would be

passed in prop with n set to 4.

The auto-rotation setting is the same as the default operation of the gEps()

nomination routine whereby a landscape print area (xsize > ysize) will cause a

rotation of 270� of the plot.

Bounding Box

The bounding box flag determines the position and source of the values placed in

the %%BoundingBox command within the PostScript file. The default option (1)

places the %%BoundingBox (atend) command at the start of the file and places

the actual drawing limits in a command at the end of the file. Many PostScript

interpreters, however, require the %%Bounding Box command at the start of the

file and for this, two options are available. Option 0 places the print/paper area as

defined by the arguments in gEpsexp (or that subsequently re-defined in a call to

gSetDrawingLimits) at the start of the file. Option 2 places the actual limits of

the drawing at the start of the file by postprocessing it once these limits are

known. The difference between the print/paper area and the actual drawing limits

is that the latter only includes the rectangular area where drawing actually occurs

ignoring any blank space round the edges and therefore can be more accurate.

816

Postscript Series Printers DEVICE DRIVERS

Paper Size and Paper Tray

The paper size can only be enlarged on model LPS40 or when using gEps()

where the maximum drawing area is larger than the default. Any size greater than

the default drawing size assumes that A3 paper is loaded in the printer. All other

models have the default paper size the same as the maximum paper size. Where

alternative paper trays are available, these may be selected using the type

argument to gSetDrawingLimits(). Values of 1,2 or 3 will select paper trays 0,1

and 2 using the PostScript ‘setpapertray’ command. If type = 0 no paper tray

selection is made.

Colours/Greyscales

PostScript devices can be defined as colour, monochrome or greyscale through

the nomination routines gEps() and GEpsexp(), all other nominations are defined

as greyscale. On colour and greyscale devices the number of colours/greyscales

available is 255 and on monochrome devices it is 0 (erase) and 1. If the device

has been setup as a monochrome device, gDefineRGB() will have no effect.

On greyscale devices colours 0-9 default to the following shades of grey with

0=white and 1=black.

Colour and greyscales are used for all output primitives except for single dot

width lines on greyscale devices as this results in a dashed line effect.

Character Fonts

Hardware fonts can be selected using gSetCharFont(font) where font can be:

100 Courier (default) 106 Souvenir

101 Helvetica 107 Palatino

102 Times 108 ZapfChancery

103 AvantGarde-Book

104 LubalinGraph 170 Symbol

105 NewCenturySchlbk 171 ZapfDingbats

817

DEVICE DRIVERS Postscript Series Printers

Any value of font outside of this range or if the font selected is not available, will

select the Courier font. The Courier font is a fixed-pitch font, the remainder are

variable-pitch.

Bold versions of fonts 100-107 can be selected by using the routine

gSetFontWeight(weight) where the standard font is selected if weight is less than

or equal to zero and the bold version is selected if weight is greater than zero.

Outline versions of the fonts can be selected using the routine

gSetFontFillStyle(style) where style.type is set to GOUTLINE. All other values

of style.type select the solid filled font. The remaining arguments are only used

for GINO software fonts.

File Format & Job Title

The following configuration settings can be made to alter the default file format

and to add job titles to pages:

POSTFORMAT=YES Sets the default output file format to be formatted and
therefore suitable for inclusion into DTP systems. This
setting is overridden by application programs that use
the routine gSetDeviceFilename().

POSTHEAD=ALL Automatically outputs job creator and date to top left of
every page

POSTHEAD=n Automatically outputs job creator and date to page n

METAFILES

This section includes device-independent metafiles used for storing picture data

in an independent format or for transferring picture data from GINO to another

package (see page). See also the ‘Postscript Series Printers’ section for details of

Encapsulated Postscript (EPS) and the HPGL driver in the ‘Printers/Plotters’

section for two other formats used for exporting graphics.

Output Filename and Unit Numbers for Metafiles(Fortran only)

By default, all metafile drivers use Fortran unit number 7 when creating a file. If

this unit number has not been opened, a file will be created with a default name

depending on the system, such as FOR007.DAT under OpenVMS or CGM.OUT

on the PC or under UNIX. A different unit number can be used, either by setting

the relevant GINO configuration variable for that device or by setting the default

metafile unit number via the configuration variable NSAVDF.

818

METAFILES DEVICE DRIVERS

File Format

The second parameter in the routine gSetDeviceFilename() is ignored in all

metafile drivers except for IMAGE.

Metafile Configuration Settings

The following table lists all the available settings applicable to drivers in this

section:

Device Driver Config. Variable Settings Default Description

All NSAVDF N (1-99) 7 F90 output channel for all metafile drivers

CGM CGM N (1-99) 7 F90 output channel for CGM driver

DXF DXF N (1-99) 7 F90 output channel for DXF driver

IMAGE IMAGE N (1-99) 7 F90 output channel for IMAGE driver

JPEG JPEG N(1-99) 7 F90 output channel for JPEG driver

PNG PNG N(1-99) 7 F90 output channel for PNG driver

SAVDRA SAVDRA N (1-99) 7 F90 output channel for SAVDRA driver

WMF WMF N (1-99) 7 F90 output channel for WMF driver

Computer Graphics Metafile (CGM)

Device Nominations

Nomination Routine Description of Device

A gCgmchi() For character encoded formats with integer coordinates

B gCgmchr() For character encoded formats with real coordinates

C gCgmbi() For binary encoded formats with integer coordinates

D gCgmbr() For binary encoded formats with real coordinates

Device Characteristics

A & C B & D

Maximum Width (mm) 327.67 No Limit

Maximum Height (mm) 327.67 No Limit

Devices A to D

Default Width (mm) 200.0

Default Height (mm) 200.0

Colours / Pens 255

Colour Palette Dynamic

Broken Linestyles 5

Drawing Modes No

819

DEVICE DRIVERS Computer Graphics Metafile (CGM)

Thick Lines Yes

Line Ends No

Arcs Yes

Symbols No

Fonts 1

Character Sizes Any & 16 Pseudo-hardware in multiples of 1.5mm square

Character Angles Any

Italic Characters Any angle

Polygonal Filling Yes

Segments No

Image Handling Yes

Clipping No

File Format

Both character and binary encodings of the CGM driver produce a file containing

a single stream of eight-bit bytes with no record structure.

All nomination routines will always generate files with metric scaling mode as

GINO operates in a real coordinate system rather than an abstract one.

Multi-Pictures

More than one picture can be stored in any CGM metafile and the routine

gNewDrawing() is used to separate each picture.

CGM Elements

The full list of legal CGM element identifiers is given below together with notes

on their use by the GINO generator and interpreter.

Element ID Element Name Generated Interpreted

Delimiter Elements

131 Null N Y

132 BEGIN METAFILE Y Y

133 END METAFILE Y Y

134 BEGIN PICTURE Y Y

135 BEGIN PICTURE BODY Y Y

136 END PICTURE Y Y

820

Computer Graphics Metafile (CGM) DEVICE DRIVERS

Metafile Descriptor Elements

232 METAFILE VERSION Y I

233 METAFILE DESCRIPTION Y I

234 VDC TYPE Y Y

235 INTEGER PRECISION Y Y

236 REAL PRECISION Y Y

237 INDEX PRECISION Y Y

238 COLOUR PRECISION Y Y

239 COLOUR INDEX PRECISION Y Y

240 MAXIMUM COLOUR INDEX Y Y

241 COLOUR VALUE EXTENT Y Y

242 METAFILE ELEMENT LIST Y Y

243 BEGIN METAFILE DEFAULTS

REPLACEMENT

Y Y

244 END METAFILE DEFAULTS REPLACEMENT Y Y

245 FONT LIST N N

246 CHARACTER SET LIST Y Y

247 CHARACTER CODING ANNOUNCER Y Y

Picture Descriptor Elements

332 SCALING MODE Y Y

333 COLOUR SELECTION MODE Y Y

334 LINE WIDTH SPECIFICATION MODE Y Y

335 MARKER SPECIFICATION MODE Y Y

336 EDGE WIDTH SPECIFICATION MODE Y Y

337 VDC EXTENT Y Y

338 BACKGROUND COLOUR Y Y

Control Elements

432 VDC INTEGER PRECISION Y Y

433 VDC REAL PRECISION Y Y

821

DEVICE DRIVERS Computer Graphics Metafile (CGM)

434 AUXILIARY COLOUR N N

435 TRANSPARENCY N N

436 CLIP RECTANGLE N Y

437 CLIP INDICATOR N Y

Graphical Primitive Elements

032 POLYLINE Y Y

033 DISJOINT POLYLINE N Y

034 POLYMARKER N Y

035 TEXT Y Y

036 RESTRICTED TEXT N Y

037 APPEND TEXT N N

038 POLYGON N Y

039 POLYGON SET Y Y

040 CELL ARRAY Y(4) Y

041 GENERALIZED DRAWING PRIMITIVE N Y(1)

042 RECTANGLE N Y

532 CIRCLE Y Y

533 CIRCULAR ARC 3 POINT N Y

534 CIRCULAR ARC 3 POINT CLOSE N Y

535 CIRCULAR ARC CENTRE Y Y

536 CIRCULAR ARC CENTRE CLOSE N Y

537 ELLIPSE N N

538 ELLIPTICAL ARC N N

539 ELLIPTICAL ARC CLOSE N N

Attribute Elements

632 LINE BUNDLE INDEX N N

633 LINE TYPE Y Y

634 LINE WIDTH Y Y

635 LINE COLOUR Y Y

636 MARKER BUNDLE INDEX N N

637 MARKER TYPE N Y

822

Computer Graphics Metafile (CGM) DEVICE DRIVERS

638 MARKER WIDTH N Y

639 MARKER COLOUR N Y

648 TEXT BUNDLE INDEX N N

649 TEXT FONT INDEX N N

650 TEXT PRECISION Y N(2)

651 CHARACTER EXPANSION FACTOR Y Y

652 CHARACTER SPACING Y Y

653 TEXT COLOUR Y Y

654 CHARACTER HEIGHT Y Y

655 CHARACTER ORIENTATION Y Y

656 TEXT PATH N Y

657 TEXT ALIGNMENT N Y

658 CHARACTER SET INDEX Y Y

659 ALTERNATE CHARACTER SET INDEX Y Y

732 FILL BUNDLE INDEX N N

733 INTERIOR STYLE Y(3) Y(3)

734 FILL COLOUR Y Y

735 HATCH INDEX Y Y

736 PATTERN INDEX N N

737 EDGE BUNDLE INDEX N N

738 EDGE TYPE Y Y

739 EDGE WIDTH Y Y

740 EDGE COLOUR Y Y

741 EDGE VISIBILITY N N

742 FILL REFERENCE POINT N N

743 PATTERN TABLE N N

744 PATTERN SIZE N N

748 COLOUR TABLE Y Y

749 ASPECT SOURCE FLAGS N N

Escape Elements

832 ESCAPE N N

833 MESSAGE N N

834 APPLICATION N N

823

DEVICE DRIVERS Computer Graphics Metafile (CGM)

848 DOMAIN RING N N

Y= This element is generated/interpreted by the GINOCGM software

N= This element is not generated/interpreted by the GINOCGM software

I = This element is ignored by the GINOCGM interpreter

Notes:

1) Generalized Drawing primitives are interpreted as a polyline

2) All text is interpreted in software transformed mode

3) Pattern fill style is not implemented

4) Cell arrays are output as one element if the number of ‘componenst’ (nx*ny) is

less than 2048. If the number is greater than this, the image is encoded as a series

of cell arrays representing each row of the cell array.

Drawing Exchange Format (DXF) Metafile

Device Nominations

Nomination Routine Description of Device

A gDxf() Drawing exchange format file

Device Characteristics

A

Maximum Width 100km

Maximum Height 100km

Default X Dimension 420mm

Default Y Dimension 297mm

Colours / Pens 255

Colour Palette Dynamic

Broken Linestyles No

Drawing Modes No

Thick Lines Any Thickness and only on vectors

Line Ends 0 and 1

Arcs Yes

Symbols No

824

Drawing Exchange Format (DXF) Metafile DEVICE DRIVERS

Fonts 1

Character Sizes Any size

Character Angles Any angle

Italic Characters No

Polygonal Filling Up to 4 Vertices

Segments No

Image Handling No

Clipping No

Window/Device Titling Yes

DXF Content

The DXF metafile contains only selected system variables and the entities

section. This will create consistency between the picture if it is completely

GINO, or if it is only partly GINO. Each entity has no associated hierarchy so the

original order cannot be guaranteed. Each entity in the DXF file is assigned to

layer 0 and includes its own independent colour attribute.

Multi-pictures

Multi-pictures are not available. The routine gNewDrawing() has no effect.

Colour

There is no facility within DXF for using the background colour as a drawing

colour. This results in colours 0, 1 and 10 being identical (being the inverse of the

background colour). There is a limited colour redefinition facility which involves

redefining pointers to a list of 255 pre-defined colours. These colours above

colour 16 are not available on devices with less than 256 displayable colours.

Text

All text is stored as STANDARD style in blocks of up to 32 characters. This only

shows as a problem if the font is changed to a proportional font when being

imported.

Image File Formats (BMP, XWD, SUNRAS)

Nomination Routines

Nomination Routine Description of device

A gXwd() X Windows Dump

B gBmp() Windows Bitmap Format

C gSunras() SUN Microsystems Raster File

825

DEVICE DRIVERS Image File Formats (BMP, XWD, SUNRAS)

Device Characteristics

A, B & C

Maximum Width (mm) 23119.29mm

Maximum Height (mm) 11559.47mm

Default Width (mm) 338mm

Default Height (mm) 254mm

Resolution 65536 x 32768 (960x720 default)

Colours / Pens 256

Colour Palette Dynamic (default) or Direct

Broken Linestyles No

Drawing Modes No

Thick Lines No

Line Ends No

Arcs No

Symbols No

Fonts No

Character Sizes 4 Pseudo-hardware in multiples of 1.5mm square

Character Angles 0 or 90°

Italic Characters No

Polygonal Filling No

Image Handling Full Colour and Output only

Clipping No

Window/Device Titling No

X Windows Dump

These are image dumps used on Unix systems supporting X windows. Normally

the files are created using the Unix command xwd and read in using the

corresponding command xwud (X Windows UnDump). Files created by this

driver can be created using the nomination routine gXwd(), which will create an

image file at 72 dpi. The resulting file can be read into a third party application or

displayed using the following Unix command;

xwud -in xwd.out

where xwd.out is the image file created by the driver.

826

Image File Formats (BMP, XWD, SUNRAS) DEVICE DRIVERS

Windows Bitmap

These are image files used on PCs under Windows and OS/2. Files created by

this driver using the nomination routine gBmp() will create an image file at 72

dpi. The resulting file can be read into many third party applications using a

simple image import filter.

Note: To create a BMP file from an OpenGL 3D picture, the nomination routine

gWoglpp() must be used.

SUN Raster File

These are similar to screen dumps from SUN workstations. Files created by this

driver using the nomination routine gSunras() will create an image at 72dpi. The

resulting file can be read by the SUN application imagetool and a limited number

of third party applications.

Image Size

The image size can be enquired using the GINO command gEnqDrawingLimits()

or gEnqMaxDrawingLimits() but these values are returned as either millimetres

or the current drawing units. The image will have a size defined in pixels, this

value being calculated by using the resolution value of 72 dots per inch or by

calling gEnqPixelResolution(). The image size can be changed using the

command gSetDrawingLimits(), but the size must be in current drawing units.

Multiple Frames

The driver does not recognise multiple images within the application so only the

first image will be stored. (i.e. up to the first call to gNewDrawing() after any

drawing routines).

Intermediate Vector File

This driver uses an internal GINO vector to raster pre-processor to create the

output for the device which contains a fixed sized memory area into which the

image is rasterized.

JPEG File Interchange Format (JPG)

Nomination Routines

Nomination Routine Description of Device

A gJpeg() JPEG File Interchange Format

827

DEVICE DRIVERS JPEG File Interchange Format (JPG)

Device Characteristics

A

Maximum Width (mm) 21229.29mm

Maximum Height (mm) 1159.47mm

Default Width (mm) 338mm

Default Height (mm) 254mm

Resolution 65536 x 32768 (960x720 default)

Colours / Pens 256

Colour Palette Direct

Broken Linestyles No

Drawing Modes No

Thick Lines No

Line Ends No

Arcs No

Symbols No

Fonts No

Character Sizes 4 Pseudo-hardware in multiples of 1.5mm square

Character Angles 0 or 90°

Italic Characters No

Polygonal Filling No

Image Handling Full Colour and Output only

Clipping No

Window/Device Titling No

JPEG File Interchange Format

The GINO driver is based on the work of the Independent JPEG Group for the

software to carry out the actual compression.

Image Size

The image size can be enquired using the GINO routine gEnqDrawingLimits() or

gEnqMaxDrawingLimits() but these values are returned as either millimetres or

the current drawing units. The image will have a size defined in pixels, this value

being calculated by using the resolution value of 72 dots per inch or by calling

gEnqPixelResolution(). The image size can be changed using the command

gSetDrawingLimits(), but the size must be in current drawing units.

828

JPEG File Interchange Format (JPG) DEVICE DRIVERS

Image Quality

The IPAPTY argument to the routine gSetDrawingLimits() is used to set the

compression quality. Quality can range from 1 (worst) to 100 (best) with a

default setting of 75.

Multiple Frames

The driver does not recognise multiple images within the application so only the

first image will be stored. (i.e. up to the first call to gNewDrawing() after any

drawing routines).

Intermediate Vector File

This driver uses an internal GINO vector to raster pre-processor to create the

output for the device which contains a fixed sized memory area into which the

image is rasterized.

PNG Portable Network Graphics (PNG)

Nomination Routines

Nomination Routine Description of Device

A gPng() Portable Network Graphics Format

Device Characteristics

A

Maximum Width (mm) 23119.29mm

Maximum Height (mm) 1159.47mm

Default Width (mm) 338mm

Default Height (mm) 254mm

Resolution 65536 x 32768 (960x720 default)

Colours / Pens 256

Colour Palette Direct

Broken Linestyles No

Drawing Modes No

Thick Lines No

Line Ends No

Arcs No

Symbols No

Fonts No

Character Sizes 4 Pseudo-hardware in multiples of 1.5mm square

829

DEVICE DRIVERS PNG Portable Network Graphics (PNG)

A

Character Angles 0 or 90°

Italic Characters No

Polygonal Filling No

Image Handling Full Colour and Output only

Clipping No

Window/Device Titling No

PNG (Portable Network Graphics) Format

The GINO driver is based on the work of the PNG Development Group for the

software to carry out the actual compression.

Image Size

The image size can be enquired using the GINO command gEnqDrawingLimits()

or gEnqMaxDrawingLimits() but these values are returned as either millimetres

or the current drawing units. The image will have a size defined in pixels, this

value being calculated by using the resolution value of 72 dots per inch or by

calling gEnqPixelResolution(). The image size can be changed using the

command gSetDrawingLimits(), but the size must be in current drawing units.

Multiple Frames

The driver does not recognise multiple images within the application so only the

first image will be stored. (i.e. up to the first call to gNewDrawing() after any

drawing routines).

Intermediate Vector File

This driver uses an internal GINO vector to raster pre-processor to create the

output for the device which contains a fixed sized memory area into which the

image is rasterized.

SAVDRA and SAVPIC Metafile

Device Nominations

Nomination Routine Description of Device

A gSavdra() GINO’s proprietary metafile (Drawings that have one or more pictures)

B gSavpic() GINO’s proprietary metafile (To create segment libraries of objects)

830

SAVDRA and SAVPIC Metafile DEVICE DRIVERS

Device Characteristics

A & B

Maximum Width No limit

Maximum Height No limit

Default Width (mm) 400.0 (-200.0 to +200.0)

Default Height (mm) 400.0 (-200.0 to +200.0)

Colours / Pens 255

Colour Palette Dynamic

Broken Linestyles 16

Drawing Modes No

Thick Lines Yes

Line Ends Yes

Arcs Yes

Symbols Yes

Fonts 1

Character Sizes Any & 4 Pseudo-hardware in multiples of 1.5mm square

Character Angles Any

Italic Characters Any angle

Polygonal Filling Yes (Solid and any hatch style)

Segments Yes

Image Handling No

Clipping No

Window/Device Titling Yes

There are two nomination routines for the SAVDRA metafile depending on the

intended use of the picture information.

In general, gSavdra() is used for storing complete drawings. All the current

drawing modes are stored and so the same drawing can be reproduced exactly as

specified on any other device.

Alternatively, gSavpic() is designed to store picture segments for subsequent use

as library objects. A minimum of information is stored in the file, this being the

vector part of the segment (i.e. coordinates). It is assumed that qualifiers such as

object size and drawing attributes will be provided by the interpreting program.

831

DEVICE DRIVERS SAVDRA and SAVPIC Metafile

Device Limits

Unlike most device drivers, the drawing area has its origin at the centre.

Therefore setting the drawing limits using the routine gSetDrawingLimits(),

defines limits that represent the positive quadrant of the complete drawing area.

For example, setting the limits to limit.xpap by limit.ypap defines an effective

drawing area of 2*xpap by 2*ypap. The device limits are thus defined to be

-xpap, +xpap and -ypap, +ypap.

The routines gSetWindow2D() or gSetWindow3D() can be used to restrict output

to the positive quadrant of the complete drawing area.

Metafile Composition

Multiple drawings in the gSavdra() format metafile can be separated using the

gNewDrawing() routine.

Whilst most appropriate in the gSavpic() format, either form can contain multiple

segments using the gOpenSeg() and gCloseSeg() routine. Any drawing not

contained in a segment is added to segment zero.

File Format

The SAVDRA metafile records all graphical data generated by GINO. The file is

written in records of up to 72 characters according to the ANSI printable

character set (ie, ASCII codes 32-126).

832

SAVDRA and SAVPIC Metafile DEVICE DRIVERS

Savdra Device Limits

Windows Metafile (WMF)

Device Nominations

Nomination Routine Description of Device

A gWmf (idpi, iwid, iheight) Standard metafile format

B gWmfp(idpi, ixoff, iyoff, iwidth, iheight) Placeable metafile format

Device Characteristics

A and B

Maximum Width unlimited

Maximum Height unlimited

Default Width width dots

Default Height height dots

Colours / Pens 255

Colour Palette Static (default) or Direct

Broken Line Styles No

Drawing Modes 10 (XOR)

Thick Lines Yes

Line Ends No

Arcs No

Symbols No

Fonts 100, 101, 102, 150 (Arial), 151 (TimesNewRoman) and Weights -7 to 7

Character Sizes Any + 4 Pseudo-hardware in multiples of 8 pixels square

Character Angles Any

Italic Characters Yes (between 10 and 20�)

Polygonal Filling Rectangles and single polygons - solid only

Segments No

Image Handling Output only

Clipping No

The WMF file format is used extensively within Microsoft Windows applications

for storing vector based pictures. There are two formats, standard and placeable

each of which can be generated on any platform with the two nomination routines

provided with this driver.

833

DEVICE DRIVERS Windows Metafile (WMF)

The standard metafile (gWmf()) contains no scaling information and the dpi

argument is required only to supply a scaling factor for GINO drawing purposes.

Thus the drawing area as far as GINO is concerned is wid x height dots with dpi

dots per inch, but the metafile simply contains a drawing area of wid x height

dots. All arguments are integer.

e.g. If your drawing is approximately A4 size (11" x 8"), and you will be viewing

the resulting file in VGA mode (640 x 480), an example call would be:

gWmf(60,640,480)

The placeable metafile (gWmfp()) contains a prefix header containing offset, size

and scaling information and this format is required by many Windows

applications. xoff, yoff specify the offset from the top-left corner and by default

would be set to 0,0.

Multiple Frames

The WMF file format does not recognise multiple frames and therefore

gNewDrawing() has no effect.

Character Fonts

The final form of the font face will depend on the typefaces available when

interpreting the WMF file.

834

Windows Metafile (WMF) DEVICE DRIVERS

Appendix C
FONT TABLES

Font Tables Introduction

This section contains tables for the registered software and symbol fonts that are

accessible through the gSetCharFont() and gDrawMarker() routines. Details of

hardware fonts that may be available on the current output device are found in

Appendix B.

835

FONT TABLES Font Tables Introduction

The Font Tables

836

The Font Tables FONT TABLES

R
o
m
a
n
S
im

p
le
x

S
o
ft
w
a
re

F
o
n
t
1

0 1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
0
0

1
0
0
1

1
0
0
2

1
0
0
3

1
0
0
4

1
0
0
5

1
0
0
6

1
0
0
7

1
0
0
8

1
0
0
9

1
0
1
0

1
0
11

1
0
1
2

1
0
1
3

1
0
1
4

1
0
1
5

1
0
1
6

1
0
1
7

1
0
1
8

1
0
1
9

1
0
2
0

1
0
2
1

1
0
2
2

1
0
2
3

1
0
2
4

1
0
2
5

1
0
2
6

1
0
2
7

1
0
2
8

1
0
2
9

1
0
3
0

1
0
3
1

1
0
3
2

1
0
3
3

1
0
3
4

1
0
3
5

1
0
3
6

1
0
3
7

1
0
3
8

1
0
3
9

1
0
4
0

1
0
4
1

1
0
4
2

1
0
4
3

1
0
4
4

1
0
4
5

1
0
4
6

1
0
4
7

1
0
4
8

1
0
4
9

1
0
5
0

1
0
5
1

1
0
5
2

1
0
5
3

1
0
5
4

1
0
5
5

1
0
5
6

1
0
5
7

1
0
5
8

1
0
5
9

1
0
6
0

1
0
6
1

1
0
6
2

1
0
6
3

1
0
6
4

1
0
6
5

1
0
6
6

1
0
6
7

1
0
6
8

1
0
6
9

1
0
7
0

1
0
7
1

1
0
7
2

1
0
7
3

1
0
7
4

1
0
7
5

1
0
7
6

1
0
7
7

1
0
7
8

1
0
7
9

1
0
8
0

1
0
8
1

1
0
8
2

1
0
8
3

1
0
8
4

1
0
8
5

1
0
8
6

1
0
8
7

1
0
8
8

1
0
8
9

1
0
9
0

1
0
9
1

1
0
9
2

1
0
9
3

1
0
9
4

1
0
9
5

1
0
9
6

1
0
9
7

1
0
9
8

1
0
9
9

1
1
0
0

1
1
0
1

1
1
0
2

1
1
0
3

1
1
0
4

1
1
0
5

1
1
0
6

1
1
0
7

1
1
0
8

1
1
0
9

1
1
1
0

1
1
11

1
1
1
2

1
1
1
3

1
1
1
4

1
1
1
5

1
1
1
6

1
1
1
7

1
1
1
8

1
1
1
9

1
1
2
0

1
1
2
1

1
1
2
2

1
1
2
3

1
1
2
4

1
1
2
5

1
1
2
6

1
1
2
7

D
e
fa
u
lt

S
o
ft
w
a
re

F
o
n
t
0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

837

FONT TABLES The Font Tables

R
o
m
a
n
C
o
m
p
le
x

S
o
ft
w
a
re

F
o
n
t
3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

3
0
0
0

3
0
0
1

3
0
0
2

3
0
0
3

3
0
0
4

3
0
0
5

3
0
0
6

3
0
0
7

3
0
0
8

3
0
0
9

3
0
1
0

3
0
1
1

3
0
1
2

3
0
1
3

3
0
1
4

3
0
1
5

3
0
1
6

3
0
1
7

3
0
1
8

3
0
1
9

3
0
2
0

3
0
2
1

3
0
2
2

3
0
2
3

3
0
2
4

3
0
2
5

3
0
2
6

3
0
2
7

3
0
2
8

3
0
2
9

3
0
3
0

3
0
3
1

3
0
3
2

3
0
3
3

3
0
3
4

3
0
3
5

3
0
3
6

3
0
3
7

3
0
3
8

3
0
3
9

3
0
4
0

3
0
4
1

3
0
4
2

3
0
4
3

3
0
4
4

3
0
4
5

3
0
4
6

3
0
4
7

3
0
4
8

3
0
4
9

3
0
5
0

3
0
5
1

3
0
5
2

3
0
5
3

3
0
5
4

3
0
5
5

3
0
5
6

3
0
5
7

3
0
5
8

3
0
5
9

3
0
6
0

3
0
6
1

3
0
6
2

3
0
6
3

3
0
6
4

3
0
6
5

3
0
6
6

3
0
6
7

3
0
6
8

3
0
6
9

3
0
7
0

3
0
7
1

3
0
7
2

3
0
7
3

3
0
7
4

3
0
7
5

3
0
7
6

3
0
7
7

3
0
7
8

3
0
7
9

3
0
8
0

3
0
8
1

3
0
8
2

3
0
8
3

3
0
8
4

3
0
8
5

3
0
8
6

3
0
8
7

3
0
8
8

3
0
8
9

3
0
9
0

3
0
9
1

3
0
9
2

3
0
9
3

3
0
9
4

3
0
9
5

3
0
9
6

3
0
9
7

3
0
9
8

3
0
9
9

3
1
0
0

3
1
0
1

3
1
0
2

3
1
0
3

3
1
0
4

3
1
0
5

3
1
0
6

3
1
0
7

3
1
0
8

3
1
0
9

3
1
1
0

3
1
1
1

3
1
1
2

3
1
1
3

3
1
1
4

3
1
1
5

3
1
1
6

3
1
1
7

3
1
1
8

3
1
1
9

3
1
2
0

3
1
2
1

3
1
2
2

3
1
2
3

3
1
2
4

3
1
2
5

3
1
2
6

3
1
2
7

R
o
m
a
n
D
u
p
le
x

S
o
ft
w
a
re

F
o
n
t
2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

2
0
2
1

2
0
2
2

2
0
2
3

2
0
2
4

2
0
2
5

2
0
2
6

2
0
2
7

2
0
2
8

2
0
2
9

2
0
3
0

2
0
3
1

2
0
3
2

2
0
3
3

2
0
3
4

2
0
3
5

2
0
3
6

2
0
3
7

2
0
3
8

2
0
3
9

2
0
4
0

2
0
4
1

2
0
4
2

2
0
4
3

2
0
4
4

2
0
4
5

2
0
4
6

2
0
4
7

2
0
4
8

2
0
4
9

2
0
5
0

2
0
5
1

2
0
5
2

2
0
5
3

2
0
5
4

2
0
5
5

2
0
5
6

2
0
5
7

2
0
5
8

2
0
5
9

2
0
6
0

2
0
6
1

2
0
6
2

2
0
6
3

2
0
6
4

2
0
6
5

2
0
6
6

2
0
6
7

2
0
6
8

2
0
6
9

2
0
7
0

2
0
7
1

2
0
7
2

2
0
7
3

2
0
7
4

2
0
7
5

2
0
7
6

2
0
7
7

2
0
7
8

2
0
7
9

2
0
8
0

2
0
8
1

2
0
8
2

2
0
8
3

2
0
8
4

2
0
8
5

2
0
8
6

2
0
8
7

2
0
8
8

2
0
8
9

2
0
9
0

2
0
9
1

2
0
9
2

2
0
9
3

2
0
9
4

2
0
9
5

2
0
9
6

2
0
9
7

2
0
9
8

2
0
9
9

2
1
0
0

2
1
0
1

2
1
0
2

2
1
0
3

2
1
0
4

2
1
0
5

2
1
0
6

2
1
0
7

2
1
0
8

2
1
0
9

2
1
1
0

2
1
1
1

2
1
1
2

2
1
1
3

2
1
1
4

2
1
1
5

2
1
1
6

2
1
1
7

2
1
1
8

2
1
1
9

2
1
2
0

2
1
2
1

2
1
2
2

2
1
2
3

2
1
2
4

2
1
2
5

2
1
2
6

2
1
2
7

838

The Font Tables FONT TABLES

It
a
li
c
C
o
m
p
le
x

S
o
ft
w
a
re

F
o
n
t
5

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

5
0
0
0

5
0
0
1

5
0
0
2

5
0
0
3

5
0
0
4

5
0
0
5

5
0
0
6

5
0
0
7

5
0
0
8

5
0
0
9

5
0
1
0

5
0
1
1

5
0
1
2

5
0
1
3

5
0
1
4

5
0
1
5

5
0
1
6

5
0
1
7

5
0
1
8

5
0
1
9

5
0
2
0

5
0
2
1

5
0
2
2

5
0
2
3

5
0
2
4

5
0
2
5

5
0
2
6

5
0
2
7

5
0
2
8

5
0
2
9

5
0
3
0

5
0
3
1

5
0
3
2

5
0
3
3

5
0
3
4

5
0
3
5

5
0
3
6

5
0
3
7

5
0
3
8

5
0
3
9

5
0
4
0

5
0
4
1

5
0
4
2

5
0
4
3

5
0
4
4

5
0
4
5

5
0
4
6

5
0
4
7

5
0
4
8

5
0
4
9

5
0
5
0

5
0
5
1

5
0
5
2

5
0
5
3

5
0
5
4

5
0
5
5

5
0
5
6

5
0
5
7

5
0
5
8

5
0
5
9

5
0
6
0

5
0
6
1

5
0
6
2

5
0
6
3

5
0
6
4

5
0
6
5

5
0
6
6

5
0
6
7

5
0
6
8

5
0
6
9

5
0
7
0

5
0
7
1

5
0
7
2

5
0
7
3

5
0
7
4

5
0
7
5

5
0
7
6

5
0
7
7

5
0
7
8

5
0
7
9

5
0
8
0

5
0
8
1

5
0
8
2

5
0
8
3

5
0
8
4

5
0
8
5

5
0
8
6

5
0
8
7

5
0
8
8

5
0
8
9

5
0
9
0

5
0
9
1

5
0
9
2

5
0
9
3

5
0
9
4

5
0
9
5

5
0
9
6

5
0
9
7

5
0
9
8

5
0
9
9

5
1
0
0

5
1
0
1

5
1
0
2

5
1
0
3

5
1
0
4

5
1
0
5

5
1
0
6

5
1
0
7

5
1
0
8

5
1
0
9

5
1
1
0

5
1
1
1

5
1
1
2

5
1
1
3

5
1
1
4

5
1
1
5

5
1
1
6

5
1
1
7

5
1
1
8

5
1
1
9

5
1
2
0

5
1
2
1

5
1
2
2

5
1
2
3

5
1
2
4

5
1
2
5

5
1
2
6

5
1
2
7

R
o
m
a
n
T
ri
p
le
x

S
o
ft
w
a
re

F
o
n
t
4

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

4
0
0
0

4
0
0
1

4
0
0
2

4
0
0
3

4
0
0
4

4
0
0
5

4
0
0
6

4
0
0
7

4
0
0
8

4
0
0
9

4
0
1
0

4
0
1
1

4
0
1
2

4
0
1
3

4
0
1
4

4
0
1
5

4
0
1
6

4
0
1
7

4
0
1
8

4
0
1
9

4
0
2
0

4
0
2
1

4
0
2
2

4
0
2
3

4
0
2
4

4
0
2
5

4
0
2
6

4
0
2
7

4
0
2
8

4
0
2
9

4
0
3
0

4
0
3
1

4
0
3
2

4
0
3
3

4
0
3
4

4
0
3
5

4
0
3
6

4
0
3
7

4
0
3
8

4
0
3
9

4
0
4
0

4
0
4
1

4
0
4
2

4
0
4
3

4
0
4
4

4
0
4
5

4
0
4
6

4
0
4
7

4
0
4
8

4
0
4
9

4
0
5
0

4
0
5
1

4
0
5
2

4
0
5
3

4
0
5
4

4
0
5
5

4
0
5
6

4
0
5
7

4
0
5
8

4
0
5
9

4
0
6
0

4
0
6
1

4
0
6
2

4
0
6
3

4
0
6
4

4
0
6
5

4
0
6
6

4
0
6
7

4
0
6
8

4
0
6
9

4
0
7
0

4
0
7
1

4
0
7
2

4
0
7
3

4
0
7
4

4
0
7
5

4
0
7
6

4
0
7
7

4
0
7
8

4
0
7
9

4
0
8
0

4
0
8
1

4
0
8
2

4
0
8
3

4
0
8
4

4
0
8
5

4
0
8
6

4
0
8
7

4
0
8
8

4
0
8
9

4
0
9
0

4
0
9
1

4
0
9
2

4
0
9
3

4
0
9
4

4
0
9
5

4
0
9
6

4
0
9
7

4
0
9
8

4
0
9
9

4
1
0
0

4
1
0
1

4
1
0
2

4
1
0
3

4
1
0
4

4
1
0
5

4
1
0
6

4
1
0
7

4
1
0
8

4
1
0
9

4
1
1
0

4
1
1
1

4
1
1
2

4
1
1
3

4
1
1
4

4
1
1
5

4
1
1
6

4
1
1
7

4
1
1
8

4
1
1
9

4
1
2
0

4
1
2
1

4
1
2
2

4
1
2
3

4
1
2
4

4
1
2
5

4
1
2
6

4
1
2
7

839

FONT TABLES The Font Tables

S
c
ri
p
t
S
im

p
le
x

S
o
ft
w
a
re

F
o
n
t
7

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
0
0
0

7
0
0
1

7
0
0
2

7
0
0
3

7
0
0
4

7
0
0
5

7
0
0
6

7
0
0
7

7
0
0
8

7
0
0
9

7
0
1
0

7
0
1
1

7
0
1
2

7
0
1
3

7
0
1
4

7
0
1
5

7
0
1
6

7
0
1
7

7
0
1
8

7
0
1
9

7
0
2
0

7
0
2
1

7
0
2
2

7
0
2
3

7
0
2
4

7
0
2
5

7
0
2
6

7
0
2
7

7
0
2
8

7
0
2
9

7
0
3
0

7
0
3
1

7
0
3
2

7
0
3
3

7
0
3
4

7
0
3
5

7
0
3
6

7
0
3
7

7
0
3
8

7
0
3
9

7
0
4
0

7
0
4
1

7
0
4
2

7
0
4
3

7
0
4
4

7
0
4
5

7
0
4
6

7
0
4
7

7
0
4
8

7
0
4
9

7
0
5
0

7
0
5
1

7
0
5
2

7
0
5
3

7
0
5
4

7
0
5
5

7
0
5
6

7
0
5
7

7
0
5
8

7
0
5
9

7
0
6
0

7
0
6
1

7
0
6
2

7
0
6
3

7
0
6
4

7
0
6
5

7
0
6
6

7
0
6
7

7
0
6
8

7
0
6
9

7
0
7
0

7
0
7
1

7
0
7
2

7
0
7
3

7
0
7
4

7
0
7
5

7
0
7
6

7
0
7
7

7
0
7
8

7
0
7
9

7
0
8
0

7
0
8
1

7
0
8
2

7
0
8
3

7
0
8
4

7
0
8
5

7
0
8
6

7
0
8
7

7
0
8
8

7
0
8
9

7
0
9
0

7
0
9
1

7
0
9
2

7
0
9
3

7
0
9
4

7
0
9
5

7
0
9
6

7
0
9
7

7
0
9
8

7
0
9
9

7
1
0
0

7
1
0
1

7
1
0
2

7
1
0
3

7
1
0
4

7
1
0
5

7
1
0
6

7
1
0
7

7
1
0
8

7
1
0
9

7
1
1
0

7
1
1
1

7
1
1
2

7
1
1
3

7
1
1
4

7
1
1
5

7
1
1
6

7
1
1
7

7
1
1
8

7
1
1
9

7
1
2
0

7
1
2
1

7
1
2
2

7
1
2
3

7
1
2
4

7
1
2
5

7
1
2
6

7
1
2
7

It
a
li
c
T
ri
p
le
x

S
o
ft
w
a
re

F
o
n
t
6

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

6
0
0
0

6
0
0
1

6
0
0
2

6
0
0
3

6
0
0
4

6
0
0
5

6
0
0
6

6
0
0
7

6
0
0
8

6
0
0
9

6
0
1
0

6
0
1
1

6
0
1
2

6
0
1
3

6
0
1
4

6
0
1
5

6
0
1
6

6
0
1
7

6
0
1
8

6
0
1
9

6
0
2
0

6
0
2
1

6
0
2
2

6
0
2
3

6
0
2
4

6
0
2
5

6
0
2
6

6
0
2
7

6
0
2
8

6
0
2
9

6
0
3
0

6
0
3
1

6
0
3
2

6
0
3
3

6
0
3
4

6
0
3
5

6
0
3
6

6
0
3
7

6
0
3
8

6
0
3
9

6
0
4
0

6
0
4
1

6
0
4
2

6
0
4
3

6
0
4
4

6
0
4
5

6
0
4
6

6
0
4
7

6
0
4
8

6
0
4
9

6
0
5
0

6
0
5
1

6
0
5
2

6
0
5
3

6
0
5
4

6
0
5
5

6
0
5
6

6
0
5
7

6
0
5
8

6
0
5
9

6
0
6
0

6
0
6
1

6
0
6
2

6
0
6
3

6
0
6
4

6
0
6
5

6
0
6
6

6
0
6
7

6
0
6
8

6
0
6
9

6
0
7
0

6
0
7
1

6
0
7
2

6
0
7
3

6
0
7
4

6
0
7
5

6
0
7
6

6
0
7
7

6
0
7
8

6
0
7
9

6
0
8
0

6
0
8
1

6
0
8
2

6
0
8
3

6
0
8
4

6
0
8
5

6
0
8
6

6
0
8
7

6
0
8
8

6
0
8
9

6
0
9
0

6
0
9
1

6
0
9
2

6
0
9
3

6
0
9
4

6
0
9
5

6
0
9
6

6
0
9
7

6
0
9
8

6
0
9
9

6
1
0
0

6
1
0
1

6
1
0
2

6
1
0
3

6
1
0
4

6
1
0
5

6
1
0
6

6
1
0
7

6
1
0
8

6
1
0
9

6
1
1
0

6
1
1
1

6
1
1
2

6
1
1
3

6
1
1
4

6
1
1
5

6
1
1
6

6
1
1
7

6
1
1
8

6
1
1
9

6
1
2
0

6
1
2
1

6
1
2
2

6
1
2
3

6
1
2
4

6
1
2
5

6
1
2
6

6
1
2
7

840

The Font Tables FONT TABLES

G
re
e
k
S
im

p
le
x

S
o
ft
w
a
re

F
o
n
t
9

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

9
0
0
0

9
0
0
1

9
0
0
2

9
0
0
3

9
0
0
4

9
0
0
5

9
0
0
6

9
0
0
7

9
0
0
8

9
0
0
9

9
0
1
0

9
0
1
1

9
0
1
2

9
0
1
3

9
0
1
4

9
0
1
5

9
0
1
6

9
0
1
7

9
0
1
8

9
0
1
9

9
0
2
0

9
0
2
1

9
0
2
2

9
0
2
3

9
0
2
4

9
0
2
5

9
0
2
6

9
0
2
7

9
0
2
8

9
0
2
9

9
0
3
0

9
0
3
1

9
0
3
2

9
0
3
3

9
0
3
4

9
0
3
5

9
0
3
6

9
0
3
7

9
0
3
8

9
0
3
9

9
0
4
0

9
0
4
1

9
0
4
2

9
0
4
3

9
0
4
4

9
0
4
5

9
0
4
6

9
0
4
7

9
0
4
8

9
0
4
9

9
0
5
0

9
0
5
1

9
0
5
2

9
0
5
3

9
0
5
4

9
0
5
5

9
0
5
6

9
0
5
7

9
0
5
8

9
0
5
9

9
0
6
0

9
0
6
1

9
0
6
2

9
0
6
3

9
0
6
4

9
0
6
5

9
0
6
6

9
0
6
7

9
0
6
8

9
0
6
9

9
0
7
0

9
0
7
1

9
0
7
2

9
0
7
3

9
0
7
4

9
0
7
5

9
0
7
6

9
0
7
7

9
0
7
8

9
0
7
9

9
0
8
0

9
0
8
1

9
0
8
2

9
0
8
3

9
0
8
4

9
0
8
5

9
0
8
6

9
0
8
7

9
0
8
8

9
0
8
9

9
0
9
0

9
0
9
1

9
0
9
2

9
0
9
3

9
0
9
4

9
0
9
5

9
0
9
6

9
0
9
7

9
0
9
8

9
0
9
9

9
1
0
0

9
1
0
1

9
1
0
2

9
1
0
3

9
1
0
4

9
1
0
5

9
1
0
6

9
1
0
7

9
1
0
8

9
1
0
9

9
1
1
0

9
1
1
1

9
1
1
2

9
1
1
3

9
1
1
4

9
1
1
5

9
1
1
6

9
1
1
7

9
1
1
8

9
1
1
9

9
1
2
0

9
1
2
1

9
1
2
2

9
1
2
3

9
1
2
4

9
1
2
5

9
1
2
6

9
1
2
7

S
c
ri
p
t
C
o
m
p
le
x

S
o
ft
w
a
re

F
o
n
t
8

0 1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

8
0
0
0

8
0
0
1

8
0
0
2

8
0
0
3

8
0
0
4

8
0
0
5

8
0
0
6

8
0
0
7

8
0
0
8

8
0
0
9

8
0
1
0

8
0
1
1

8
0
1
2

8
0
1
3

8
0
1
4

8
0
1
5

8
0
1
6

8
0
1
7

8
0
1
8

8
0
1
9

8
0
2
0

8
0
2
1

8
0
2
2

8
0
2
3

8
0
2
4

8
0
2
5

8
0
2
6

8
0
2
7

8
0
2
8

8
0
2
9

8
0
3
0

8
0
3
1

8
0
3
2

8
0
3
3

8
0
3
4

8
0
3
5

8
0
3
6

8
0
3
7

8
0
3
8

8
0
3
9

8
0
4
0

8
0
4
1

8
0
4
2

8
0
4
3

8
0
4
4

8
0
4
5

8
0
4
6

8
0
4
7

8
0
4
8

8
0
4
9

8
0
5
0

8
0
5
1

8
0
5
2

8
0
5
3

8
0
5
4

8
0
5
5

8
0
5
6

8
0
5
7

8
0
5
8

8
0
5
9

8
0
6
0

8
0
6
1

8
0
6
2

8
0
6
3

8
0
6
4

8
0
6
5

8
0
6
6

8
0
6
7

8
0
6
8

8
0
6
9

8
0
7
0

8
0
7
1

8
0
7
2

8
0
7
3

8
0
7
4

8
0
7
5

8
0
7
6

8
0
7
7

8
0
7
8

8
0
7
9

8
0
8
0

8
0
8
1

8
0
8
2

8
0
8
3

8
0
8
4

8
0
8
5

8
0
8
6

8
0
8
7

8
0
8
8

8
0
8
9

8
0
9
0

8
0
9
1

8
0
9
2

8
0
9
3

8
0
9
4

8
0
9
5

8
0
9
6

8
0
9
7

8
0
9
8

8
0
9
9

8
1
0
0

8
1
0
1

8
1
0
2

8
1
0
3

8
1
0
4

8
1
0
5

8
1
0
6

8
1
0
7

8
1
0
8

8
1
0
9

8
1
1
0

8
1
1
1

8
1
1
2

8
1
1
3

8
1
1
4

8
1
1
5

8
1
1
6

8
1
1
7

8
1
1
8

8
1
1
9

8
1
2
0

8
1
2
1

8
1
2
2

8
1
2
3

8
1
2
4

8
1
2
5

8
1
2
6

8
1
2
7

841

FONT TABLES The Font Tables

G
o
th
ic
E
n
g
li
s
h

S
o
ft
w
a
re

F
o
n
t
1
1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
1
0
0
0

1
1
0
0
1

1
1
0
0
2

1
1
0
0
3

1
1
0
0
4

1
1
0
0
5

1
1
0
0
6

1
1
0
0
7

1
1
0
0
8

1
1
0
0
9

1
1
0
1
0

1
1
0
1
1

1
1
0
1
2

1
1
0
1
3

1
1
0
1
4

1
1
0
1
5

1
1
0
1
6

1
1
0
1
7

1
1
0
1
8

1
1
0
1
9

1
1
0
2
0

1
1
0
2
1

1
1
0
2
2

1
1
0
2
3

1
1
0
2
4

1
1
0
2
5

1
1
0
2
6

1
1
0
2
7

1
1
0
2
8

1
1
0
2
9

1
1
0
3
0

1
1
0
3
1

1
1
0
3
2

1
1
0
3
3

1
1
0
3
4

1
1
0
3
5

1
1
0
3
6

1
1
0
3
7

1
1
0
3
8

1
1
0
3
9

1
1
0
4
0

1
1
0
4
1

1
1
0
4
2

1
1
0
4
3

1
1
0
4
4

1
1
0
4
5

1
1
0
4
6

1
1
0
4
7

1
1
0
4
8

1
1
0
4
9

1
1
0
5
0

1
1
0
5
1

1
1
0
5
2

1
1
0
5
3

1
1
0
5
4

1
1
0
5
5

1
1
0
5
6

1
1
0
5
7

1
1
0
5
8

1
1
0
5
9

1
1
0
6
0

1
1
0
6
1

1
1
0
6
2

1
1
0
6
3

1
1
0
6
4

1
1
0
6
5

1
1
0
6
6

1
1
0
6
7

1
1
0
6
8

1
1
0
6
9

1
1
0
7
0

1
1
0
7
1

1
1
0
7
2

1
1
0
7
3

1
1
0
7
4

1
1
0
7
5

1
1
0
7
6

1
1
0
7
7

1
1
0
7
8

1
1
0
7
9

1
1
0
8
0

1
1
0
8
1

1
1
0
8
2

1
1
0
8
3

1
1
0
8
4

1
1
0
8
5

1
1
0
8
6

1
1
0
8
7

1
1
0
8
8

1
1
0
8
9

1
1
0
9
0

1
1
0
9
1

1
1
0
9
2

1
1
0
9
3

1
1
0
9
4

1
1
0
9
5

1
1
0
9
6

1
1
0
9
7

1
1
0
9
8

1
1
0
9
9

1
1
1
0
0

1
1
1
0
1

1
1
1
0
2

1
1
1
0
3

1
1
1
0
4

1
1
1
0
5

1
1
1
0
6

1
1
1
0
7

1
1
1
0
8

1
1
1
0
9

1
1
1
1
0

1
1
1
1
1

1
1
1
1
2

1
1
1
1
3

1
1
1
1
4

1
1
1
1
5

1
1
1
1
6

1
1
1
1
7

1
1
1
1
8

1
1
1
1
9

1
1
1
2
0

1
1
1
2
1

1
1
1
2
2

1
1
1
2
3

1
1
1
2
4

1
1
1
2
5

1
1
1
2
6

1
1
1
2
7

G
re
e
k
C
o
m
p
le
x

S
o
ft
w
a
re

F
o
n
t
1
0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
0
0
0

1
0
0
0
1

1
0
0
0
2

1
0
0
0
3

1
0
0
0
4

1
0
0
0
5

1
0
0
0
6

1
0
0
0
7

1
0
0
0
8

1
0
0
0
9

1
0
0
1
0

1
0
0
1
1

1
0
0
1
2

1
0
0
1
3

1
0
0
1
4

1
0
0
1
5

1
0
0
1
6

1
0
0
1
7

1
0
0
1
8

1
0
0
1
9

1
0
0
2
0

1
0
0
2
1

1
0
0
2
2

1
0
0
2
3

1
0
0
2
4

1
0
0
2
5

1
0
0
2
6

1
0
0
2
7

1
0
0
2
8

1
0
0
2
9

1
0
0
3
0

1
0
0
3
1

1
0
0
3
2

1
0
0
3
3

1
0
0
3
4

1
0
0
3
5

1
0
0
3
6

1
0
0
3
7

1
0
0
3
8

1
0
0
3
9

1
0
0
4
0

1
0
0
4
1

1
0
0
4
2

1
0
0
4
3

1
0
0
4
4

1
0
0
4
5

1
0
0
4
6

1
0
0
4
7

1
0
0
4
8

1
0
0
4
9

1
0
0
5
0

1
0
0
5
1

1
0
0
5
2

1
0
0
5
3

1
0
0
5
4

1
0
0
5
5

1
0
0
5
6

1
0
0
5
7

1
0
0
5
8

1
0
0
5
9

1
0
0
6
0

1
0
0
6
1

1
0
0
6
2

1
0
0
6
3

1
0
0
6
4

1
0
0
6
5

1
0
0
6
6

1
0
0
6
7

1
0
0
6
8

1
0
0
6
9

1
0
0
7
0

1
0
0
7
1

1
0
0
7
2

1
0
0
7
3

1
0
0
7
4

1
0
0
7
5

1
0
0
7
6

1
0
0
7
7

1
0
0
7
8

1
0
0
7
9

1
0
0
8
0

1
0
0
8
1

1
0
0
8
2

1
0
0
8
3

1
0
0
8
4

1
0
0
8
5

1
0
0
8
6

1
0
0
8
7

1
0
0
8
8

1
0
0
8
9

1
0
0
9
0

1
0
0
9
1

1
0
0
9
2

1
0
0
9
3

1
0
0
9
4

1
0
0
9
5

1
0
0
9
6

1
0
0
9
7

1
0
0
9
8

1
0
0
9
9

1
0
1
0
0

1
0
1
0
1

1
0
1
0
2

1
0
1
0
3

1
0
1
0
4

1
0
1
0
5

1
0
1
0
6

1
0
1
0
7

1
0
1
0
8

1
0
1
0
9

1
0
1
1
0

1
0
1
1
1

1
0
1
1
2

1
0
1
1
3

1
0
1
1
4

1
0
1
1
5

1
0
1
1
6

1
0
1
1
7

1
0
1
1
8

1
0
1
1
9

1
0
1
2
0

1
0
1
2
1

1
0
1
2
2

1
0
1
2
3

1
0
1
2
4

1
0
1
2
5

1
0
1
2
6

1
0
1
2
7

842

The Font Tables FONT TABLES

G
o
th
ic

It
a
li
a
n

S
o
ft
w
a
re

F
o
n
t
1
3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
3
0
0
0

1
3
0
0
1

1
3
0
0
2

1
3
0
0
3

1
3
0
0
4

1
3
0
0
5

1
3
0
0
6

1
3
0
0
7

1
3
0
0
8

1
3
0
0
9

1
3
0
1
0

1
3
0
1
1

1
3
0
1
2

1
3
0
1
3

1
3
0
1
4

1
3
0
1
5

1
3
0
1
6

1
3
0
1
7

1
3
0
1
8

1
3
0
1
9

1
3
0
2
0

1
3
0
2
1

1
3
0
2
2

1
3
0
2
3

1
3
0
2
4

1
3
0
2
5

1
3
0
2
6

1
3
0
2
7

1
3
0
2
8

1
3
0
2
9

1
3
0
3
0

1
3
0
3
1

1
3
0
3
2

1
3
0
3
3

1
3
0
3
4

1
3
0
3
5

1
3
0
3
6

1
3
0
3
7

1
3
0
3
8

1
3
0
3
9

1
3
0
4
0

1
3
0
4
1

1
3
0
4
2

1
3
0
4
3

1
3
0
4
4

1
3
0
4
5

1
3
0
4
6

1
3
0
4
7

1
3
0
4
8

1
3
0
4
9

1
3
0
5
0

1
3
0
5
1

1
3
0
5
2

1
3
0
5
3

1
3
0
5
4

1
3
0
5
5

1
3
0
5
6

1
3
0
5
7

1
3
0
5
8

1
3
0
5
9

1
3
0
6
0

1
3
0
6
1

1
3
0
6
2

1
3
0
6
3

1
3
0
6
4

1
3
0
6
5

1
3
0
6
6

1
3
0
6
7

1
3
0
6
8

1
3
0
6
9

1
3
0
7
0

1
3
0
7
1

1
3
0
7
2

1
3
0
7
3

1
3
0
7
4

1
3
0
7
5

1
3
0
7
6

1
3
0
7
7

1
3
0
7
8

1
3
0
7
9

1
3
0
8
0

1
3
0
8
1

1
3
0
8
2

1
3
0
8
3

1
3
0
8
4

1
3
0
8
5

1
3
0
8
6

1
3
0
8
7

1
3
0
8
8

1
3
0
8
9

1
3
0
9
0

1
3
0
9
1

1
3
0
9
2

1
3
0
9
3

1
3
0
9
4

1
3
0
9
5

1
3
0
9
6

1
3
0
9
7

1
3
0
9
8

1
3
0
9
9

1
3
1
0
0

1
3
1
0
1

1
3
1
0
2

1
3
1
0
3

1
3
1
0
4

1
3
1
0
5

1
3
1
0
6

1
3
1
0
7

1
3
1
0
8

1
3
1
0
9

1
3
1
1
0

1
3
1
1
1

1
3
1
1
2

1
3
1
1
3

1
3
1
1
4

1
3
1
1
5

1
3
1
1
6

1
3
1
1
7

1
3
1
1
8

1
3
1
1
9

1
3
1
2
0

1
3
1
2
1

1
3
1
2
2

1
3
1
2
3

1
3
1
2
4

1
3
1
2
5

1
3
1
2
6

1
3
1
2
7

G
o
th
ic

G
e
rm

a
n

S
o
ft
w
a
re

F
o
n
t
1
2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
2
0
0
0

1
2
0
0
1

1
2
0
0
2

1
2
0
0
3

1
2
0
0
4

1
2
0
0
5

1
2
0
0
6

1
2
0
0
7

1
2
0
0
8

1
2
0
0
9

1
2
0
1
0

1
2
0
1
1

1
2
0
1
2

1
2
0
1
3

1
2
0
1
4

1
2
0
1
5

1
2
0
1
6

1
2
0
1
7

1
2
0
1
8

1
2
0
1
9

1
2
0
2
0

1
2
0
2
1

1
2
0
2
2

1
2
0
2
3

1
2
0
2
4

1
2
0
2
5

1
2
0
2
6

1
2
0
2
7

1
2
0
2
8

1
2
0
2
9

1
2
0
3
0

1
2
0
3
1

1
2
0
3
2

1
2
0
3
3

1
2
0
3
4

1
2
0
3
5

1
2
0
3
6

1
2
0
3
7

1
2
0
3
8

1
2
0
3
9

1
2
0
4
0

1
2
0
4
1

1
2
0
4
2

1
2
0
4
3

1
2
0
4
4

1
2
0
4
5

1
2
0
4
6

1
2
0
4
7

1
2
0
4
8

1
2
0
4
9

1
2
0
5
0

1
2
0
5
1

1
2
0
5
2

1
2
0
5
3

1
2
0
5
4

1
2
0
5
5

1
2
0
5
6

1
2
0
5
7

1
2
0
5
8

1
2
0
5
9

1
2
0
6
0

1
2
0
6
1

1
2
0
6
2

1
2
0
6
3

1
2
0
6
4

1
2
0
6
5

1
2
0
6
6

1
2
0
6
7

1
2
0
6
8

1
2
0
6
9

1
2
0
7
0

1
2
0
7
1

1
2
0
7
2

1
2
0
7
3

1
2
0
7
4

1
2
0
7
5

1
2
0
7
6

1
2
0
7
7

1
2
0
7
8

1
2
0
7
9

1
2
0
8
0

1
2
0
8
1

1
2
0
8
2

1
2
0
8
3

1
2
0
8
4

1
2
0
8
5

1
2
0
8
6

1
2
0
8
7

1
2
0
8
8

1
2
0
8
9

1
2
0
9
0

1
2
0
9
1

1
2
0
9
2

1
2
0
9
3

1
2
0
9
4

1
2
0
9
5

1
2
0
9
6

1
2
0
9
7

1
2
0
9
8

1
2
0
9
9

1
2
1
0
0

1
2
1
0
1

1
2
1
0
2

1
2
1
0
3

1
2
1
0
4

1
2
1
0
5

1
2
1
0
6

1
2
1
0
7

1
2
1
0
8

1
2
1
0
9

1
2
1
1
0

1
2
1
1
1

1
2
1
1
2

1
2
1
1
3

1
2
1
1
4

1
2
1
1
5

1
2
1
1
6

1
2
1
1
7

1
2
1
1
8

1
2
1
1
9

1
2
1
2
0

1
2
1
2
1

1
2
1
2
2

1
2
1
2
3

1
2
1
2
4

1
2
1
2
5

1
2
1
2
6

1
2
1
2
7

843

FONT TABLES The Font Tables

S
w
is
s
S
o
li
d

S
o
ft
w
a
re

F
o
n
t
1
5

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
5
0
0
0

1
5
0
0
1

1
5
0
0
2

1
5
0
0
3

1
5
0
0
4

1
5
0
0
5

1
5
0
0
6

1
5
0
0
7

1
5
0
0
8

1
5
0
0
9

1
5
0
1
0

1
5
0
1
1

1
5
0
1
2

1
5
0
1
3

1
5
0
1
4

1
5
0
1
5

1
5
0
1
6

1
5
0
1
7

1
5
0
1
8

1
5
0
1
9

1
5
0
2
0

1
5
0
2
1

1
5
0
2
2

1
5
0
2
3

1
5
0
2
4

1
5
0
2
5

1
5
0
2
6

1
5
0
2
7

1
5
0
2
8

1
5
0
2
9

1
5
0
3
0

1
5
0
3
1

1
5
0
3
2

1
5
0
3
3

1
5
0
3
4

1
5
0
3
5

1
5
0
3
6

1
5
0
3
7

1
5
0
3
8

1
5
0
3
9

1
5
0
4
0

1
5
0
4
1

1
5
0
4
2

1
5
0
4
3

1
5
0
4
4

1
5
0
4
5

1
5
0
4
6

1
5
0
4
7

1
5
0
4
8

1
5
0
4
9

1
5
0
5
0

1
5
0
5
1

1
5
0
5
2

1
5
0
5
3

1
5
0
5
4

1
5
0
5
5

1
5
0
5
6

1
5
0
5
7

1
5
0
5
8

1
5
0
5
9

1
5
0
6
0

1
5
0
6
1

1
5
0
6
2

1
5
0
6
3

1
5
0
6
4

1
5
0
6
5

1
5
0
6
6

1
5
0
6
7

1
5
0
6
8

1
5
0
6
9

1
5
0
7
0

1
5
0
7
1

1
5
0
7
2

1
5
0
7
3

1
5
0
7
4

1
5
0
7
5

1
5
0
7
6

1
5
0
7
7

1
5
0
7
8

1
5
0
7
9

1
5
0
8
0

1
5
0
8
1

1
5
0
8
2

1
5
0
8
3

1
5
0
8
4

1
5
0
8
5

1
5
0
8
6

1
5
0
8
7

1
5
0
8
8

1
5
0
8
9

1
5
0
9
0

1
5
0
9
1

1
5
0
9
2

1
5
0
9
3

1
5
0
9
4

1
5
0
9
5

1
5
0
9
6

1
5
0
9
7

1
5
0
9
8

1
5
0
9
9

1
5
1
0
0

1
5
1
0
1

1
5
1
0
2

1
5
1
0
3

1
5
1
0
4

1
5
1
0
5

1
5
1
0
6

1
5
1
0
7

1
5
1
0
8

1
5
1
0
9

1
5
1
1
0

1
5
1
1
1

1
5
1
1
2

1
5
1
1
3

1
5
1
1
4

1
5
1
1
5

1
5
1
1
6

1
5
1
1
7

1
5
1
1
8

1
5
1
1
9

1
5
1
2
0

1
5
1
2
1

1
5
1
2
2

1
5
1
2
3

1
5
1
2
4

1
5
1
2
5

1
5
1
2
6

1
5
1
2
7

C
y
ri
ll
ic
C
o
m
p
le
x

S
o
ft
w
a
re

F
o
n
t
1
4

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
4
0
0
0

1
4
0
0
1

1
4
0
0
2

1
4
0
0
3

1
4
0
0
4

1
4
0
0
5

1
4
0
0
6

1
4
0
0
7

1
4
0
0
8

1
4
0
0
9

1
4
0
1
0

1
4
0
1
1

1
4
0
1
2

1
4
0
1
3

1
4
0
1
4

1
4
0
1
5

1
4
0
1
6

1
4
0
1
7

1
4
0
1
8

1
4
0
1
9

1
4
0
2
0

1
4
0
2
1

1
4
0
2
2

1
4
0
2
3

1
4
0
2
4

1
4
0
2
5

1
4
0
2
6

1
4
0
2
7

1
4
0
2
8

1
4
0
2
9

1
4
0
3
0

1
4
0
3
1

1
4
0
3
2

1
4
0
3
3

1
4
0
3
4

1
4
0
3
5

1
4
0
3
6

1
4
0
3
7

1
4
0
3
8

1
4
0
3
9

1
4
0
4
0

1
4
0
4
1

1
4
0
4
2

1
4
0
4
3

1
4
0
4
4

1
4
0
4
5

1
4
0
4
6

1
4
0
4
7

1
4
0
4
8

1
4
0
4
9

1
4
0
5
0

1
4
0
5
1

1
4
0
5
2

1
4
0
5
3

1
4
0
5
4

1
4
0
5
5

1
4
0
5
6

1
4
0
5
7

1
4
0
5
8

1
4
0
5
9

1
4
0
6
0

1
4
0
6
1

1
4
0
6
2

1
4
0
6
3

1
4
0
6
4

1
4
0
6
5

1
4
0
6
6

1
4
0
6
7

1
4
0
6
8

1
4
0
6
9

1
4
0
7
0

1
4
0
7
1

1
4
0
7
2

1
4
0
7
3

1
4
0
7
4

1
4
0
7
5

1
4
0
7
6

1
4
0
7
7

1
4
0
7
8

1
4
0
7
9

1
4
0
8
0

1
4
0
8
1

1
4
0
8
2

1
4
0
8
3

1
4
0
8
4

1
4
0
8
5

1
4
0
8
6

1
4
0
8
7

1
4
0
8
8

1
4
0
8
9

1
4
0
9
0

1
4
0
9
1

1
4
0
9
2

1
4
0
9
3

1
4
0
9
4

1
4
0
9
5

1
4
0
9
6

1
4
0
9
7

1
4
0
9
8

1
4
0
9
9

1
4
1
0
0

1
4
1
0
1

1
4
1
0
2

1
4
1
0
3

1
4
1
0
4

1
4
1
0
5

1
4
1
0
6

1
4
1
0
7

1
4
1
0
8

1
4
1
0
9

1
4
1
1
0

1
4
1
1
1

1
4
1
1
2

1
4
1
1
3

1
4
1
1
4

1
4
1
1
5

1
4
1
1
6

1
4
1
1
7

1
4
1
1
8

1
4
1
1
9

1
4
1
2
0

1
4
1
2
1

1
4
1
2
2

1
4
1
2
3

1
4
1
2
4

1
4
1
2
5

1
4
1
2
6

1
4
1
2
7

844

The Font Tables FONT TABLES

W
e
s
te
rn

S
o
ft
w
a
re

F
o
n
t
1
7

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
7
0
0
0

1
7
0
0
1

1
7
0
0
2

1
7
0
0
3

1
7
0
0
4

1
7
0
0
5

1
7
0
0
6

1
7
0
0
7

1
7
0
0
8

1
7
0
0
9

1
7
0
1
0

1
7
0
1
1

1
7
0
1
2

1
7
0
1
3

1
7
0
1
4

1
7
0
1
5

1
7
0
1
6

1
7
0
1
7

1
7
0
1
8

1
7
0
1
9

1
7
0
2
0

1
7
0
2
1

1
7
0
2
2

1
7
0
2
3

1
7
0
2
4

1
7
0
2
5

1
7
0
2
6

1
7
0
2
7

1
7
0
2
8

1
7
0
2
9

1
7
0
3
0

1
7
0
3
1

1
7
0
3
2

1
7
0
3
3

1
7
0
3
4

1
7
0
3
5

1
7
0
3
6

1
7
0
3
7

1
7
0
3
8

1
7
0
3
9

1
7
0
4
0

1
7
0
4
1

1
7
0
4
2

1
7
0
4
3

1
7
0
4
4

1
7
0
4
5

1
7
0
4
6

1
7
0
4
7

1
7
0
4
8

1
7
0
4
9

1
7
0
5
0

1
7
0
5
1

1
7
0
5
2

1
7
0
5
3

1
7
0
5
4

1
7
0
5
5

1
7
0
5
6

1
7
0
5
7

1
7
0
5
8

1
7
0
5
9

1
7
0
6
0

1
7
0
6
1

1
7
0
6
2

1
7
0
6
3

1
7
0
6
4

1
7
0
6
5

1
7
0
6
6

1
7
0
6
7

1
7
0
6
8

1
7
0
6
9

1
7
0
7
0

1
7
0
7
1

1
7
0
7
2

1
7
0
7
3

1
7
0
7
4

1
7
0
7
5

1
7
0
7
6

1
7
0
7
7

1
7
0
7
8

1
7
0
7
9

1
7
0
8
0

1
7
0
8
1

1
7
0
8
2

1
7
0
8
3

1
7
0
8
4

1
7
0
8
5

1
7
0
8
6

1
7
0
8
7

1
7
0
8
8

1
7
0
8
9

1
7
0
9
0

1
7
0
9
1

1
7
0
9
2

1
7
0
9
3

1
7
0
9
4

1
7
0
9
5

1
7
0
9
6

1
7
0
9
7

1
7
0
9
8

1
7
0
9
9

1
7
1
0
0

1
7
1
0
1

1
7
1
0
2

1
7
1
0
3

1
7
1
0
4

1
7
1
0
5

1
7
1
0
6

1
7
1
0
7

1
7
1
0
8

1
7
1
0
9

1
7
1
1
0

1
7
1
1
1

1
7
1
1
2

1
7
1
1
3

1
7
1
1
4

1
7
1
1
5

1
7
1
1
6

1
7
1
1
7

1
7
1
1
8

1
7
1
1
9

1
7
1
2
0

1
7
1
2
1

1
7
1
2
2

1
7
1
2
3

1
7
1
2
4

1
7
1
2
5

1
7
1
2
6

1
7
1
2
7

D
u
tc
h
S
o
li
d

S
o
ft
w
a
re

F
o
n
t
1
6

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
6
0
0
0

1
6
0
0
1

1
6
0
0
2

1
6
0
0
3

1
6
0
0
4

1
6
0
0
5

1
6
0
0
6

1
6
0
0
7

1
6
0
0
8

1
6
0
0
9

1
6
0
1
0

1
6
0
1
1

1
6
0
1
2

1
6
0
1
3

1
6
0
1
4

1
6
0
1
5

1
6
0
1
6

1
6
0
1
7

1
6
0
1
8

1
6
0
1
9

1
6
0
2
0

1
6
0
2
1

1
6
0
2
2

1
6
0
2
3

1
6
0
2
4

1
6
0
2
5

1
6
0
2
6

1
6
0
2
7

1
6
0
2
8

1
6
0
2
9

1
6
0
3
0

1
6
0
3
1

1
6
0
3
2

1
6
0
3
3

1
6
0
3
4

1
6
0
3
5

1
6
0
3
6

1
6
0
3
7

1
6
0
3
8

1
6
0
3
9

1
6
0
4
0

1
6
0
4
1

1
6
0
4
2

1
6
0
4
3

1
6
0
4
4

1
6
0
4
5

1
6
0
4
6

1
6
0
4
7

1
6
0
4
8

1
6
0
4
9

1
6
0
5
0

1
6
0
5
1

1
6
0
5
2

1
6
0
5
3

1
6
0
5
4

1
6
0
5
5

1
6
0
5
6

1
6
0
5
7

1
6
0
5
8

1
6
0
5
9

1
6
0
6
0

1
6
0
6
1

1
6
0
6
2

1
6
0
6
3

1
6
0
6
4

1
6
0
6
5

1
6
0
6
6

1
6
0
6
7

1
6
0
6
8

1
6
0
6
9

1
6
0
7
0

1
6
0
7
1

1
6
0
7
2

1
6
0
7
3

1
6
0
7
4

1
6
0
7
5

1
6
0
7
6

1
6
0
7
7

1
6
0
7
8

1
6
0
7
9

1
6
0
8
0

1
6
0
8
1

1
6
0
8
2

1
6
0
8
3

1
6
0
8
4

1
6
0
8
5

1
6
0
8
6

1
6
0
8
7

1
6
0
8
8

1
6
0
8
9

1
6
0
9
0

1
6
0
9
1

1
6
0
9
2

1
6
0
9
3

1
6
0
9
4

1
6
0
9
5

1
6
0
9
6

1
6
0
9
7

1
6
0
9
8

1
6
0
9
9

1
6
1
0
0

1
6
1
0
1

1
6
1
0
2

1
6
1
0
3

1
6
1
0
4

1
6
1
0
5

1
6
1
0
6

1
6
1
0
7

1
6
1
0
8

1
6
1
0
9

1
6
1
1
0

1
6
1
1
1

1
6
1
1
2

1
6
1
1
3

1
6
1
1
4

1
6
1
1
5

1
6
1
1
6

1
6
1
1
7

1
6
1
1
8

1
6
1
1
9

1
6
1
2
0

1
6
1
2
1

1
6
1
2
2

1
6
1
2
3

1
6
1
2
4

1
6
1
2
5

1
6
1
2
6

1
6
1
2
7

845

FONT TABLES The Font Tables

D
is
p
la
y

S
o
ft
w
a
re

F
o
n
t
1
9

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
9
0
0
0

1
9
0
0
1

1
9
0
0
2

1
9
0
0
3

1
9
0
0
4

1
9
0
0
5

1
9
0
0
6

1
9
0
0
7

1
9
0
0
8

1
9
0
0
9

1
9
0
1
0

1
9
0
1
1

1
9
0
1
2

1
9
0
1
3

1
9
0
1
4

1
9
0
1
5

1
9
0
1
6

1
9
0
1
7

1
9
0
1
8

1
9
0
1
9

1
9
0
2
0

1
9
0
2
1

1
9
0
2
2

1
9
0
2
3

1
9
0
2
4

1
9
0
2
5

1
9
0
2
6

1
9
0
2
7

1
9
0
2
8

1
9
0
2
9

1
9
0
3
0

1
9
0
3
1

1
9
0
3
2

1
9
0
3
3

1
9
0
3
4

1
9
0
3
5

1
9
0
3
6

1
9
0
3
7

1
9
0
3
8

1
9
0
3
9

1
9
0
4
0

1
9
0
4
1

1
9
0
4
2

1
9
0
4
3

1
9
0
4
4

1
9
0
4
5

1
9
0
4
6

1
9
0
4
7

1
9
0
4
8

1
9
0
4
9

1
9
0
5
0

1
9
0
5
1

1
9
0
5
2

1
9
0
5
3

1
9
0
5
4

1
9
0
5
5

1
9
0
5
6

1
9
0
5
7

1
9
0
5
8

1
9
0
5
9

1
9
0
6
0

1
9
0
6
1

1
9
0
6
2

1
9
0
6
3

1
9
0
6
4

1
9
0
6
5

1
9
0
6
6

1
9
0
6
7

1
9
0
6
8

1
9
0
6
9

1
9
0
7
0

1
9
0
7
1

1
9
0
7
2

1
9
0
7
3

1
9
0
7
4

1
9
0
7
5

1
9
0
7
6

1
9
0
7
7

1
9
0
7
8

1
9
0
7
9

1
9
0
8
0

1
9
0
8
1

1
9
0
8
2

1
9
0
8
3

1
9
0
8
4

1
9
0
8
5

1
9
0
8
6

1
9
0
8
7

1
9
0
8
8

1
9
0
8
9

1
9
0
9
0

1
9
0
9
1

1
9
0
9
2

1
9
0
9
3

1
9
0
9
4

1
9
0
9
5

1
9
0
9
6

1
9
0
9
7

1
9
0
9
8

1
9
0
9
9

1
9
1
0
0

1
9
1
0
1

1
9
1
0
2

1
9
1
0
3

1
9
1
0
4

1
9
1
0
5

1
9
1
0
6

1
9
1
0
7

1
9
1
0
8

1
9
1
0
9

1
9
1
1
0

1
9
1
1
1

1
9
1
1
2

1
9
1
1
3

1
9
1
1
4

1
9
1
1
5

1
9
1
1
6

1
9
1
1
7

1
9
1
1
8

1
9
1
1
9

1
9
1
2
0

1
9
1
2
1

1
9
1
2
2

1
9
1
2
3

1
9
1
2
4

1
9
1
2
5

1
9
1
2
6

1
9
1
2
7

C
o
m
p
u
te
r

S
o
ft
w
a
re

F
o
n
t
1
8

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
8
0
0
0

1
8
0
0
1

1
8
0
0
2

1
8
0
0
3

1
8
0
0
4

1
8
0
0
5

1
8
0
0
6

1
8
0
0
7

1
8
0
0
8

1
8
0
0
9

1
8
0
1
0

1
8
0
1
1

1
8
0
1
2

1
8
0
1
3

1
8
0
1
4

1
8
0
1
5

1
8
0
1
6

1
8
0
1
7

1
8
0
1
8

1
8
0
1
9

1
8
0
2
0

1
8
0
2
1

1
8
0
2
2

1
8
0
2
3

1
8
0
2
4

1
8
0
2
5

1
8
0
2
6

1
8
0
2
7

1
8
0
2
8

1
8
0
2
9

1
8
0
3
0

1
8
0
3
1

1
8
0
3
2

1
8
0
3
3

1
8
0
3
4

1
8
0
3
5

1
8
0
3
6

1
8
0
3
7

1
8
0
3
8

1
8
0
3
9

1
8
0
4
0

1
8
0
4
1

1
8
0
4
2

1
8
0
4
3

1
8
0
4
4

1
8
0
4
5

1
8
0
4
6

1
8
0
4
7

1
8
0
4
8

1
8
0
4
9

1
8
0
5
0

1
8
0
5
1

1
8
0
5
2

1
8
0
5
3

1
8
0
5
4

1
8
0
5
5

1
8
0
5
6

1
8
0
5
7

1
8
0
5
8

1
8
0
5
9

1
8
0
6
0

1
8
0
6
1

1
8
0
6
2

1
8
0
6
3

1
8
0
6
4

1
8
0
6
5

1
8
0
6
6

1
8
0
6
7

1
8
0
6
8

1
8
0
6
9

1
8
0
7
0

1
8
0
7
1

1
8
0
7
2

1
8
0
7
3

1
8
0
7
4

1
8
0
7
5

1
8
0
7
6

1
8
0
7
7

1
8
0
7
8

1
8
0
7
9

1
8
0
8
0

1
8
0
8
1

1
8
0
8
2

1
8
0
8
3

1
8
0
8
4

1
8
0
8
5

1
8
0
8
6

1
8
0
8
7

1
8
0
8
8

1
8
0
8
9

1
8
0
9
0

1
8
0
9
1

1
8
0
9
2

1
8
0
9
3

1
8
0
9
4

1
8
0
9
5

1
8
0
9
6

1
8
0
9
7

1
8
0
9
8

1
8
0
9
9

1
8
1
0
0

1
8
1
0
1

1
8
1
0
2

1
8
1
0
3

1
8
1
0
4

1
8
1
0
5

1
8
1
0
6

1
8
1
0
7

1
8
1
0
8

1
8
1
0
9

1
8
1
1
0

1
8
1
1
1

1
8
1
1
2

1
8
1
1
3

1
8
1
1
4

1
8
1
1
5

1
8
1
1
6

1
8
1
1
7

1
8
1
1
8

1
8
1
1
9

1
8
1
2
0

1
8
1
2
1

1
8
1
2
2

1
8
1
2
3

1
8
1
2
4

1
8
1
2
5

1
8
1
2
6

1
8
1
2
7

846

The Font Tables FONT TABLES

G
re
e
k
/S
y
m
b
o
l
F
o
n
t

S
o
ft
w
a
re

F
o
n
t
2
1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
1
0
0
0

2
1
0
0
1

2
1
0
0
2

2
1
0
0
3

2
1
0
0
4

2
1
0
0
5

2
1
0
0
6

2
1
0
0
7

2
1
0
0
8

2
1
0
0
9

2
1
0
1
0

2
1
0
1
1

2
1
0
1
2

2
1
0
1
3

2
1
0
1
4

2
1
0
1
5

2
1
0
1
6

2
1
0
1
7

2
1
0
1
8

2
1
0
1
9

2
1
0
2
0

2
1
0
2
1

2
1
0
2
2

2
1
0
2
3

2
1
0
2
4

2
1
0
2
5

2
1
0
2
6

2
1
0
2
7

2
1
0
2
8

2
1
0
2
9

2
1
0
3
0

2
1
0
3
1

2
1
0
3
2

2
1
0
3
3

2
1
0
3
4

2
1
0
3
5

2
1
0
3
6

2
1
0
3
7

2
1
0
3
8

2
1
0
3
9

2
1
0
4
0

2
1
0
4
1

2
1
0
4
2

2
1
0
4
3

2
1
0
4
4

2
1
0
4
5

2
1
0
4
6

2
1
0
4
7

2
1
0
4
8

2
1
0
4
9

2
1
0
5
0

2
1
0
5
1

2
1
0
5
2

2
1
0
5
3

2
1
0
5
4

2
1
0
5
5

2
1
0
5
6

2
1
0
5
7

2
1
0
5
8

2
1
0
5
9

2
1
0
6
0

2
1
0
6
1

2
1
0
6
2

2
1
0
6
3

2
1
0
6
4

2
1
0
6
5

2
1
0
6
6

2
1
0
6
7

2
1
0
6
8

2
1
0
6
9

2
1
0
7
0

2
1
0
7
1

2
1
0
7
2

2
1
0
7
3

2
1
0
7
4

2
1
0
7
5

2
1
0
7
6

2
1
0
7
7

2
1
0
7
8

2
1
0
7
9

2
1
0
8
0

2
1
0
8
1

2
1
0
8
2

2
1
0
8
3

2
1
0
8
4

2
1
0
8
5

2
1
0
8
6

2
1
0
8
7

2
1
0
8
8

2
1
0
8
9

2
1
0
9
0

2
1
0
9
1

2
1
0
9
2

2
1
0
9
3

2
1
0
9
4

2
1
0
9
5

2
1
0
9
6

2
1
0
9
7

2
1
0
9
8

2
1
0
9
9

2
1
1
0
0

2
1
1
0
1

2
1
1
0
2

2
1
1
0
3

2
1
1
0
4

2
1
1
0
5

2
1
1
0
6

2
1
1
0
7

2
1
1
0
8

2
1
1
0
9

2
1
1
1
0

2
1
1
1
1

2
1
1
1
2

2
1
1
1
3

2
1
1
1
4

2
1
1
1
5

2
1
1
1
6

2
1
1
1
7

2
1
1
1
8

2
1
1
1
9

2
1
1
2
0

2
1
1
2
1

2
1
1
2
2

2
1
1
2
3

2
1
1
2
4

2
1
1
2
5

2
1
1
2
6

2
1
1
2
7

L
a
ti
n

S
o
ft
w
a
re

F
o
n
t
2
0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
0
0
0
0

2
0
0
0
1

2
0
0
0
2

2
0
0
0
3

2
0
0
0
4

2
0
0
0
5

2
0
0
0
6

2
0
0
0
7

2
0
0
0
8

2
0
0
0
9

2
0
0
1
0

2
0
0
1
1

2
0
0
1
2

2
0
0
1
3

2
0
0
1
4

2
0
0
1
5

2
0
0
1
6

2
0
0
1
7

2
0
0
1
8

2
0
0
1
9

2
0
0
2
0

2
0
0
2
1

2
0
0
2
2

2
0
0
2
3

2
0
0
2
4

2
0
0
2
5

2
0
0
2
6

2
0
0
2
7

2
0
0
2
8

2
0
0
2
9

2
0
0
3
0

2
0
0
3
1

2
0
0
3
2

2
0
0
3
3

2
0
0
3
4

2
0
0
3
5

2
0
0
3
6

2
0
0
3
7

2
0
0
3
8

2
0
0
3
9

2
0
0
4
0

2
0
0
4
1

2
0
0
4
2

2
0
0
4
3

2
0
0
4
4

2
0
0
4
5

2
0
0
4
6

2
0
0
4
7

2
0
0
4
8

2
0
0
4
9

2
0
0
5
0

2
0
0
5
1

2
0
0
5
2

2
0
0
5
3

2
0
0
5
4

2
0
0
5
5

2
0
0
5
6

2
0
0
5
7

2
0
0
5
8

2
0
0
5
9

2
0
0
6
0

2
0
0
6
1

2
0
0
6
2

2
0
0
6
3

2
0
0
6
4

2
0
0
6
5

2
0
0
6
6

2
0
0
6
7

2
0
0
6
8

2
0
0
6
9

2
0
0
7
0

2
0
0
7
1

2
0
0
7
2

2
0
0
7
3

2
0
0
7
4

2
0
0
7
5

2
0
0
7
6

2
0
0
7
7

2
0
0
7
8

2
0
0
7
9

2
0
0
8
0

2
0
0
8
1

2
0
0
8
2

2
0
0
8
3

2
0
0
8
4

2
0
0
8
5

2
0
0
8
6

2
0
0
8
7

2
0
0
8
8

2
0
0
8
9

2
0
0
9
0

2
0
0
9
1

2
0
0
9
2

2
0
0
9
3

2
0
0
9
4

2
0
0
9
5

2
0
0
9
6

2
0
0
9
7

2
0
0
9
8

2
0
0
9
9

2
0
1
0
0

2
0
1
0
1

2
0
1
0
2

2
0
1
0
3

2
0
1
0
4

2
0
1
0
5

2
0
1
0
6

2
0
1
0
7

2
0
1
0
8

2
0
1
0
9

2
0
1
1
0

2
0
1
1
1

2
0
1
1
2

2
0
1
1
3

2
0
1
1
4

2
0
1
1
5

2
0
1
1
6

2
0
1
1
7

2
0
1
1
8

2
0
1
1
9

2
0
1
2
0

2
0
1
2
1

2
0
1
2
2

2
0
1
2
3

2
0
1
2
4

2
0
1
2
5

2
0
1
2
6

2
0
1
2
7

847

FONT TABLES The Font Tables

G
re
e
k
F
o
n
t
3

S
o
ft
w
a
re

F
o
n
t
2
3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
3
0
0
0

2
3
0
0
1

2
3
0
0
2

2
3
0
0
3

2
3
0
0
4

2
3
0
0
5

2
3
0
0
6

2
3
0
0
7

2
3
0
0
8

2
3
0
0
9

2
3
0
1
0

2
3
0
1
1

2
3
0
1
2

2
3
0
1
3

2
3
0
1
4

2
3
0
1
5

2
3
0
1
6

2
3
0
1
7

2
3
0
1
8

2
3
0
1
9

2
3
0
2
0

2
3
0
2
1

2
3
0
2
2

2
3
0
2
3

2
3
0
2
4

2
3
0
2
5

2
3
0
2
6

2
3
0
2
7

2
3
0
2
8

2
3
0
2
9

2
3
0
3
0

2
3
0
3
1

2
3
0
3
2

2
3
0
3
3

2
3
0
3
4

2
3
0
3
5

2
3
0
3
6

2
3
0
3
7

2
3
0
3
8

2
3
0
3
9

2
3
0
4
0

2
3
0
4
1

2
3
0
4
2

2
3
0
4
3

2
3
0
4
4

2
3
0
4
5

2
3
0
4
6

2
3
0
4
7

2
3
0
4
8

2
3
0
4
9

2
3
0
5
0

2
3
0
5
1

2
3
0
5
2

2
3
0
5
3

2
3
0
5
4

2
3
0
5
5

2
3
0
5
6

2
3
0
5
7

2
3
0
5
8

2
3
0
5
9

2
3
0
6
0

2
3
0
6
1

2
3
0
6
2

2
3
0
6
3

2
3
0
6
4

2
3
0
6
5

2
3
0
6
6

2
3
0
6
7

2
3
0
6
8

2
3
0
6
9

2
3
0
7
0

2
3
0
7
1

2
3
0
7
2

2
3
0
7
3

2
3
0
7
4

2
3
0
7
5

2
3
0
7
6

2
3
0
7
7

2
3
0
7
8

2
3
0
7
9

2
3
0
8
0

2
3
0
8
1

2
3
0
8
2

2
3
0
8
3

2
3
0
8
4

2
3
0
8
5

2
3
0
8
6

2
3
0
8
7

2
3
0
8
8

2
3
0
8
9

2
3
0
9
0

2
3
0
9
1

2
3
0
9
2

2
3
0
9
3

2
3
0
9
4

2
3
0
9
5

2
3
0
9
6

2
3
0
9
7

2
3
0
9
8

2
3
0
9
9

2
3
1
0
0

2
3
1
0
1

2
3
1
0
2

2
3
1
0
3

2
3
1
0
4

2
3
1
0
5

2
3
1
0
6

2
3
1
0
7

2
3
1
0
8

2
3
1
0
9

2
3
1
1
0

2
3
1
1
1

2
3
1
1
2

2
3
1
1
3

2
3
1
1
4

2
3
1
1
5

2
3
1
1
6

2
3
1
1
7

2
3
1
1
8

2
3
1
1
9

2
3
1
2
0

2
3
1
2
1

2
3
1
2
2

2
3
1
2
3

2
3
1
2
4

2
3
1
2
5

2
3
1
2
6

2
3
1
2
7

G
re
e
k
F
o
n
t
2

S
o
ft
w
a
re

F
o
n
t
2
2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
2
0
0
0

2
2
0
0
1

2
2
0
0
2

2
2
0
0
3

2
2
0
0
4

2
2
0
0
5

2
2
0
0
6

2
2
0
0
7

2
2
0
0
8

2
2
0
0
9

2
2
0
1
0

2
2
0
1
1

2
2
0
1
2

2
2
0
1
3

2
2
0
1
4

2
2
0
1
5

2
2
0
1
6

2
2
0
1
7

2
2
0
1
8

2
2
0
1
9

2
2
0
2
0

2
2
0
2
1

2
2
0
2
2

2
2
0
2
3

2
2
0
2
4

2
2
0
2
5

2
2
0
2
6

2
2
0
2
7

2
2
0
2
8

2
2
0
2
9

2
2
0
3
0

2
2
0
3
1

2
2
0
3
2

2
2
0
3
3

2
2
0
3
4

2
2
0
3
5

2
2
0
3
6

2
2
0
3
7

2
2
0
3
8

2
2
0
3
9

2
2
0
4
0

2
2
0
4
1

2
2
0
4
2

2
2
0
4
3

2
2
0
4
4

2
2
0
4
5

2
2
0
4
6

2
2
0
4
7

2
2
0
4
8

2
2
0
4
9

2
2
0
5
0

2
2
0
5
1

2
2
0
5
2

2
2
0
5
3

2
2
0
5
4

2
2
0
5
5

2
2
0
5
6

2
2
0
5
7

2
2
0
5
8

2
2
0
5
9

2
2
0
6
0

2
2
0
6
1

2
2
0
6
2

2
2
0
6
3

2
2
0
6
4

2
2
0
6
5

2
2
0
6
6

2
2
0
6
7

2
2
0
6
8

2
2
0
6
9

2
2
0
7
0

2
2
0
7
1

2
2
0
7
2

2
2
0
7
3

2
2
0
7
4

2
2
0
7
5

2
2
0
7
6

2
2
0
7
7

2
2
0
7
8

2
2
0
7
9

2
2
0
8
0

2
2
0
8
1

2
2
0
8
2

2
2
0
8
3

2
2
0
8
4

2
2
0
8
5

2
2
0
8
6

2
2
0
8
7

2
2
0
8
8

2
2
0
8
9

2
2
0
9
0

2
2
0
9
1

2
2
0
9
2

2
2
0
9
3

2
2
0
9
4

2
2
0
9
5

2
2
0
9
6

2
2
0
9
7

2
2
0
9
8

2
2
0
9
9

2
2
1
0
0

2
2
1
0
1

2
2
1
0
2

2
2
1
0
3

2
2
1
0
4

2
2
1
0
5

2
2
1
0
6

2
2
1
0
7

2
2
1
0
8

2
2
1
0
9

2
2
1
1
0

2
2
1
1
1

2
2
1
1
2

2
2
1
1
3

2
2
1
1
4

2
2
1
1
5

2
2
1
1
6

2
2
1
1
7

2
2
1
1
8

2
2
1
1
9

2
2
1
2
0

2
2
1
2
1

2
2
1
2
2

2
2
1
2
3

2
2
1
2
4

2
2
1
2
5

2
2
1
2
6

2
2
1
2
7

848

The Font Tables FONT TABLES

G
re
e
k
F
o
n
t
5

S
o
ft
w
a
re

F
o
n
t
2
5

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
5
0
0
0

2
5
0
0
1

2
5
0
0
2

2
5
0
0
3

2
5
0
0
4

2
5
0
0
5

2
5
0
0
6

2
5
0
0
7

2
5
0
0
8

2
5
0
0
9

2
5
0
1
0

2
5
0
1
1

2
5
0
1
2

2
5
0
1
3

2
5
0
1
4

2
5
0
1
5

2
5
0
1
6

2
5
0
1
7

2
5
0
1
8

2
5
0
1
9

2
5
0
2
0

2
5
0
2
1

2
5
0
2
2

2
5
0
2
3

2
5
0
2
4

2
5
0
2
5

2
5
0
2
6

2
5
0
2
7

2
5
0
2
8

2
5
0
2
9

2
5
0
3
0

2
5
0
3
1

2
5
0
3
2

2
5
0
3
3

2
5
0
3
4

2
5
0
3
5

2
5
0
3
6

2
5
0
3
7

2
5
0
3
8

2
5
0
3
9

2
5
0
4
0

2
5
0
4
1

2
5
0
4
2

2
5
0
4
3

2
5
0
4
4

2
5
0
4
5

2
5
0
4
6

2
5
0
4
7

2
5
0
4
8

2
5
0
4
9

2
5
0
5
0

2
5
0
5
1

2
5
0
5
2

2
5
0
5
3

2
5
0
5
4

2
5
0
5
5

2
5
0
5
6

2
5
0
5
7

2
5
0
5
8

2
5
0
5
9

2
5
0
6
0

2
5
0
6
1

2
5
0
6
2

2
5
0
6
3

2
5
0
6
4

2
5
0
6
5

2
5
0
6
6

2
5
0
6
7

2
5
0
6
8

2
5
0
6
9

2
5
0
7
0

2
5
0
7
1

2
5
0
7
2

2
5
0
7
3

2
5
0
7
4

2
5
0
7
5

2
5
0
7
6

2
5
0
7
7

2
5
0
7
8

2
5
0
7
9

2
5
0
8
0

2
5
0
8
1

2
5
0
8
2

2
5
0
8
3

2
5
0
8
4

2
5
0
8
5

2
5
0
8
6

2
5
0
8
7

2
5
0
8
8

2
5
0
8
9

2
5
0
9
0

2
5
0
9
1

2
5
0
9
2

2
5
0
9
3

2
5
0
9
4

2
5
0
9
5

2
5
0
9
6

2
5
0
9
7

2
5
0
9
8

2
5
0
9
9

2
5
1
0
0

2
5
1
0
1

2
5
1
0
2

2
5
1
0
3

2
5
1
0
4

2
5
1
0
5

2
5
1
0
6

2
5
1
0
7

2
5
1
0
8

2
5
1
0
9

2
5
1
1
0

2
5
1
1
1

2
5
1
1
2

2
5
1
1
3

2
5
1
1
4

2
5
1
1
5

2
5
1
1
6

2
5
1
1
7

2
5
1
1
8

2
5
1
1
9

2
5
1
2
0

2
5
1
2
1

2
5
1
2
2

2
5
1
2
3

2
5
1
2
4

2
5
1
2
5

2
5
1
2
6

2
5
1
2
7

G
re
e
k
F
o
n
t
4

S
o
ft
w
a
re

F
o
n
t
2
4

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

2
4
0
0
0

2
4
0
0
1

2
4
0
0
2

2
4
0
0
3

2
4
0
0
4

2
4
0
0
5

2
4
0
0
6

2
4
0
0
7

2
4
0
0
8

2
4
0
0
9

2
4
0
1
0

2
4
0
1
1

2
4
0
1
2

2
4
0
1
3

2
4
0
1
4

2
4
0
1
5

2
4
0
1
6

2
4
0
1
7

2
4
0
1
8

2
4
0
1
9

2
4
0
2
0

2
4
0
2
1

2
4
0
2
2

2
4
0
2
3

2
4
0
2
4

2
4
0
2
5

2
4
0
2
6

2
4
0
2
7

2
4
0
2
8

2
4
0
2
9

2
4
0
3
0

2
4
0
3
1

2
4
0
3
2

2
4
0
3
3

2
4
0
3
4

2
4
0
3
5

2
4
0
3
6

2
4
0
3
7

2
4
0
3
8

2
4
0
3
9

2
4
0
4
0

2
4
0
4
1

2
4
0
4
2

2
4
0
4
3

2
4
0
4
4

2
4
0
4
5

2
4
0
4
6

2
4
0
4
7

2
4
0
4
8

2
4
0
4
9

2
4
0
5
0

2
4
0
5
1

2
4
0
5
2

2
4
0
5
3

2
4
0
5
4

2
4
0
5
5

2
4
0
5
6

2
4
0
5
7

2
4
0
5
8

2
4
0
5
9

2
4
0
6
0

2
4
0
6
1

2
4
0
6
2

2
4
0
6
3

2
4
0
6
4

2
4
0
6
5

2
4
0
6
6

2
4
0
6
7

2
4
0
6
8

2
4
0
6
9

2
4
0
7
0

2
4
0
7
1

2
4
0
7
2

2
4
0
7
3

2
4
0
7
4

2
4
0
7
5

2
4
0
7
6

2
4
0
7
7

2
4
0
7
8

2
4
0
7
9

2
4
0
8
0

2
4
0
8
1

2
4
0
8
2

2
4
0
8
3

2
4
0
8
4

2
4
0
8
5

2
4
0
8
6

2
4
0
8
7

2
4
0
8
8

2
4
0
8
9

2
4
0
9
0

2
4
0
9
1

2
4
0
9
2

2
4
0
9
3

2
4
0
9
4

2
4
0
9
5

2
4
0
9
6

2
4
0
9
7

2
4
0
9
8

2
4
0
9
9

2
4
1
0
0

2
4
1
0
1

2
4
1
0
2

2
4
1
0
3

2
4
1
0
4

2
4
1
0
5

2
4
1
0
6

2
4
1
0
7

2
4
1
0
8

2
4
1
0
9

2
4
1
1
0

2
4
1
1
1

2
4
1
1
2

2
4
1
1
3

2
4
1
1
4

2
4
1
1
5

2
4
1
1
6

2
4
1
1
7

2
4
1
1
8

2
4
1
1
9

2
4
1
2
0

2
4
1
2
1

2
4
1
2
2

2
4
1
2
3

2
4
1
2
4

2
4
1
2
5

2
4
1
2
6

2
4
1
2
7

849

FONT TABLES The Font Tables

H
e
rs
h
e
y
M
a
th
s
S
y
m
b
o
ls

S
o
ft
w
a
re

F
o
n
t
7
1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
1
0
0
0

7
1
0
0
1

7
1
0
0
2

7
1
0
0
3

7
1
0
0
4

7
1
0
0
5

7
1
0
0
6

7
1
0
0
7

7
1
0
0
8

7
1
0
0
9

7
1
0
1
0

7
1
0
1
1

7
1
0
1
2

7
1
0
1
3

7
1
0
1
4

7
1
0
1
5

7
1
0
1
6

7
1
0
1
7

7
1
0
1
8

7
1
0
1
9

7
1
0
2
0

7
1
0
2
1

7
1
0
2
2

7
1
0
2
3

7
1
0
2
4

7
1
0
2
5

7
1
0
2
6

7
1
0
2
7

7
1
0
2
8

7
1
0
2
9

7
1
0
3
0

7
1
0
3
1

7
1
0
3
2

7
1
0
3
3

7
1
0
3
4

7
1
0
3
5

7
1
0
3
6

7
1
0
3
7

7
1
0
3
8

7
1
0
3
9

7
1
0
4
0

7
1
0
4
1

7
1
0
4
2

7
1
0
4
3

7
1
0
4
4

7
1
0
4
5

7
1
0
4
6

7
1
0
4
7

7
1
0
4
8

7
1
0
4
9

7
1
0
5
0

7
1
0
5
1

7
1
0
5
2

7
1
0
5
3

7
1
0
5
4

7
1
0
5
5

7
1
0
5
6

7
1
0
5
7

7
1
0
5
8

7
1
0
5
9

7
1
0
6
0

7
1
0
6
1

7
1
0
6
2

7
1
0
6
3

7
1
0
6
4

7
1
0
6
5

7
1
0
6
6

7
1
0
6
7

7
1
0
6
8

7
1
0
6
9

7
1
0
7
0

7
1
0
7
1

7
1
0
7
2

7
1
0
7
3

7
1
0
7
4

7
1
0
7
5

7
1
0
7
6

7
1
0
7
7

7
1
0
7
8

7
1
0
7
9

7
1
0
8
0

7
1
0
8
1

7
1
0
8
2

7
1
0
8
3

7
1
0
8
4

7
1
0
8
5

7
1
0
8
6

7
1
0
8
7

7
1
0
8
8

7
1
0
8
9

7
1
0
9
0

7
1
0
9
1

7
1
0
9
2

7
1
0
9
3

7
1
0
9
4

7
1
0
9
5

7
1
0
9
6

7
1
0
9
7

7
1
0
9
8

7
1
0
9
9

7
1
1
0
0

7
1
1
0
1

7
1
1
0
2

7
1
1
0
3

7
1
1
0
4

7
1
1
0
5

7
1
1
0
6

7
1
1
0
7

7
1
1
0
8

7
1
1
0
9

7
1
1
1
0

7
1
1
1
1

7
1
1
1
2

7
1
1
1
3

7
1
1
1
4

7
1
1
1
5

7
1
1
1
6

7
1
1
1
7

7
1
1
1
8

7
1
1
1
9

7
1
1
2
0

7
1
1
2
1

7
1
1
2
2

7
1
1
2
3

7
1
1
2
4

7
1
1
2
5

7
1
1
2
6

7
1
1
2
7

M
a
th
s
S
y
m
b
o
ls

D
IN

6
7
7
6

S
o
ft
w
a
re

F
o
n
t
7
0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
0
0
0
0

7
0
0
0
1

7
0
0
0
2

7
0
0
0
3

7
0
0
0
4

7
0
0
0
5

7
0
0
0
6

7
0
0
0
7

7
0
0
0
8

7
0
0
0
9

7
0
0
1
0

7
0
0
1
1

7
0
0
1
2

7
0
0
1
3

7
0
0
1
4

7
0
0
1
5

7
0
0
1
6

7
0
0
1
7

7
0
0
1
8

7
0
0
1
9

7
0
0
2
0

7
0
0
2
1

7
0
0
2
2

7
0
0
2
3

7
0
0
2
4

7
0
0
2
5

7
0
0
2
6

7
0
0
2
7

7
0
0
2
8

7
0
0
2
9

7
0
0
3
0

7
0
0
3
1

7
0
0
3
2

7
0
0
3
3

7
0
0
3
4

7
0
0
3
5

7
0
0
3
6

7
0
0
3
7

7
0
0
3
8

7
0
0
3
9

7
0
0
4
0

7
0
0
4
1

7
0
0
4
2

7
0
0
4
3

7
0
0
4
4

7
0
0
4
5

7
0
0
4
6

7
0
0
4
7

7
0
0
4
8

7
0
0
4
9

7
0
0
5
0

7
0
0
5
1

7
0
0
5
2

7
0
0
5
3

7
0
0
5
4

7
0
0
5
5

7
0
0
5
6

7
0
0
5
7

7
0
0
5
8

7
0
0
5
9

7
0
0
6
0

7
0
0
6
1

7
0
0
6
2

7
0
0
6
3

7
0
0
6
4

7
0
0
6
5

7
0
0
6
6

7
0
0
6
7

7
0
0
6
8

7
0
0
6
9

7
0
0
7
0

7
0
0
7
1

7
0
0
7
2

7
0
0
7
3

7
0
0
7
4

7
0
0
7
5

7
0
0
7
6

7
0
0
7
7

7
0
0
7
8

7
0
0
7
9

7
0
0
8
0

7
0
0
8
1

7
0
0
8
2

7
0
0
8
3

7
0
0
8
4

7
0
0
8
5

7
0
0
8
6

7
0
0
8
7

7
0
0
8
8

7
0
0
8
9

7
0
0
9
0

7
0
0
9
1

7
0
0
9
2

7
0
0
9
3

7
0
0
9
4

7
0
0
9
5

7
0
0
9
6

7
0
0
9
7

7
0
0
9
8

7
0
0
9
9

7
0
1
0
0

7
0
1
0
1

7
0
1
0
2

7
0
1
0
3

7
0
1
0
4

7
0
1
0
5

7
0
1
0
6

7
0
1
0
7

7
0
1
0
8

7
0
1
0
9

7
0
1
1
0

7
0
1
1
1

7
0
1
1
2

7
0
1
1
3

7
0
1
1
4

7
0
1
1
5

7
0
1
1
6

7
0
1
1
7

7
0
1
1
8

7
0
1
1
9

7
0
1
2
0

7
0
1
2
1

7
0
1
2
2

7
0
1
2
3

7
0
1
2
4

7
0
1
2
5

7
0
1
2
6

7
0
1
2
7

850

The Font Tables FONT TABLES

H
e
rs
h
e
y
S
y
m
b
o
ls

2
S
o
ft
w
a
re

F
o
n
t
7
3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
3
0
0
0

7
3
0
0
1

7
3
0
0
2

7
3
0
0
3

7
3
0
0
4

7
3
0
0
5

7
3
0
0
6

7
3
0
0
7

7
3
0
0
8

7
3
0
0
9

7
3
0
1
0

7
3
0
1
1

7
3
0
1
2

7
3
0
1
3

7
3
0
1
4

7
3
0
1
5

7
3
0
1
6

7
3
0
1
7

7
3
0
1
8

7
3
0
1
9

7
3
0
2
0

7
3
0
2
1

7
3
0
2
2

7
3
0
2
3

7
3
0
2
4

7
3
0
2
5

7
3
0
2
6

7
3
0
2
7

7
3
0
2
8

7
3
0
2
9

7
3
0
3
0

7
3
0
3
1

7
3
0
3
2

7
3
0
3
3

7
3
0
3
4

7
3
0
3
5

7
3
0
3
6

7
3
0
3
7

7
3
0
3
8

7
3
0
3
9

7
3
0
4
0

7
3
0
4
1

7
3
0
4
2

7
3
0
4
3

7
3
0
4
4

7
3
0
4
5

7
3
0
4
6

7
3
0
4
7

7
3
0
4
8

7
3
0
4
9

7
3
0
5
0

7
3
0
5
1

7
3
0
5
2

7
3
0
5
3

7
3
0
5
4

7
3
0
5
5

7
3
0
5
6

7
3
0
5
7

7
3
0
5
8

7
3
0
5
9

7
3
0
6
0

7
3
0
6
1

7
3
0
6
2

7
3
0
6
3

7
3
0
6
4

7
3
0
6
5

7
3
0
6
6

7
3
0
6
7

7
3
0
6
8

7
3
0
6
9

7
3
0
7
0

7
3
0
7
1

7
3
0
7
2

7
3
0
7
3

7
3
0
7
4

7
3
0
7
5

7
3
0
7
6

7
3
0
7
7

7
3
0
7
8

7
3
0
7
9

7
3
0
8
0

7
3
0
8
1

7
3
0
8
2

7
3
0
8
3

7
3
0
8
4

7
3
0
8
5

7
3
0
8
6

7
3
0
8
7

7
3
0
8
8

7
3
0
8
9

7
3
0
9
0

7
3
0
9
1

7
3
0
9
2

7
3
0
9
3

7
3
0
9
4

7
3
0
9
5

7
3
0
9
6

7
3
0
9
7

7
3
0
9
8

7
3
0
9
9

7
3
1
0
0

7
3
1
0
1

7
3
1
0
2

7
3
1
0
3

7
3
1
0
4

7
3
1
0
5

7
3
1
0
6

7
3
1
0
7

7
3
1
0
8

7
3
1
0
9

7
3
1
1
0

7
3
1
1
1

7
3
1
1
2

7
3
1
1
3

7
3
1
1
4

7
3
1
1
5

7
3
1
1
6

7
3
1
1
7

7
3
1
1
8

7
3
1
1
9

7
3
1
2
0

7
3
1
2
1

7
3
1
2
2

7
3
1
2
3

7
3
1
2
4

7
3
1
2
5

7
3
1
2
6

7
3
1
2
7

H
e
rs
h
e
y
S
y
m
b
o
ls
1

S
o
ft
w
a
re

F
o
n
t
7
2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
2
0
0
0

7
2
0
0
1

7
2
0
0
2

7
2
0
0
3

7
2
0
0
4

7
2
0
0
5

7
2
0
0
6

7
2
0
0
7

7
2
0
0
8

7
2
0
0
9

7
2
0
1
0

7
2
0
1
1

7
2
0
1
2

7
2
0
1
3

7
2
0
1
4

7
2
0
1
5

7
2
0
1
6

7
2
0
1
7

7
2
0
1
8

7
2
0
1
9

7
2
0
2
0

7
2
0
2
1

7
2
0
2
2

7
2
0
2
3

7
2
0
2
4

7
2
0
2
5

7
2
0
2
6

7
2
0
2
7

7
2
0
2
8

7
2
0
2
9

7
2
0
3
0

7
2
0
3
1

7
2
0
3
2

7
2
0
3
3

7
2
0
3
4

7
2
0
3
5

7
2
0
3
6

7
2
0
3
7

7
2
0
3
8

7
2
0
3
9

7
2
0
4
0

7
2
0
4
1

7
2
0
4
2

7
2
0
4
3

7
2
0
4
4

7
2
0
4
5

7
2
0
4
6

7
2
0
4
7

7
2
0
4
8

7
2
0
4
9

7
2
0
5
0

7
2
0
5
1

7
2
0
5
2

7
2
0
5
3

7
2
0
5
4

7
2
0
5
5

7
2
0
5
6

7
2
0
5
7

7
2
0
5
8

7
2
0
5
9

7
2
0
6
0

7
2
0
6
1

7
2
0
6
2

7
2
0
6
3

7
2
0
6
4

7
2
0
6
5

7
2
0
6
6

7
2
0
6
7

7
2
0
6
8

7
2
0
6
9

7
2
0
7
0

7
2
0
7
1

7
2
0
7
2

7
2
0
7
3

7
2
0
7
4

7
2
0
7
5

7
2
0
7
6

7
2
0
7
7

7
2
0
7
8

7
2
0
7
9

7
2
0
8
0

7
2
0
8
1

7
2
0
8
2

7
2
0
8
3

7
2
0
8
4

7
2
0
8
5

7
2
0
8
6

7
2
0
8
7

7
2
0
8
8

7
2
0
8
9

7
2
0
9
0

7
2
0
9
1

7
2
0
9
2

7
2
0
9
3

7
2
0
9
4

7
2
0
9
5

7
2
0
9
6

7
2
0
9
7

7
2
0
9
8

7
2
0
9
9

7
2
1
0
0

7
2
1
0
1

7
2
1
0
2

7
2
1
0
3

7
2
1
0
4

7
2
1
0
5

7
2
1
0
6

7
2
1
0
7

7
2
1
0
8

7
2
1
0
9

7
2
1
1
0

7
2
1
1
1

7
2
1
1
2

7
2
1
1
3

7
2
1
1
4

7
2
1
1
5

7
2
1
1
6

7
2
1
1
7

7
2
1
1
8

7
2
1
1
9

7
2
1
2
0

7
2
1
2
1

7
2
1
2
2

7
2
1
2
3

7
2
1
2
4

7
2
1
2
5

7
2
1
2
6

7
2
1
2
7

851

FONT TABLES The Font Tables

S
y
m
b
o
l
ty
p
e
1
-
th
ic
k

S
o
ft
w
a
re

F
o
n
t
7
5

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
5
0
0
0

7
5
0
0
1

7
5
0
0
2

7
5
0
0
3

7
5
0
0
4

7
5
0
0
5

7
5
0
0
6

7
5
0
0
7

7
5
0
0
8

7
5
0
0
9

7
5
0
1
0

7
5
0
1
1

7
5
0
1
2

7
5
0
1
3

7
5
0
1
4

7
5
0
1
5

7
5
0
1
6

7
5
0
1
7

7
5
0
1
8

7
5
0
1
9

7
5
0
2
0

7
5
0
2
1

7
5
0
2
2

7
5
0
2
3

7
5
0
2
4

7
5
0
2
5

7
5
0
2
6

7
5
0
2
7

7
5
0
2
8

7
5
0
2
9

7
5
0
3
0

7
5
0
3
1

7
5
0
3
2

7
5
0
3
3

7
5
0
3
4

7
5
0
3
5

7
5
0
3
6

7
5
0
3
7

7
5
0
3
8

7
5
0
3
9

7
5
0
4
0

7
5
0
4
1

7
5
0
4
2

7
5
0
4
3

7
5
0
4
4

7
5
0
4
5

7
5
0
4
6

7
5
0
4
7

7
5
0
4
8

7
5
0
4
9

7
5
0
5
0

7
5
0
5
1

7
5
0
5
2

7
5
0
5
3

7
5
0
5
4

7
5
0
5
5

7
5
0
5
6

7
5
0
5
7

7
5
0
5
8

7
5
0
5
9

7
5
0
6
0

7
5
0
6
1

7
5
0
6
2

7
5
0
6
3

7
5
0
6
4

7
5
0
6
5

7
5
0
6
6

7
5
0
6
7

7
5
0
6
8

7
5
0
6
9

7
5
0
7
0

7
5
0
7
1

7
5
0
7
2

7
5
0
7
3

7
5
0
7
4

7
5
0
7
5

7
5
0
7
6

7
5
0
7
7

7
5
0
7
8

7
5
0
7
9

7
5
0
8
0

7
5
0
8
1

7
5
0
8
2

7
5
0
8
3

7
5
0
8
4

7
5
0
8
5

7
5
0
8
6

7
5
0
8
7

7
5
0
8
8

7
5
0
8
9

7
5
0
9
0

7
5
0
9
1

7
5
0
9
2

7
5
0
9
3

7
5
0
9
4

7
5
0
9
5

7
5
0
9
6

7
5
0
9
7

7
5
0
9
8

7
5
0
9
9

7
5
1
0
0

7
5
1
0
1

7
5
1
0
2

7
5
1
0
3

7
5
1
0
4

7
5
1
0
5

7
5
1
0
6

7
5
1
0
7

7
5
1
0
8

7
5
1
0
9

7
5
1
1
0

7
5
1
1
1

7
5
1
1
2

7
5
1
1
3

7
5
1
1
4

7
5
1
1
5

7
5
1
1
6

7
5
1
1
7

7
5
1
1
8

7
5
1
1
9

7
5
1
2
0

7
5
1
2
1

7
5
1
2
2

7
5
1
2
3

7
5
1
2
4

7
5
1
2
5

7
5
1
2
6

7
5
1
2
7

S
y
m
b
o
l
ty
p
e
1
-
n
o
rm

a
l

S
o
ft
w
a
re

F
o
n
t
7
4

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
4
0
0
0

7
4
0
0
1

7
4
0
0
2

7
4
0
0
3

7
4
0
0
4

7
4
0
0
5

7
4
0
0
6

7
4
0
0
7

7
4
0
0
8

7
4
0
0
9

7
4
0
1
0

7
4
0
1
1

7
4
0
1
2

7
4
0
1
3

7
4
0
1
4

7
4
0
1
5

7
4
0
1
6

7
4
0
1
7

7
4
0
1
8

7
4
0
1
9

7
4
0
2
0

7
4
0
2
1

7
4
0
2
2

7
4
0
2
3

7
4
0
2
4

7
4
0
2
5

7
4
0
2
6

7
4
0
2
7

7
4
0
2
8

7
4
0
2
9

7
4
0
3
0

7
4
0
3
1

7
4
0
3
2

7
4
0
3
3

7
4
0
3
4

7
4
0
3
5

7
4
0
3
6

7
4
0
3
7

7
4
0
3
8

7
4
0
3
9

7
4
0
4
0

7
4
0
4
1

7
4
0
4
2

7
4
0
4
3

7
4
0
4
4

7
4
0
4
5

7
4
0
4
6

7
4
0
4
7

7
4
0
4
8

7
4
0
4
9

7
4
0
5
0

7
4
0
5
1

7
4
0
5
2

7
4
0
5
3

7
4
0
5
4

7
4
0
5
5

7
4
0
5
6

7
4
0
5
7

7
4
0
5
8

7
4
0
5
9

7
4
0
6
0

7
4
0
6
1

7
4
0
6
2

7
4
0
6
3

7
4
0
6
4

7
4
0
6
5

7
4
0
6
6

7
4
0
6
7

7
4
0
6
8

7
4
0
6
9

7
4
0
7
0

7
4
0
7
1

7
4
0
7
2

7
4
0
7
3

7
4
0
7
4

7
4
0
7
5

7
4
0
7
6

7
4
0
7
7

7
4
0
7
8

7
4
0
7
9

7
4
0
8
0

7
4
0
8
1

7
4
0
8
2

7
4
0
8
3

7
4
0
8
4

7
4
0
8
5

7
4
0
8
6

7
4
0
8
7

7
4
0
8
8

7
4
0
8
9

7
4
0
9
0

7
4
0
9
1

7
4
0
9
2

7
4
0
9
3

7
4
0
9
4

7
4
0
9
5

7
4
0
9
6

7
4
0
9
7

7
4
0
9
8

7
4
0
9
9

7
4
1
0
0

7
4
1
0
1

7
4
1
0
2

7
4
1
0
3

7
4
1
0
4

7
4
1
0
5

7
4
1
0
6

7
4
1
0
7

7
4
1
0
8

7
4
1
0
9

7
4
1
1
0

7
4
1
1
1

7
4
1
1
2

7
4
1
1
3

7
4
1
1
4

7
4
1
1
5

7
4
1
1
6

7
4
1
1
7

7
4
1
1
8

7
4
1
1
9

7
4
1
2
0

7
4
1
2
1

7
4
1
2
2

7
4
1
2
3

7
4
1
2
4

7
4
1
2
5

7
4
1
2
6

7
4
1
2
7

852

The Font Tables FONT TABLES

S
y
m
b
o
l
ty
p
e
1
-
fi
ll
e
d

S
o
ft
w
a
re

F
o
n
t
7
6

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
6
0
0
0

7
6
0
0
1

7
6
0
0
2

7
6
0
0
3

7
6
0
0
4

7
6
0
0
5

7
6
0
0
6

7
6
0
0
7

7
6
0
0
8

7
6
0
0
9

7
6
0
1
0

7
6
0
1
1

7
6
0
1
2

7
6
0
1
3

7
6
0
1
4

7
6
0
1
5

7
6
0
1
6

7
6
0
1
7

7
6
0
1
8

7
6
0
1
9

7
6
0
2
0

7
6
0
2
1

7
6
0
2
2

7
6
0
2
3

7
6
0
2
4

7
6
0
2
5

7
6
0
2
6

7
6
0
2
7

7
6
0
2
8

7
6
0
2
9

7
6
0
3
0

7
6
0
3
1

7
6
0
3
2

7
6
0
3
3

7
6
0
3
4

7
6
0
3
5

7
6
0
3
6

7
6
0
3
7

7
6
0
3
8

7
6
0
3
9

7
6
0
4
0

7
6
0
4
1

7
6
0
4
2

7
6
0
4
3

7
6
0
4
4

7
6
0
4
5

7
6
0
4
6

7
6
0
4
7

7
6
0
4
8

7
6
0
4
9

7
6
0
5
0

7
6
0
5
1

7
6
0
5
2

7
6
0
5
3

7
6
0
5
4

7
6
0
5
5

7
6
0
5
6

7
6
0
5
7

7
6
0
5
8

7
6
0
5
9

7
6
0
6
0

7
6
0
6
1

7
6
0
6
2

7
6
0
6
3

7
6
0
6
4

7
6
0
6
5

7
6
0
6
6

7
6
0
6
7

7
6
0
6
8

7
6
0
6
9

7
6
0
7
0

7
6
0
7
1

7
6
0
7
2

7
6
0
7
3

7
6
0
7
4

7
6
0
7
5

7
6
0
7
6

7
6
0
7
7

7
6
0
7
8

7
6
0
7
9

7
6
0
8
0

7
6
0
8
1

7
6
0
8
2

7
6
0
8
3

7
6
0
8
4

7
6
0
8
5

7
6
0
8
6

7
6
0
8
7

7
6
0
8
8

7
6
0
8
9

7
6
0
9
0

7
6
0
9
1

7
6
0
9
2

7
6
0
9
3

7
6
0
9
4

7
6
0
9
5

7
6
0
9
6

7
6
0
9
7

7
6
0
9
8

7
6
0
9
9

7
6
1
0
0

7
6
1
0
1

7
6
1
0
2

7
6
1
0
3

7
6
1
0
4

7
6
1
0
5

7
6
1
0
6

7
6
1
0
7

7
6
1
0
8

7
6
1
0
9

7
6
1
1
0

7
6
1
11

7
6
1
1
2

7
6
1
1
3

7
6
1
1
4

7
6
1
1
5

7
6
1
1
6

7
6
1
1
7

7
6
1
1
8

7
6
1
1
9

7
6
1
2
0

7
6
1
2
1

7
6
1
2
2

7
6
1
2
3

7
6
1
2
4

7
6
1
2
5

7
6
1
2
6

7
6
1
2
7

S
y
m
b
o
l
ty
p
e
2
-
n
o
rm

a
l

S
o
ft
w
a
re

F
o
n
t
7
7

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
7
0
0
0

7
7
0
0
1

7
7
0
0
2

7
7
0
0
3

7
7
0
0
4

7
7
0
0
5

7
7
0
0
6

7
7
0
0
7

7
7
0
0
8

7
7
0
0
9

7
7
0
1
0

7
7
0
1
1

7
7
0
1
2

7
7
0
1
3

7
7
0
1
4

7
7
0
1
5

7
7
0
1
6

7
7
0
1
7

7
7
0
1
8

7
7
0
1
9

7
7
0
2
0

7
7
0
2
1

7
7
0
2
2

7
7
0
2
3

7
7
0
2
4

7
7
0
2
5

7
7
0
2
6

7
7
0
2
7

7
7
0
2
8

7
7
0
2
9

7
7
0
3
0

7
7
0
3
1

7
7
0
3
2

7
7
0
3
3

7
7
0
3
4

7
7
0
3
5

7
7
0
3
6

7
7
0
3
7

7
7
0
3
8

7
7
0
3
9

7
7
0
4
0

7
7
0
4
1

7
7
0
4
2

7
7
0
4
3

7
7
0
4
4

7
7
0
4
5

7
7
0
4
6

7
7
0
4
7

7
7
0
4
8

7
7
0
4
9

7
7
0
5
0

7
7
0
5
1

7
7
0
5
2

7
7
0
5
3

7
7
0
5
4

7
7
0
5
5

7
7
0
5
6

7
7
0
5
7

7
7
0
5
8

7
7
0
5
9

7
7
0
6
0

7
7
0
6
1

7
7
0
6
2

7
7
0
6
3

7
7
0
6
4

7
7
0
6
5

7
7
0
6
6

7
7
0
6
7

7
7
0
6
8

7
7
0
6
9

7
7
0
7
0

7
7
0
7
1

7
7
0
7
2

7
7
0
7
3

7
7
0
7
4

7
7
0
7
5

7
7
0
7
6

7
7
0
7
7

7
7
0
7
8

7
7
0
7
9

7
7
0
8
0

7
7
0
8
1

7
7
0
8
2

7
7
0
8
3

7
7
0
8
4

7
7
0
8
5

7
7
0
8
6

7
7
0
8
7

7
7
0
8
8

7
7
0
8
9

7
7
0
9
0

7
7
0
9
1

7
7
0
9
2

7
7
0
9
3

7
7
0
9
4

7
7
0
9
5

7
7
0
9
6

7
7
0
9
7

7
7
0
9
8

7
7
0
9
9

7
7
1
0
0

7
7
1
0
1

7
7
1
0
2

7
7
1
0
3

7
7
1
0
4

7
7
1
0
5

7
7
1
0
6

7
7
1
0
7

7
7
1
0
8

7
7
1
0
9

7
7
1
1
0

7
7
1
1
1

7
7
1
1
2

7
7
1
1
3

7
7
1
1
4

7
7
1
1
5

7
7
1
1
6

7
7
1
1
7

7
7
1
1
8

7
7
1
1
9

7
7
1
2
0

7
7
1
2
1

7
7
1
2
2

7
7
1
2
3

7
7
1
2
4

7
7
1
2
5

7
7
1
2
6

7
7
1
2
7

853

FONT TABLES The Font Tables

G
IN
O
D
in
g
b
a
ts

S
o
ft
w
a
re

F
o
n
t
7
9

0 1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
9
0
0
0

7
9
0
0
1

7
9
0
0
2

7
9
0
0
3

7
9
0
0
4

7
9
0
0
5

7
9
0
0
6

7
9
0
0
7

7
9
0
0
8

7
9
0
0
9

7
9
0
1
0

7
9
0
11

7
9
0
1
2

7
9
0
1
3

7
9
0
1
4

7
9
0
1
5

7
9
0
1
6

7
9
0
1
7

7
9
0
1
8

7
9
0
1
9

7
9
0
2
0

7
9
0
2
1

7
9
0
2
2

7
9
0
2
3

7
9
0
2
4

7
9
0
2
5

7
9
0
2
6

7
9
0
2
7

7
9
0
2
8

7
9
0
2
9

7
9
0
3
0

7
9
0
3
1

7
9
0
3
2

7
9
0
3
3

7
9
0
3
4

7
9
0
3
5

7
9
0
3
6

7
9
0
3
7

7
9
0
3
8

7
9
0
3
9

7
9
0
4
0

7
9
0
4
1

7
9
0
4
2

7
9
0
4
3

7
9
0
4
4

7
9
0
4
5

7
9
0
4
6

7
9
0
4
7

7
9
0
4
8

7
9
0
4
9

7
9
0
5
0

7
9
0
5
1

7
9
0
5
2

7
9
0
5
3

7
9
0
5
4

7
9
0
5
5

7
9
0
5
6

7
9
0
5
7

7
9
0
5
8

7
9
0
5
9

7
9
0
6
0

7
9
0
6
1

7
9
0
6
2

7
9
0
6
3

7
9
0
6
4

7
9
0
6
5

7
9
0
6
6

7
9
0
6
7

7
9
0
6
8

7
9
0
6
9

7
9
0
7
0

7
9
0
7
1

7
9
0
7
2

7
9
0
7
3

7
9
0
7
4

7
9
0
7
5

7
9
0
7
6

7
9
0
7
7

7
9
0
7
8

7
9
0
7
9

7
9
0
8
0

7
9
0
8
1

7
9
0
8
2

7
9
0
8
3

7
9
0
8
4

7
9
0
8
5

7
9
0
8
6

7
9
0
8
7

7
9
0
8
8

7
9
0
8
9

7
9
0
9
0

7
9
0
9
1

7
9
0
9
2

7
9
0
9
3

7
9
0
9
4

7
9
0
9
5

7
9
0
9
6

7
9
0
9
7

7
9
0
9
8

7
9
0
9
9

7
9
1
0
0

7
9
1
0
1

7
9
1
0
2

7
9
1
0
3

7
9
1
0
4

7
9
1
0
5

7
9
1
0
6

7
9
1
0
7

7
9
1
0
8

7
9
1
0
9

7
9
1
1
0

7
9
1
1
1

7
9
1
1
2

7
9
1
1
3

7
9
1
1
4

7
9
1
1
5

7
9
1
1
6

7
9
1
1
7

7
9
1
1
8

7
9
1
1
9

7
9
1
2
0

7
9
1
2
1

7
9
1
2
2

7
9
1
2
3

7
9
1
2
4

7
9
1
2
5

7
9
1
2
6

7
9
1
2
7

S
y
m
b
o
l
ty
p
e
2
-
fi
ll
e
d

S
o
ft
w
a
re

F
o
n
t
7
8

0 1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

7
8
0
0
0

7
8
0
0
1

7
8
0
0
2

7
8
0
0
3

7
8
0
0
4

7
8
0
0
5

7
8
0
0
6

7
8
0
0
7

7
8
0
0
8

7
8
0
0
9

7
8
0
1
0

7
8
0
1
1

7
8
0
1
2

7
8
0
1
3

7
8
0
1
4

7
8
0
1
5

7
8
0
1
6

7
8
0
1
7

7
8
0
1
8

7
8
0
1
9

7
8
0
2
0

7
8
0
2
1

7
8
0
2
2

7
8
0
2
3

7
8
0
2
4

7
8
0
2
5

7
8
0
2
6

7
8
0
2
7

7
8
0
2
8

7
8
0
2
9

7
8
0
3
0

7
8
0
3
1

7
8
0
3
2

7
8
0
3
3

7
8
0
3
4

7
8
0
3
5

7
8
0
3
6

7
8
0
3
7

7
8
0
3
8

7
8
0
3
9

7
8
0
4
0

7
8
0
4
1

7
8
0
4
2

7
8
0
4
3

7
8
0
4
4

7
8
0
4
5

7
8
0
4
6

7
8
0
4
7

7
8
0
4
8

7
8
0
4
9

7
8
0
5
0

7
8
0
5
1

7
8
0
5
2

7
8
0
5
3

7
8
0
5
4

7
8
0
5
5

7
8
0
5
6

7
8
0
5
7

7
8
0
5
8

7
8
0
5
9

7
8
0
6
0

7
8
0
6
1

7
8
0
6
2

7
8
0
6
3

7
8
0
6
4

7
8
0
6
5

7
8
0
6
6

7
8
0
6
7

7
8
0
6
8

7
8
0
6
9

7
8
0
7
0

7
8
0
7
1

7
8
0
7
2

7
8
0
7
3

7
8
0
7
4

7
8
0
7
5

7
8
0
7
6

7
8
0
7
7

7
8
0
7
8

7
8
0
7
9

7
8
0
8
0

7
8
0
8
1

7
8
0
8
2

7
8
0
8
3

7
8
0
8
4

7
8
0
8
5

7
8
0
8
6

7
8
0
8
7

7
8
0
8
8

7
8
0
8
9

7
8
0
9
0

7
8
0
9
1

7
8
0
9
2

7
8
0
9
3

7
8
0
9
4

7
8
0
9
5

7
8
0
9
6

7
8
0
9
7

7
8
0
9
8

7
8
0
9
9

7
8
1
0
0

7
8
1
0
1

7
8
1
0
2

7
8
1
0
3

7
8
1
0
4

7
8
1
0
5

7
8
1
0
6

7
8
1
0
7

7
8
1
0
8

7
8
1
0
9

7
8
1
1
0

7
8
1
1
1

7
8
11
2

7
8
11
3

7
8
1
1
4

7
8
1
1
5

7
8
1
1
6

7
8
1
1
7

7
8
11
8

7
8
11
9

7
8
1
2
0

7
8
1
2
1

7
8
1
2
2

7
8
1
2
3

7
8
1
2
4

7
8
1
2
5

7
8
1
2
6

7
8
1
2
7

854

The Font Tables FONT TABLES

H
e
lv
e
ti
c
a

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
0
2

1
0
1
0
0
3

1
0
1
0
0
4

1
0
1
0
0
5

1
0
1
0
0
6

1
0
1
0
0
7

1
0
1
0
0
8

1
0
1
0
0
9

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
0
1
2

1
0
1
0
1
3

1
0
1
0
1
4

1
0
1
0
1
5

1
0
1
0
1
6

1
0
1
0
1
7

1
0
1
0
1
8

1
0
1
0
1
9

1
0
1
0
2
0

1
0
1
0
2
1

1
0
1
0
2
2

1
0
1
0
2
3

1
0
1
0
2
4

1
0
1
0
2
5

1
0
1
0
2
6

1
0
1
0
2
7

1
0
1
0
2
8

1
0
1
0
2
9

1
0
1
0
3
0

1
0
1
0
3
1

1
0
1
0
3
2

1
0
1
0
3
3

1
0
1
0
3
4

1
0
1
0
3
5

1
0
1
0
3
6

1
0
1
0
3
7

1
0
1
0
3
8

1
0
1
0
3
9

1
0
1
0
4
0

1
0
1
0
4
1

1
0
1
0
4
2

1
0
1
0
4
3

1
0
1
0
4
4

1
0
1
0
4
5

1
0
1
0
4
6

1
0
1
0
4
7

1
0
1
0
4
8

1
0
1
0
4
9

1
0
1
0
5
0

1
0
1
0
5
1

1
0
1
0
5
2

1
0
1
0
5
3

1
0
1
0
5
4

1
0
1
0
5
5

1
0
1
0
5
6

1
0
1
0
5
7

1
0
1
0
5
8

1
0
1
0
5
9

1
0
1
0
6
0

1
0
1
0
6
1

1
0
1
0
6
2

1
0
1
0
6
3

1
0
1
0
6
4

1
0
1
0
6
5

1
0
1
0
6
6

1
0
1
0
6
7

1
0
1
0
6
8

1
0
1
0
6
9

1
0
1
0
7
0

1
0
1
0
7
1

1
0
1
0
7
2

1
0
1
0
7
3

1
0
1
0
7
4

1
0
1
0
7
5

1
0
1
0
7
6

1
0
1
0
7
7

1
0
1
0
7
8

1
0
1
0
7
9

1
0
1
0
8
0

1
0
1
0
8
1

1
0
1
0
8
2

1
0
1
0
8
3

1
0
1
0
8
4

1
0
1
0
8
5

1
0
1
0
8
6

1
0
1
0
8
7

1
0
1
0
8
8

1
0
1
0
8
9

1
0
1
0
9
0

1
0
1
0
9
1

1
0
1
0
9
2

1
0
1
0
9
3

1
0
1
0
9
4

1
0
1
0
9
5

1
0
1
0
9
6

1
0
1
0
9
7

1
0
1
0
9
8

1
0
1
0
9
9

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
0
2

1
0
1
1
0
3

1
0
1
1
0
4

1
0
1
1
0
5

1
0
1
1
0
6

1
0
1
1
0
7

1
0
1
1
0
8

1
0
1
1
0
9

1
0
1
1
1
0

1
0
1
1
1
1

1
0
1
1
1
2

1
0
1
1
1
3

1
0
1
1
1
4

1
0
1
1
1
5

1
0
1
1
1
6

1
0
1
1
1
7

1
0
1
1
1
8

1
0
1
1
1
9

1
0
1
1
2
0

1
0
1
1
2
1

1
0
1
1
2
2

1
0
1
1
2
3

1
0
1
1
2
4

1
0
1
1
2
5

1
0
1
1
2
6

1
0
1
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ^̂

C
o
u
ri
e
r

H
a
rd
w
a
re

F
o
n
t
1
0
0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
0
2

1
0
0
0
0
3

1
0
0
0
0
4

1
0
0
0
0
5

1
0
0
0
0
6

1
0
0
0
0
7

1
0
0
0
0
8

1
0
0
0
0
9

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
0
1
2

1
0
0
0
1
3

1
0
0
0
1
4

1
0
0
0
1
5

1
0
0
0
1
6

1
0
0
0
1
7

1
0
0
0
1
8

1
0
0
0
1
9

1
0
0
0
2
0

1
0
0
0
2
1

1
0
0
0
2
2

1
0
0
0
2
3

1
0
0
0
2
4

1
0
0
0
2
5

1
0
0
0
2
6

1
0
0
0
2
7

1
0
0
0
2
8

1
0
0
0
2
9

1
0
0
0
3
0

1
0
0
0
3
1

1
0
0
0
3
2

1
0
0
0
3
3

1
0
0
0
3
4

1
0
0
0
3
5

1
0
0
0
3
6

1
0
0
0
3
7

1
0
0
0
3
8

1
0
0
0
3
9

1
0
0
0
4
0

1
0
0
0
4
1

1
0
0
0
4
2

1
0
0
0
4
3

1
0
0
0
4
4

1
0
0
0
4
5

1
0
0
0
4
6

1
0
0
0
4
7

1
0
0
0
4
8

1
0
0
0
4
9

1
0
0
0
5
0

1
0
0
0
5
1

1
0
0
0
5
2

1
0
0
0
5
3

1
0
0
0
5
4

1
0
0
0
5
5

1
0
0
0
5
6

1
0
0
0
5
7

1
0
0
0
5
8

1
0
0
0
5
9

1
0
0
0
6
0

1
0
0
0
6
1

1
0
0
0
6
2

1
0
0
0
6
3

1
0
0
0
6
4

1
0
0
0
6
5

1
0
0
0
6
6

1
0
0
0
6
7

1
0
0
0
6
8

1
0
0
0
6
9

1
0
0
0
7
0

1
0
0
0
7
1

1
0
0
0
7
2

1
0
0
0
7
3

1
0
0
0
7
4

1
0
0
0
7
5

1
0
0
0
7
6

1
0
0
0
7
7

1
0
0
0
7
8

1
0
0
0
7
9

1
0
0
0
8
0

1
0
0
0
8
1

1
0
0
0
8
2

1
0
0
0
8
3

1
0
0
0
8
4

1
0
0
0
8
5

1
0
0
0
8
6

1
0
0
0
8
7

1
0
0
0
8
8

1
0
0
0
8
9

1
0
0
0
9
0

1
0
0
0
9
1

1
0
0
0
9
2

1
0
0
0
9
3

1
0
0
0
9
4

1
0
0
0
9
5

1
0
0
0
9
6

1
0
0
0
9
7

1
0
0
0
9
8

1
0
0
0
9
9

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
0
2

1
0
0
1
0
3

1
0
0
1
0
4

1
0
0
1
0
5

1
0
0
1
0
6

1
0
0
1
0
7

1
0
0
1
0
8

1
0
0
1
0
9

1
0
0
1
1
0

1
0
0
1
1
1

1
0
0
1
1
2

1
0
0
1
1
3

1
0
0
1
1
4

1
0
0
1
1
5

1
0
0
1
1
6

1
0
0
1
1
7

1
0
0
1
1
8

1
0
0
1
1
9

1
0
0
1
2
0

1
0
0
1
2
1

1
0
0
1
2
2

1
0
0
1
2
3

1
0
0
1
2
4

1
0
0
1
2
5

1
0
0
1
2
6

1
0
0
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ��

855

FONT TABLES The Font Tables

A
v
a
n
tG
a
rd
e

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
3
0
0
0

1
0
3
0
0
1

1
0
3
0
0
2

1
0
3
0
0
3

1
0
3
0
0
4

1
0
3
0
0
5

1
0
3
0
0
6

1
0
3
0
0
7

1
0
3
0
0
8

1
0
3
0
0
9

1
0
3
0
1
0

1
0
3
0
1
1

1
0
3
0
1
2

1
0
3
0
1
3

1
0
3
0
1
4

1
0
3
0
1
5

1
0
3
0
1
6

1
0
3
0
1
7

1
0
3
0
1
8

1
0
3
0
1
9

1
0
3
0
2
0

1
0
3
0
2
1

1
0
3
0
2
2

1
0
3
0
2
3

1
0
3
0
2
4

1
0
3
0
2
5

1
0
3
0
2
6

1
0
3
0
2
7

1
0
3
0
2
8

1
0
3
0
2
9

1
0
3
0
3
0

1
0
3
0
3
1

1
0
3
0
3
2

1
0
3
0
3
3

1
0
3
0
3
4

1
0
3
0
3
5

1
0
3
0
3
6

1
0
3
0
3
7

1
0
3
0
3
8

1
0
3
0
3
9

1
0
3
0
4
0

1
0
3
0
4
1

1
0
3
0
4
2

1
0
3
0
4
3

1
0
3
0
4
4

1
0
3
0
4
5

1
0
3
0
4
6

1
0
3
0
4
7

1
0
3
0
4
8

1
0
3
0
4
9

1
0
3
0
5
0

1
0
3
0
5
1

1
0
3
0
5
2

1
0
3
0
5
3

1
0
3
0
5
4

1
0
3
0
5
5

1
0
3
0
5
6

1
0
3
0
5
7

1
0
3
0
5
8

1
0
3
0
5
9

1
0
3
0
6
0

1
0
3
0
6
1

1
0
3
0
6
2

1
0
3
0
6
3

1
0
3
0
6
4

1
0
3
0
6
5

1
0
3
0
6
6

1
0
3
0
6
7

1
0
3
0
6
8

1
0
3
0
6
9

1
0
3
0
7
0

1
0
3
0
7
1

1
0
3
0
7
2

1
0
3
0
7
3

1
0
3
0
7
4

1
0
3
0
7
5

1
0
3
0
7
6

1
0
3
0
7
7

1
0
3
0
7
8

1
0
3
0
7
9

1
0
3
0
8
0

1
0
3
0
8
1

1
0
3
0
8
2

1
0
3
0
8
3

1
0
3
0
8
4

1
0
3
0
8
5

1
0
3
0
8
6

1
0
3
0
8
7

1
0
3
0
8
8

1
0
3
0
8
9

1
0
3
0
9
0

1
0
3
0
9
1

1
0
3
0
9
2

1
0
3
0
9
3

1
0
3
0
9
4

1
0
3
0
9
5

1
0
3
0
9
6

1
0
3
0
9
7

1
0
3
0
9
8

1
0
3
0
9
9

1
0
3
1
0
0

1
0
3
1
0
1

1
0
3
1
0
2

1
0
3
1
0
3

1
0
3
1
0
4

1
0
3
1
0
5

1
0
3
1
0
6

1
0
3
1
0
7

1
0
3
1
0
8

1
0
3
1
0
9

1
0
3
1
1
0

1
0
3
1
1
1

1
0
3
1
1
2

1
0
3
1
1
3

1
0
3
1
1
4

1
0
3
1
1
5

1
0
3
1
1
6

1
0
3
1
1
7

1
0
3
1
1
8

1
0
3
1
1
9

1
0
3
1
2
0

1
0
3
1
2
1

1
0
3
1
2
2

1
0
3
1
2
3

1
0
3
1
2
4

1
0
3
1
2
5

1
0
3
1
2
6

1
0
3
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ^̂

T
im

e
s

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
2
0
0
0

1
0
2
0
0
1

1
0
2
0
0
2

1
0
2
0
0
3

1
0
2
0
0
4

1
0
2
0
0
5

1
0
2
0
0
6

1
0
2
0
0
7

1
0
2
0
0
8

1
0
2
0
0
9

1
0
2
0
1
0

1
0
2
0
1
1

1
0
2
0
1
2

1
0
2
0
1
3

1
0
2
0
1
4

1
0
2
0
1
5

1
0
2
0
1
6

1
0
2
0
1
7

1
0
2
0
1
8

1
0
2
0
1
9

1
0
2
0
2
0

1
0
2
0
2
1

1
0
2
0
2
2

1
0
2
0
2
3

1
0
2
0
2
4

1
0
2
0
2
5

1
0
2
0
2
6

1
0
2
0
2
7

1
0
2
0
2
8

1
0
2
0
2
9

1
0
2
0
3
0

1
0
2
0
3
1

1
0
2
0
3
2

1
0
2
0
3
3

1
0
2
0
3
4

1
0
2
0
3
5

1
0
2
0
3
6

1
0
2
0
3
7

1
0
2
0
3
8

1
0
2
0
3
9

1
0
2
0
4
0

1
0
2
0
4
1

1
0
2
0
4
2

1
0
2
0
4
3

1
0
2
0
4
4

1
0
2
0
4
5

1
0
2
0
4
6

1
0
2
0
4
7

1
0
2
0
4
8

1
0
2
0
4
9

1
0
2
0
5
0

1
0
2
0
5
1

1
0
2
0
5
2

1
0
2
0
5
3

1
0
2
0
5
4

1
0
2
0
5
5

1
0
2
0
5
6

1
0
2
0
5
7

1
0
2
0
5
8

1
0
2
0
5
9

1
0
2
0
6
0

1
0
2
0
6
1

1
0
2
0
6
2

1
0
2
0
6
3

1
0
2
0
6
4

1
0
2
0
6
5

1
0
2
0
6
6

1
0
2
0
6
7

1
0
2
0
6
8

1
0
2
0
6
9

1
0
2
0
7
0

1
0
2
0
7
1

1
0
2
0
7
2

1
0
2
0
7
3

1
0
2
0
7
4

1
0
2
0
7
5

1
0
2
0
7
6

1
0
2
0
7
7

1
0
2
0
7
8

1
0
2
0
7
9

1
0
2
0
8
0

1
0
2
0
8
1

1
0
2
0
8
2

1
0
2
0
8
3

1
0
2
0
8
4

1
0
2
0
8
5

1
0
2
0
8
6

1
0
2
0
8
7

1
0
2
0
8
8

1
0
2
0
8
9

1
0
2
0
9
0

1
0
2
0
9
1

1
0
2
0
9
2

1
0
2
0
9
3

1
0
2
0
9
4

1
0
2
0
9
5

1
0
2
0
9
6

1
0
2
0
9
7

1
0
2
0
9
8

1
0
2
0
9
9

1
0
2
1
0
0

1
0
2
1
0
1

1
0
2
1
0
2

1
0
2
1
0
3

1
0
2
1
0
4

1
0
2
1
0
5

1
0
2
1
0
6

1
0
2
1
0
7

1
0
2
1
0
8

1
0
2
1
0
9

1
0
2
1
1
0

1
0
2
1
1
1

1
0
2
1
1
2

1
0
2
1
1
3

1
0
2
1
1
4

1
0
2
1
1
5

1
0
2
1
1
6

1
0
2
1
1
7

1
0
2
1
1
8

1
0
2
1
1
9

1
0
2
1
2
0

1
0
2
1
2
1

1
0
2
1
2
2

1
0
2
1
2
3

1
0
2
1
2
4

1
0
2
1
2
5

1
0
2
1
2
6

1
0
2
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ^̂

856

The Font Tables FONT TABLES

N
e
w
C
e
n
tu
ry

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
5

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
5
0
0
0

1
0
5
0
0
1

1
0
5
0
0
2

1
0
5
0
0
3

1
0
5
0
0
4

1
0
5
0
0
5

1
0
5
0
0
6

1
0
5
0
0
7

1
0
5
0
0
8

1
0
5
0
0
9

1
0
5
0
1
0

1
0
5
0
1
1

1
0
5
0
1
2

1
0
5
0
1
3

1
0
5
0
1
4

1
0
5
0
1
5

1
0
5
0
1
6

1
0
5
0
1
7

1
0
5
0
1
8

1
0
5
0
1
9

1
0
5
0
2
0

1
0
5
0
2
1

1
0
5
0
2
2

1
0
5
0
2
3

1
0
5
0
2
4

1
0
5
0
2
5

1
0
5
0
2
6

1
0
5
0
2
7

1
0
5
0
2
8

1
0
5
0
2
9

1
0
5
0
3
0

1
0
5
0
3
1

1
0
5
0
3
2

1
0
5
0
3
3

1
0
5
0
3
4

1
0
5
0
3
5

1
0
5
0
3
6

1
0
5
0
3
7

1
0
5
0
3
8

1
0
5
0
3
9

1
0
5
0
4
0

1
0
5
0
4
1

1
0
5
0
4
2

1
0
5
0
4
3

1
0
5
0
4
4

1
0
5
0
4
5

1
0
5
0
4
6

1
0
5
0
4
7

1
0
5
0
4
8

1
0
5
0
4
9

1
0
5
0
5
0

1
0
5
0
5
1

1
0
5
0
5
2

1
0
5
0
5
3

1
0
5
0
5
4

1
0
5
0
5
5

1
0
5
0
5
6

1
0
5
0
5
7

1
0
5
0
5
8

1
0
5
0
5
9

1
0
5
0
6
0

1
0
5
0
6
1

1
0
5
0
6
2

1
0
5
0
6
3

1
0
5
0
6
4

1
0
5
0
6
5

1
0
5
0
6
6

1
0
5
0
6
7

1
0
5
0
6
8

1
0
5
0
6
9

1
0
5
0
7
0

1
0
5
0
7
1

1
0
5
0
7
2

1
0
5
0
7
3

1
0
5
0
7
4

1
0
5
0
7
5

1
0
5
0
7
6

1
0
5
0
7
7

1
0
5
0
7
8

1
0
5
0
7
9

1
0
5
0
8
0

1
0
5
0
8
1

1
0
5
0
8
2

1
0
5
0
8
3

1
0
5
0
8
4

1
0
5
0
8
5

1
0
5
0
8
6

1
0
5
0
8
7

1
0
5
0
8
8

1
0
5
0
8
9

1
0
5
0
9
0

1
0
5
0
9
1

1
0
5
0
9
2

1
0
5
0
9
3

1
0
5
0
9
4

1
0
5
0
9
5

1
0
5
0
9
6

1
0
5
0
9
7

1
0
5
0
9
8

1
0
5
0
9
9

1
0
5
1
0
0

1
0
5
1
0
1

1
0
5
1
0
2

1
0
5
1
0
3

1
0
5
1
0
4

1
0
5
1
0
5

1
0
5
1
0
6

1
0
5
1
0
7

1
0
5
1
0
8

1
0
5
1
0
9

1
0
5
1
1
0

1
0
5
1
1
1

1
0
5
1
1
2

1
0
5
1
1
3

1
0
5
1
1
4

1
0
5
1
1
5

1
0
5
1
1
6

1
0
5
1
1
7

1
0
5
1
1
8

1
0
5
1
1
9

1
0
5
1
2
0

1
0
5
1
2
1

1
0
5
1
2
2

1
0
5
1
2
3

1
0
5
1
2
4

1
0
5
1
2
5

1
0
5
1
2
6

1
0
5
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ii

L
u
b
li
n
G
ra
p
h

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
4

0 1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
4
0
0
0

1
0
4
0
0
1

1
0
4
0
0
2

1
0
4
0
0
3

1
0
4
0
0
4

1
0
4
0
0
5

1
0
4
0
0
6

1
0
4
0
0
7

1
0
4
0
0
8

1
0
4
0
0
9

1
0
4
0
1
0

1
0
4
0
1
1

1
0
4
0
1
2

1
0
4
0
1
3

1
0
4
0
1
4

1
0
4
0
1
5

1
0
4
0
1
6

1
0
4
0
1
7

1
0
4
0
1
8

1
0
4
0
1
9

1
0
4
0
2
0

1
0
4
0
2
1

1
0
4
0
2
2

1
0
4
0
2
3

1
0
4
0
2
4

1
0
4
0
2
5

1
0
4
0
2
6

1
0
4
0
2
7

1
0
4
0
2
8

1
0
4
0
2
9

1
0
4
0
3
0

1
0
4
0
3
1

1
0
4
0
3
2

1
0
4
0
3
3

1
0
4
0
3
4

1
0
4
0
3
5

1
0
4
0
3
6

1
0
4
0
3
7

1
0
4
0
3
8

1
0
4
0
3
9

1
0
4
0
4
0

1
0
4
0
4
1

1
0
4
0
4
2

1
0
4
0
4
3

1
0
4
0
4
4

1
0
4
0
4
5

1
0
4
0
4
6

1
0
4
0
4
7

1
0
4
0
4
8

1
0
4
0
4
9

1
0
4
0
5
0

1
0
4
0
5
1

1
0
4
0
5
2

1
0
4
0
5
3

1
0
4
0
5
4

1
0
4
0
5
5

1
0
4
0
5
6

1
0
4
0
5
7

1
0
4
0
5
8

1
0
4
0
5
9

1
0
4
0
6
0

1
0
4
0
6
1

1
0
4
0
6
2

1
0
4
0
6
3

1
0
4
0
6
4

1
0
4
0
6
5

1
0
4
0
6
6

1
0
4
0
6
7

1
0
4
0
6
8

1
0
4
0
6
9

1
0
4
0
7
0

1
0
4
0
7
1

1
0
4
0
7
2

1
0
4
0
7
3

1
0
4
0
7
4

1
0
4
0
7
5

1
0
4
0
7
6

1
0
4
0
7
7

1
0
4
0
7
8

1
0
4
0
7
9

1
0
4
0
8
0

1
0
4
0
8
1

1
0
4
0
8
2

1
0
4
0
8
3

1
0
4
0
8
4

1
0
4
0
8
5

1
0
4
0
8
6

1
0
4
0
8
7

1
0
4
0
8
8

1
0
4
0
8
9

1
0
4
0
9
0

1
0
4
0
9
1

1
0
4
0
9
2

1
0
4
0
9
3

1
0
4
0
9
4

1
0
4
0
9
5

1
0
4
0
9
6

1
0
4
0
9
7

1
0
4
0
9
8

1
0
4
0
9
9

1
0
4
1
0
0

1
0
4
1
0
1

1
0
4
1
0
2

1
0
4
1
0
3

1
0
4
1
0
4

1
0
4
1
0
5

1
0
4
1
0
6

1
0
4
1
0
7

1
0
4
1
0
8

1
0
4
1
0
9

1
0
4
1
1
0

1
0
4
1
1
1

1
0
4
1
1
2

1
0
4
1
1
3

1
0
4
1
1
4

1
0
4
1
1
5

1
0
4
1
1
6

1
0
4
1
1
7

1
0
4
1
1
8

1
0
4
1
1
9

1
0
4
1
2
0

1
0
4
1
2
1

1
0
4
1
2
2

1
0
4
1
2
3

1
0
4
1
2
4

1
0
4
1
2
5

1
0
4
1
2
6

1
0
4
1
2
7

! " # $ % & ' () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _

` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ^̂

857

FONT TABLES The Font Tables

P
a
la
ti
n
o

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
7

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
7
0
0
0

1
0
7
0
0
1

1
0
7
0
0
2

1
0
7
0
0
3

1
0
7
0
0
4

1
0
7
0
0
5

1
0
7
0
0
6

1
0
7
0
0
7

1
0
7
0
0
8

1
0
7
0
0
9

1
0
7
0
1
0

1
0
7
0
1
1

1
0
7
0
1
2

1
0
7
0
1
3

1
0
7
0
1
4

1
0
7
0
1
5

1
0
7
0
1
6

1
0
7
0
1
7

1
0
7
0
1
8

1
0
7
0
1
9

1
0
7
0
2
0

1
0
7
0
2
1

1
0
7
0
2
2

1
0
7
0
2
3

1
0
7
0
2
4

1
0
7
0
2
5

1
0
7
0
2
6

1
0
7
0
2
7

1
0
7
0
2
8

1
0
7
0
2
9

1
0
7
0
3
0

1
0
7
0
3
1

1
0
7
0
3
2

1
0
7
0
3
3

1
0
7
0
3
4

1
0
7
0
3
5

1
0
7
0
3
6

1
0
7
0
3
7

1
0
7
0
3
8

1
0
7
0
3
9

1
0
7
0
4
0

1
0
7
0
4
1

1
0
7
0
4
2

1
0
7
0
4
3

1
0
7
0
4
4

1
0
7
0
4
5

1
0
7
0
4
6

1
0
7
0
4
7

1
0
7
0
4
8

1
0
7
0
4
9

1
0
7
0
5
0

1
0
7
0
5
1

1
0
7
0
5
2

1
0
7
0
5
3

1
0
7
0
5
4

1
0
7
0
5
5

1
0
7
0
5
6

1
0
7
0
5
7

1
0
7
0
5
8

1
0
7
0
5
9

1
0
7
0
6
0

1
0
7
0
6
1

1
0
7
0
6
2

1
0
7
0
6
3

1
0
7
0
6
4

1
0
7
0
6
5

1
0
7
0
6
6

1
0
7
0
6
7

1
0
7
0
6
8

1
0
7
0
6
9

1
0
7
0
7
0

1
0
7
0
7
1

1
0
7
0
7
2

1
0
7
0
7
3

1
0
7
0
7
4

1
0
7
0
7
5

1
0
7
0
7
6

1
0
7
0
7
7

1
0
7
0
7
8

1
0
7
0
7
9

1
0
7
0
8
0

1
0
7
0
8
1

1
0
7
0
8
2

1
0
7
0
8
3

1
0
7
0
8
4

1
0
7
0
8
5

1
0
7
0
8
6

1
0
7
0
8
7

1
0
7
0
8
8

1
0
7
0
8
9

1
0
7
0
9
0

1
0
7
0
9
1

1
0
7
0
9
2

1
0
7
0
9
3

1
0
7
0
9
4

1
0
7
0
9
5

1
0
7
0
9
6

1
0
7
0
9
7

1
0
7
0
9
8

1
0
7
0
9
9

1
0
7
1
0
0

1
0
7
1
0
1

1
0
7
1
0
2

1
0
7
1
0
3

1
0
7
1
0
4

1
0
7
1
0
5

1
0
7
1
0
6

1
0
7
1
0
7

1
0
7
1
0
8

1
0
7
1
0
9

1
0
7
1
1
0

1
0
7
1
1
1

1
0
7
1
1
2

1
0
7
1
1
3

1
0
7
1
1
4

1
0
7
1
1
5

1
0
7
1
1
6

1
0
7
1
1
7

1
0
7
1
1
8

1
0
7
1
1
9

1
0
7
1
2
0

1
0
7
1
2
1

1
0
7
1
2
2

1
0
7
1
2
3

1
0
7
1
2
4

1
0
7
1
2
5

1
0
7
1
2
6

1
0
7
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ^̂

S
o
u
v
e
n
ir

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
6

0 1 2 3 4 5 6 7 8 9

1
0

11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
6
0
0
0

1
0
6
0
0
1

1
0
6
0
0
2

1
0
6
0
0
3

1
0
6
0
0
4

1
0
6
0
0
5

1
0
6
0
0
6

1
0
6
0
0
7

1
0
6
0
0
8

1
0
6
0
0
9

1
0
6
0
1
0

1
0
6
0
1
1

1
0
6
0
1
2

1
0
6
0
1
3

1
0
6
0
1
4

1
0
6
0
1
5

1
0
6
0
1
6

1
0
6
0
1
7

1
0
6
0
1
8

1
0
6
0
1
9

1
0
6
0
2
0

1
0
6
0
2
1

1
0
6
0
2
2

1
0
6
0
2
3

1
0
6
0
2
4

1
0
6
0
2
5

1
0
6
0
2
6

1
0
6
0
2
7

1
0
6
0
2
8

1
0
6
0
2
9

1
0
6
0
3
0

1
0
6
0
3
1

1
0
6
0
3
2

1
0
6
0
3
3

1
0
6
0
3
4

1
0
6
0
3
5

1
0
6
0
3
6

1
0
6
0
3
7

1
0
6
0
3
8

1
0
6
0
3
9

1
0
6
0
4
0

1
0
6
0
4
1

1
0
6
0
4
2

1
0
6
0
4
3

1
0
6
0
4
4

1
0
6
0
4
5

1
0
6
0
4
6

1
0
6
0
4
7

1
0
6
0
4
8

1
0
6
0
4
9

1
0
6
0
5
0

1
0
6
0
5
1

1
0
6
0
5
2

1
0
6
0
5
3

1
0
6
0
5
4

1
0
6
0
5
5

1
0
6
0
5
6

1
0
6
0
5
7

1
0
6
0
5
8

1
0
6
0
5
9

1
0
6
0
6
0

1
0
6
0
6
1

1
0
6
0
6
2

1
0
6
0
6
3

1
0
6
0
6
4

1
0
6
0
6
5

1
0
6
0
6
6

1
0
6
0
6
7

1
0
6
0
6
8

1
0
6
0
6
9

1
0
6
0
7
0

1
0
6
0
7
1

1
0
6
0
7
2

1
0
6
0
7
3

1
0
6
0
7
4

1
0
6
0
7
5

1
0
6
0
7
6

1
0
6
0
7
7

1
0
6
0
7
8

1
0
6
0
7
9

1
0
6
0
8
0

1
0
6
0
8
1

1
0
6
0
8
2

1
0
6
0
8
3

1
0
6
0
8
4

1
0
6
0
8
5

1
0
6
0
8
6

1
0
6
0
8
7

1
0
6
0
8
8

1
0
6
0
8
9

1
0
6
0
9
0

1
0
6
0
9
1

1
0
6
0
9
2

1
0
6
0
9
3

1
0
6
0
9
4

1
0
6
0
9
5

1
0
6
0
9
6

1
0
6
0
9
7

1
0
6
0
9
8

1
0
6
0
9
9

1
0
6
1
0
0

1
0
6
1
0
1

1
0
6
1
0
2

1
0
6
1
0
3

1
0
6
1
0
4

1
0
6
1
0
5

1
0
6
1
0
6

1
0
6
1
0
7

1
0
6
1
0
8

1
0
6
1
0
9

1
0
6
1
1
0

1
0
6
1
1
1

1
0
6
1
1
2

1
0
6
1
1
3

1
0
6
1
1
4

1
0
6
1
1
5

1
0
6
1
1
6

1
0
6
1
1
7

1
0
6
1
1
8

1
0
6
1
1
9

1
0
6
1
2
0

1
0
6
1
2
1

1
0
6
1
2
2

1
0
6
1
2
3

1
0
6
1
2
4

1
0
6
1
2
5

1
0
6
1
2
6

1
0
6
1
2
7

! " # $ % & ' () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _

` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ^̂

858

The Font Tables FONT TABLES

C
h
a
n
c
e
ry

S
o
ft
w
a
re
/H
a
rd
w
a
re

F
o
n
t
1
0
8

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
0
8
0
0
0

1
0
8
0
0
1

1
0
8
0
0
2

1
0
8
0
0
3

1
0
8
0
0
4

1
0
8
0
0
5

1
0
8
0
0
6

1
0
8
0
0
7

1
0
8
0
0
8

1
0
8
0
0
9

1
0
8
0
1
0

1
0
8
0
1
1

1
0
8
0
1
2

1
0
8
0
1
3

1
0
8
0
1
4

1
0
8
0
1
5

1
0
8
0
1
6

1
0
8
0
1
7

1
0
8
0
1
8

1
0
8
0
1
9

1
0
8
0
2
0

1
0
8
0
2
1

1
0
8
0
2
2

1
0
8
0
2
3

1
0
8
0
2
4

1
0
8
0
2
5

1
0
8
0
2
6

1
0
8
0
2
7

1
0
8
0
2
8

1
0
8
0
2
9

1
0
8
0
3
0

1
0
8
0
3
1

1
0
8
0
3
2

1
0
8
0
3
3

1
0
8
0
3
4

1
0
8
0
3
5

1
0
8
0
3
6

1
0
8
0
3
7

1
0
8
0
3
8

1
0
8
0
3
9

1
0
8
0
4
0

1
0
8
0
4
1

1
0
8
0
4
2

1
0
8
0
4
3

1
0
8
0
4
4

1
0
8
0
4
5

1
0
8
0
4
6

1
0
8
0
4
7

1
0
8
0
4
8

1
0
8
0
4
9

1
0
8
0
5
0

1
0
8
0
5
1

1
0
8
0
5
2

1
0
8
0
5
3

1
0
8
0
5
4

1
0
8
0
5
5

1
0
8
0
5
6

1
0
8
0
5
7

1
0
8
0
5
8

1
0
8
0
5
9

1
0
8
0
6
0

1
0
8
0
6
1

1
0
8
0
6
2

1
0
8
0
6
3

1
0
8
0
6
4

1
0
8
0
6
5

1
0
8
0
6
6

1
0
8
0
6
7

1
0
8
0
6
8

1
0
8
0
6
9

1
0
8
0
7
0

1
0
8
0
7
1

1
0
8
0
7
2

1
0
8
0
7
3

1
0
8
0
7
4

1
0
8
0
7
5

1
0
8
0
7
6

1
0
8
0
7
7

1
0
8
0
7
8

1
0
8
0
7
9

1
0
8
0
8
0

1
0
8
0
8
1

1
0
8
0
8
2

1
0
8
0
8
3

1
0
8
0
8
4

1
0
8
0
8
5

1
0
8
0
8
6

1
0
8
0
8
7

1
0
8
0
8
8

1
0
8
0
8
9

1
0
8
0
9
0

1
0
8
0
9
1

1
0
8
0
9
2

1
0
8
0
9
3

1
0
8
0
9
4

1
0
8
0
9
5

1
0
8
0
9
6

1
0
8
0
9
7

1
0
8
0
9
8

1
0
8
0
9
9

1
0
8
1
0
0

1
0
8
1
0
1

1
0
8
1
0
2

1
0
8
1
0
3

1
0
8
1
0
4

1
0
8
1
0
5

1
0
8
1
0
6

1
0
8
1
0
7

1
0
8
1
0
8

1
0
8
1
0
9

1
0
8
1
1
0

1
0
8
1
1
1

1
0
8
1
1
2

1
0
8
1
1
3

1
0
8
1
1
4

1
0
8
1
1
5

1
0
8
1
1
6

1
0
8
1
1
7

1
0
8
1
1
8

1
0
8
1
1
9

1
0
8
1
2
0

1
0
8
1
2
1

1
0
8
1
2
2

1
0
8
1
2
3

1
0
8
1
2
4

1
0
8
1
2
5

1
0
8
1
2
6

1
0
8
1
2
7

!! "" ## $$ %% && '' (()) ** ++ ,, -- .. //

00 11 22 33 44 55 66 77 88 99 :: ;; << == >> ??

@@ AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO

PP QQ RR SS TT UU VV WW XX YY ZZ [[\\]] ^̂ __

`̀ aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

pp qq rr ss tt uu vv ww xx yy zz {{ || }} ^̂

Appendix D
DEFAULTS

Defaults Introduction

These are GINO front-end supplied defaults. They are independent of the device

driver. Defaults that may be overwritten by the device driver are marked [DD],

meaning Device Dependent. The default values set at the GINO initialization are

marked [G]; the values set on calling gNewDrawing() are marked [P]; the

remaining, unmarked values are initialized at the device nomination.

GINO elements Default Values Corresponding GINO function

calls

ERROR

maximum 10 [G] gSetMaxErrorLimit(10)

count 0 [G]

message switch on [G] gSetErrorMode(GALLON)

error trapping off [G] gSetErrorTrap(GOFF)

TRACE SWITCH off [G] gSetTracerMode(GOFF)

WORKSPACE AREA none [G] gSetWorkspaceLimit(0,0)

DEVICE

driver DUMMY

type 0 gSetDeviceFilename(,0) [DD]

DRAWING UNITS millimetres gDefinePictureUnits(1.0)

PAPER

859

DEFAULTS Defaults Introduction

GINO elements Default Values Corresponding GINO function

calls

size 200.0 x 200.0 mm gSetDrawingLimits(200.0,200.0,0)

[DD]

type 0

POSITION

space gMoveTo3D(0.0,0.0,0.0)

picture [P] gMoveTo3D(0.0,0.0,0.0)

LINE ATTRIBUTES

visibility on gSetLineVis(GVISIBLE)

broken line type solid gSetBrokenLine(GSOLID)

colour index black gSetLineColour(GBLACK) [DD]

line width 0.2 mm gSetLineWidth(0.2) [DD]

line width scaling 1.0 gSetLineWidthScaling (1.0)

pen type undefined gSetPenType(GDEFAULT) [DD]

line end type no ends gSetLineEnd(GNONE)

line attributes table each entry set to the

current line attributes,

except colour index is

set equal to line style

index (col=line)

GLINSTY rep={GVISIBLE,

GSOLID, col, 0.2, GDEFAULT,

GNONE};

gDefineLineStyle(line,&rep)

COLOUR TABLE

0 (GBACKGROUND) Background colour [DD]

1 (GBLACK) Black

2 (GRED) Red

3 (GORANGE) Orange

4 (GYELLOW) Yellow

5 (GGREEN) Green

6 (GCYAN) Cyan

7 (GBLUE) Blue

8 (GMAGENTA) Magenta

9 (GBROWN) Brown

10 (GWHITE) White

Device capability [DD]

860

Defaults Introduction DEFAULTS

GINO elements Default Values Corresponding GINO function

calls

CHARACTER

mode gSetMixedChars()

switch untransformable gSetCharTransformMode() (0)

font 0 gSetCharFont(GDEFAULT)

width and height 3.0 x 3.0 mm gSetCharSize(3.0,3.0) [DD]

angle 0.0o gSetStrAngle(0.0)

slant 0.0o gSetItalicAngle(0.0)

underlining off gSetStrUnderscore(GOFF)

font fill style solid gSetFontFillStyle(1,0,0,-1,0)

font weight normal gSetFontWeight(0)

font spacing as defined gSetFontSpacing(0)

font representation as requested gSetFontForm(0)

escape character an asterisk ‘*’ gSetEscapeChar(‘*’)

justification left gSetStrJustify(GLEFT)

exponent/index size 0.6 character size gSetStrExponent(0.6,0.6,*,*)

exponent position 0.6 above base line gSetStrExponent(*,*,0.6,*)

index position 0.3 below base line gSetStrExponent(*,*,*,0.3)

BROKEN LINE TABLE gDefineBrokenLineStyle()

1 (GSHORTDASHED) short dashed 1 { 1, 6.0, 4.0, 0.0}

2 (GSHORTDOTTED) short dotted 2 { 1, 4.0, 0.8, 0.0}

3 (GSHORTCHAINED) short chained 3 { 2, 10.0, 6.0, 1.0}

4 (GLONGDASHED) long dashed 4 { 1, 12.0, 8.0, 0.0}

5 (GLONGDOTTED) long dotted 5 { 1, 8.0, 1.6, 0.0}

6 (GLONGCHAINED) long chained 6 { 2, 20.0,12.0, 2.0}

7 (GDOTTED) dotted 7 { 1, 1.5, 0.5, 0.0}

8 dotted 8 { 1, 2.0, 1.0, 0.0}

9 dashed 9 { 1, 3.0, 2.0, 0.0}

10 dashed 10 { 1, 6.0, 5.0, 0.0}

11 dashed 11 { 1,10.0, 8.0, 0.0}

12 dashed 12 { 1,15.0,12.0, 0.0}

13 chained 13 { 2, 6.0, 3.0, 0.5}

14 chained 14 { 2, 8.0, 5.0, 0.5}

15 chained 15 { 2 12.0, 8.0, 0.5}

861

DEFAULTS Defaults Introduction

GINO elements Default Values Corresponding GINO function

calls

16 chained 16 { 2 16.0 12.0, 1.0}

broken line switch hardware gSetBrokenLineMode(GHARD)

ARCS

curve tolerance 0.1 mm gSetArcTolerance(0.1) [DD]

arc switch hardware gSetArcMode(GHARD)

AREA FILL

switch hardware gSetFillMode(GHARD)

HATCH TABLE gDefineHatchStyle()

1 (GFINEHORIZONTAL) fine horizontal hatch 1 { 2.0, 0.0,0.0,0.0, 0.0,0}

2 (GFINEVERTICAL) fine vertical hatch 2 { 2.0, 90.0,0.0,0.0, 0.0,0}

3 (GFINELEFTDIAGONAL) fine left diagonal

hatch

3 { 2.0,-45.0,0.0,0.0,-45.0,0}

4 (GFINERIGHTDIAGONAL) fine right diagonal

hatch

4 { 2.0, 45.0,0.0,0.0, 45.0,0}

5 (GFINEHORIZONTALGRID) fine horizontal hatch 5 { 2.0, 0.0,0.0,0.0, 0.0,1}

6 (GFINEDIAGONALGRID) fine vertical hatch 6 { 2.0, 45.0,0.0,0.0, 0.0,1}

7 (GFINEHORIZONTALMESH) fine left diagonal

hatch

7 { 2.0,-30.0,0.0,0.0, 30.0,1}

8 (GFINEDIAGONALMESH) fine right diagonal

hatch

8 { 2.0, 60.0,0.0,0.0, 30.0,1}

9 (GCOARSEHORIZONTAL) coarse horizontal

hatch

9 { 4.0, 0.0,0.0,0.0, 0.0,0}

10 (GCOARSEVERTICAL) coarse vertical hatch 10 { 4.0, 90.0,0.0,0.0, 0.0,0}

11 (GCOARSELEFTDIAGONAL) coarse left diagonal

hatch

11 { 4.0,-45.0,0.0,0.0,-45.0,0}

12 (GCOARSERIGHTDIAGONAL) coarse right diagonal

hatch

12 { 4.0, 45.0,0.0,0.0, 45.0,0}

13 (GCOARSEHORIZONTALGRID) coarse horizontal grid 13 { 4.0, 0.0,0.0,0.0, 0.0,1}

14 (GCOARSEDIAGONALGRID) coarse diagonal grid 14 { 4.0, 45.0,0.0,0.0, 0.0,1}

15 (GCOARSEHORIZONTALMESH) coarse horizontal

mesh

15 { 4.0,-30.0,0.0,0.0,-30.0,1}

16 (GCOARSEDIAGONALMESH) coarse vertical mesh 16 { 4.0, 60.0,0.0,0.0, 30.0,1}

VIEW/TRANSFORM MODE

862

Defaults Introduction DEFAULTS

GINO elements Default Values Corresponding GINO function

calls

mode hardware/software gSetViewTransformMode(DD)

VIEWING

type parallel view

view centre (0.0,0.0,0.0)

view direction (0.0,0.0,-1.0)

position of view centre centred on window or

device limits

gInitView()

up direction positive y-axis, or

failing that, negative

z-axis

TRANSFORMATION

switch off gSetTransform(GOFF)

matrix unit matrix

mode space mode gSetTransformMode(GSPACE)

saved state unit matrix switched

off, stack empty

VIEWPORT

limits windowing limits

transformation mode maintain aspect ratio

and centralize

gSetViewportMode(GCENTRAL)

WINDOWING

switch off [G] gSetWindowMode(GOFF)

windowing limits maximum and

minimum possible

floating point values.

Normally overwritten

by the device driver

MASKING

switch off [G] gSetMaskMode(GOFF)

limits unset [G] gSetMask2D({0.0,0.0,0.0,0.0})

POLYGON

863

DEFAULTS Defaults Introduction

GINO elements Default Values Corresponding GINO function

calls

workspace none [G] gDefinePolygonWorkspace(0)

polygons/vertices none [G] gClearPolygonWorkspace()

polygon identifier 0 [G] gSetPolygonIdent(0)

current polygon list no list [G] gSelectPolygons(&list,0)

DISPLAY FILE

switch hardware [G] gSetSegMode(GHARDWARE)

SDFBUF area none [G] gDefineSegWorkspace(0)

SDF marking colour NDC gSetSegMarkColour(ndc)

PICTURE SEGMENT

default 0 gExtendSeg(0)

groups group range gDefineGroupRange(1,32767)

table no groups defined gRemoveSegGroup(-1)

visibility on gSetSegVis(*,GVISIBLE)

sensitivity off gSetSegHit(*,GNONSENSITIVE)

marked off gMarkSeg(*,GUNMARK)

CURSOR

start position centre of device limits

[P]

type default gSetCursorType(GDEFAULT)

EVENTS

all disabled gRemoveEventType(GALL)

LIGHTING AND SHADING gSetShadingMode()

Shading Mode off GOFF,*,*,*

Culling off *,GOFF,*,*

Blending off *,*,GOFF,*

Winding anticlockwise *,*,*,GANTICLOCKWISE

LIGHT TABLE

1 white ambient gDefineLight(1,GWHITE)

864

Defaults Introduction DEFAULTS

GINO elements Default Values Corresponding GINO function

calls

2 white directional at

0.0,0.0,ZMAX

LIGHT SWITCHES

1-8 off gSetLightSwitch(*,GOFF)

MATERIAL TABLE gDefineMaterial()

1 normal 1 {0.3,0.6,0.0,30.0,1.0}

2 plastic 2 {0.3,0.6,1.0,30.0,1.0}

3 shiny 3 {0.3,0.6,1.0,100.0,1.0}

MATERIAL INDEX

setting match GINO colours gSetMaterialIndex(GOFF,GOFF)

FACET ATTRIBUTES

filling solid gSetFacetFillStyle(GSOLID)

offset off gSetFacetOffsetMode(GOFF)

TEXTURE MAPPING

mode off gSetTextureMappingMode(GOFF)

blend colour background

wrapping repeat

enlargement/reduction method nearest neighbour

border colour background

TEXTURE GENERATION

mode off

FOG ATTRIBUTES gDefineFog()

mode off GNONE

colour black

density 0.0025

linear start/end values 0.0,1.0

865

DEFAULTS Defaults Introduction

866

Defaults Introduction DEFAULTS

Line Styles

Hatch/Fill Styles

Appendix E
ERROR AND WARNING MESSAGES

Error and Warning Introduction

This Appendix is divided into four sections:

1. Errors and warnings that can be generated from calling GINO routines

2. CGM specific errors

3. System I/O errors generated from problems with file input or output

4. Configuration File errors

GINO Errors and Warnings

1 Call to GINO routine requiring device to be nominated

A GINO program must call a device nomination routine (from Appendix B) to

generate graphics

2 Cannot open file for device output

A file open error has occurred opening the requested metafile - check access

rights

3 Attempt to close segment when one not open

A call to gCloseSeg() made with no corresponding gOpenSeg()

4 Error count exceeds maximum permitted

More than 10 errors generated - see gSetMaxErrorLimit()

867

ERROR AND WARNING MESSAGES Error and Warning Introduction

5 GINO not initialized

Graphics device failed to initialize - check environment or contact software

support

6 Routine used that will not be available in next release

Check details in Appendix H

7 Routine no longer available

Check details in Appendix H

8 Device not available

Error transmitting data to device - check links or network

9 Call to qualifying routine after device initialization

Move offending call to immediately following nomination routine

10 Cursor not available

Self explanatory

12 Perspective present in current transformation

Need to use homogeneous coordinates

13 Singular input transformation matrix

Self explanatory

14 3D terms present in current transformation

Use 3D transformation routine

15 Point lies behind eye point and does not transform

Self explanatory

16 Polygon vertex not recorded (polygon workspace full)

Increase polygon workspace using gDefinePolygonWorkspace() or reduce

complexity

18 GINO font data file not available

Check environment and installation notes

19 Invalid workspace limits

N1 > N2 - correct values

20 Requested paper size too large

Size larger than maximum on current device - check gEnqMaxDrawingLimits()

868

GINO Errors and Warnings ERROR AND WARNING MESSAGES

21 Attempt to draw beyond lower X limit

Check coordinates or switch on windowing

22 Attempt to draw beyond upper X limit

Check coordinates or switch on windowing

23 Attempt to draw beyond lower Y limit

Check coordinates or switch on windowing

24 Attempt to draw beyond upper Y limit

Check coordinates or switch on windowing

25 Attempt to draw beyond lower Z limit

Check coordinates or switch on windowing

26 Attempt to draw beyond upper Z limit

Check coordinates or switch on windowing

27 Attempt to position segment anchor outside device limits

First visible point of segment must lie within device limits

28 Invalid segment operation on current segment

Attempt to use gMoveSegBy2D() on current segment

29 Negative workspace size requested

Self explanatory

30 Not enough space available for new workspace size

Increase global workspace size with gSetWorkspaceLimit()

31 New workspace size too small for existing data

Can’t decrease workspace to less than current data requirements

33 Invalid character follows escape character

Probable single use of current escape character

34 Negative polygon list size

Self explanatory

35 Character not available on output device

Self explanatory

36 Negative polygon identifier

Self explanatory

869

ERROR AND WARNING MESSAGES GINO Errors and Warnings

37 Attempt to define invalid escape character

Outside range 32 - 127 or defined escape code - see gDisplayStr()

38 Not enough room in workspace

Increase global workspace using gSetWorkspaceLimit()

39 Routine requires workspace to be defined

Must declare global workspace using gSetWorkspaceLimit() first

40 Arc rotation axis is undefined

Zero length direction vector in 3D arc

41 Arc end vector is undefined

Centre and end point are coincident

42 Negative number of points in multi-drawing routine

Self explanatory

43 Curve is undefined (all points coincide)

Self explanatory

44 Single non-zero vector incr. with inconsistent end conditions

Curve only contains two points and without extra end points for full definition

45 Negative broken line type

Self explanatory

46 Negative colour index

Self explanatory

47 Negative line width

Self explanatory

48 Negative pen type

Self explanatory

49 Negative line end type

Self explanatory

50 Negative gap length

Self explanatory

51 Broken line mode out of range

Mode must be one of GCONTCHAIN, GCONTDASH, GDISCONTDASH or

GDISCONTCHAIN

870

GINO Errors and Warnings ERROR AND WARNING MESSAGES

52 Broken line type out of range

Outside range 1 to 256

56 Line style index out of range

Outside range 1 to 256

57 Fill style index out of range

Outside range 1 to 256

58 Negative hatch line separation

Self explanatory

59 Invalid component in colour definition

Outside range 0.0 to 1.0

60 Transformation stack empty

Attempt to use gPopTransform() without preceding gPushTransform()

61 Transformation stack full

Attempt to stack more than 10 transformation matrices

62 Rotation axis out of range

Axis must be one of GXAXIS, GYAXIS or GZAXIS

63 Shear axis out of range

Shear axis must be one of GXAXIS, GYAXIS or GZAXIS

64 3-D Shear direction out of range

Shear direction must be one of GXAXIS, GYAXIS or GZAXIS

65 Zero scale factor

Self explanatory

66 Axis out of range

View axes must be one of GXAXIS, GYAXIS or GZAXIS

67 Transformation switch out of range

Transform switch must be one of GRESET, GOFF, GON or GINIT

68 Negative or zero character dimension

Self explanatory

69 Negative symbol number

Self explanatory

871

ERROR AND WARNING MESSAGES GINO Errors and Warnings

70 Negative repeat, dash or dot length in broken line def.

Self explanatory

79 No hardware segment facilities - SDF initialised

An attempt has been made to open a picture segment on a device that does not

handle segments. Use gSetSegMode() to define the required segment mode for

the application

80 Invalid segment number

Attempt to define/use segment outside permitted range

81 Segment does not exist

Attempt to use segment not yet defined

82 Invalid Event type

Event type must be of permitted type

85 Invalid ASCII code

Character code outside range 0-127

88 Invalid fill style in fill routine

Attempt to use negative or invalid fill style

89 Negative line style in fill routine

Attempt to use negative line style

92 Not enough space for temporary area fill workspace

Increase global workspace using gSetWorkspaceLimit()

93 Segment group number out of range

Outside range 1-50

94 Invalid segment range for segment group

Start > end or either out or range

95 Invalid range for segment group numbers

Min > Max

96 Segment group table full

Reduce number of segment groups

97 Negative dot radius

Self explanatory

872

GINO Errors and Warnings ERROR AND WARNING MESSAGES

98 Negative character count

Self explanatory

99 Numeric field width > 32

Self explanatory

100 Too many points in Bezier curve - truncated

A limits of 200 points is imposed on any Bezier curve routine

102 Attempt to switch masking on with no limits set

Define mask using gSetMask2D() before switching on

103 Failed to open file for metafile output

File open error - check disk space or access

104 Failed to open file for metafile input

File open error - check file name and/or access rights

105 Cannot read SAVPIC file

Use gGetPicture() to read SAVPIC file

106 Failed to rewind file for metafile input

System cannot reset pointer to start of file - I/O error

107 Metafile error in segment header data

If file not corrupted, contact software support

108 Metafile error in segment data

If file not corrupted, contact software support

109 Metafile error between segments

If file not corrupted, contact software support

110 Incorrect metafile header

If file not corrupted, contact software support

111 Picture segment not found in metafile

Check list of segments in file using gEnqSavdraSegList()

112 Incorrect metafile data

If file not corrupted, contact software support

113 Corrupt SAVDRA code

If file not corrupted, contact software support

873

ERROR AND WARNING MESSAGES GINO Errors and Warnings

114 Invalid SAVDRA metafile

If file not corrupted, contact software support

116 Invalid delimiter in metafile

If file not corrupted, contact software support

117 Incorrect character count for metafile input record

If file not corrupted, contact software support

118 Incorrect metafile segment header

If file not corrupted, contact software support

119 Invalid file unit

File unit outside implementation range - use gFopen()

120 Window/Mask switch out of range

Switch must be either GON or GOFF

121 Zero view UP vector

Self explanatory

122 Zero rotation axis vector

Self explanatory

123 Zero perspective distance

Self explanatory

124 Plane out of range

Plane must be one of GYZPLANE, GXZPLANE or GXYPLANE

125 Zero perspective distance

Self explanatory

126 Zero window dimension

Self explanatory

127 Zero line of sight vector in view

Self explanatory

128 Zero or negative sphere radius

Self explanatory

129 Line of sight vector and view UP vector coincide

Self explanatory

874

GINO Errors and Warnings ERROR AND WARNING MESSAGES

130 View with perspective required

Self explanatory

131 Window/Mask limits are outside device limits

Self explanatory

133 Invalid file unit

File unit outside implementation range - use gFopen()

134 Not enough space for clipped polygon data

Increase global workspace using gSetWorkspaceLimit()

135 Device driver error - incorrect access to polygon data

Contact device driver writer or customer support

136 Not enough space for metafile polygon data

Increase global workspace using gSetWorkspaceLimit()

137 Negative hit radius

Self explanatory

138 Negative character size index

Self explanatory

139 Input coordinates and current transformation are inconsistent

Self explanatory

140 Invalid maximum error limit

Must set positive value

141 Negative array size

Self explanatory

142 Attempt to position cursor outside device limits

Self explanatory

143 Segment identifier does not exist

Self explanatory

144 Negative or zero scale factor

Self explanatory

145 Negative number of decimal places in numeric field

Self explanatory

875

ERROR AND WARNING MESSAGES GINO Errors and Warnings

146 Invalid file unit

Metafile file unit outside implementation range - check config file & Appendix B

148 Workspace area is internally defined

Global workspace size is predefined in library - this cannot be changed

150 Current picture position is undefined

Define specific pen position using gMove() routine before displaying string

151 Too many vertices in polygon boundary

Program has exceeded 2048 limit

152 Request for memory buffer when already using file storage

Must use gDefineSegWorkspace() before any segments are opened

153 Segment Reference depth > 10

Self explanatory

154 Cannot open scratch software display file

Internal file open error - check access rights

155 Segment display file switch out of range

Switch must be one of GSOFTWARE, GMIXWARE or GHARDWARE

156 Call to change SDF mode while in segment

Must close segment before using gSetSegMode()

157 SDF File pointer corrupted

Contact software support

158 No polygon workspace

Must call gDefinePolygonWorkspace() to use this routine

159 Segment cannot reference itself

Self explanatory

160 Negative dialogue area origin

Increase global workspace using gSetWorkspaceLimit()

161 Negative number of rows or columns in dialogue area

Self explanatory

165 No room for polygonal window/mask

Increase global workspace using gSetWorkspaceLimit()

876

GINO Errors and Warnings ERROR AND WARNING MESSAGES

166 Invalid character justification

Justification must be one of GLEFT, GCENTRE or GRIGHT

167 Invalid argument

Null type must be one of GNOSLASH, GSLASH or GTICK

168 Negative font style

Must use GOUTLINE, GFILLED, GOUTFIL or system dependent +’ve setting

169 Invalid fitting switch

Must use one of GB2P or GSIZE as fitting switch

170 Invalid underscore switch

Must use one of GON or GOFF

171 Negative argument

Must use positive value for all real arguments

172 Not enough points for spline curve

Must provide at least 3 points to define spline curve

173 Invalid font number

Font number is negative or unknown value

174 No room in SDF memory buffer

Increase size of segment workspace using gDefineSegWorkspace()

175 Unable to open SDF archive file

File open error - check access rights

176 SDF mode not set

Must call gSetSegMode() before retrieving segment archive

177 SDF memory buffer not large enough for archive file

Must increase segment workspace or use file mode

178 New line requested outside text block

The *N escape sequence must be used in conjunction with gStartTextBlock()

179 Invalid font representation

Must be in range 0-7

180 Illegal cursor type

Must be one of predefined cursor types

877

ERROR AND WARNING MESSAGES GINO Errors and Warnings

181 Invalid number of points in cursor polyline

Number of vertices must be positive

182 Negative number of polygons in polygon set

Self explanatory

183 Invalid viewport limits

Limits have zero range or outside device limits

184 Invalid viewport scaling switch

Mode must be one of GCENTRAL, GBOTTOMLEFT or GDEFORMED

185 Negative or zero argument

Self explanatory

186 Incorrect sub-array size

Sub-array dimension is less than or equal to zero

187 Pixel rectangle outside device limits

Check pixel dimensions using gEnqPixelResolution()

188 Pixel rectangle not contained within device limits

Check pixel dimensions using gEnqPixelResolution()

189 Negative or zero scale factor

Self explanatory

190 Orientation variable out of range

Orientation must be in range 0-3

191 Pixel data definition out of range

Arguments are either negative or outside range of machine architecture

192 Pixel data definition incompatible

No. of relevant bits (nrb) > Bits per pixel (nbp) or total greater than number of

bits per word or device working in direct colour mode

193 Pixel information out of range

Pixel data is outside colour range of device

194 Invalid SDF highlight colour index

Check number of colours available with gEnqColourInfo()

195 Invalid pixel display switch

Switch must be one of GOFF, GON or GBOUNDARY

878

GINO Errors and Warnings ERROR AND WARNING MESSAGES

196 Pixel buffer overflow

Pixel area width > internal buffer - contact software support

197 Invalid drawing area identifier

Identifier greater than number of auxiliary areas available on device

198 Cannot open auxiliary drawing area

Device error - check resources

199 Invalid clipping mode

Mode must be one of GNOCLIP, GHARD or GSOFT

200 Empty GINO state stack

Attempt to call gRestoreGinoState() without corresponding gSaveGinoState()

201 Error accessing GINO state stack file

Internal file read/write error - check access rights or contact software support

202 Invalid thick line generation mode

Mode must be one of GHARDWARE, GMIXWARE or GSOFTWARE

203 Invalid image file type

Unrecognized metafile image type

204 Metafile too large for allocated workspace

Increase local image array size - check dimensions with gEnqImageFile()

205 Invalid colour definition flag

Attempt to read 24bit image on indexed display in mode 0 - use mode 1

206 Invalid shading mode

Mode must be one of GNONE, GFLAT, GGOURAUD or GPHONG

207 Invalid culling mode

Culling must be either GON or GOFF

208 Invalid blending mode

Blending must be either GON or GOFF

209 Invalid winding mode

Winding must be either GANTICLOCKWISE or GCLOCKWISE

210 Negative or too many points in facet

There must be at least 3 and less 1024 points in a facet

879

ERROR AND WARNING MESSAGES GINO Errors and Warnings

211 Illegal light number

Must be in range 1-8

212 Light not defined

Attempt to switch light on before defined - use gDefineLightSource() first

213 Illegal material index

Must be range 1-256

214 Invalid depth test mode

Must be one of recognized modes

215 Invalid facet filling style

Style must be either GHOLLOW or GSOLID

216 Invalid texture mapping mode

Mode must be one of GOFF, GOVERLAY, GMODULATE or GBLEND

217 Invalid texture mapping wrap mode

Mode must be either GREPEAT or GCLAMP

218 Invalid texture mapping filter

Must be one of GOFF, GOVERLAY, GMODULATE or GBLEND

219 Invalid texture coordinate generation mode

Must be one of GOFF, GOBJECT or GSPHERICAL

220 Texture map too large

Texture map exceeds 1024x1024 limit

221 Invalid fog mode

Fog mode must be one of GNONE or GLINEAR, GEXP1 or GEXP2

222 Invalid facet face

Face must be either GFRONT or GBACK

223 Invalid facet offset mode

Use one of documented modes

224 Invalid point storage mode

Point storage mode must be one of GOFF, GSPACE, GPICTURE or GCLEAR

225 Invalid task priority

Priority must be one of GREALTIME, GHIGH, GNORMAL, GLOW or GIDLE

880

GINO Errors and Warnings ERROR AND WARNING MESSAGES

226 Failed to allocate memory for metafile creation

An attempt to allocate memory failed due to insufficient resources. Either

increase amount of virtual memory or reduce size of metafile

227 Fatal error creating metafile

Contact software support

228 Too few or too many points in shaded polyline

There must be at least 2 and less than 1024 points in a shaded polyline

229 Too few data points for interpolation

There must be at least 2 points to carry out an interpolation

230 Invalid interpolation switch

Interpolation switch must be either of GXDATA, GYDATA or GZDATA

231 No. of interpolated values exceeds output array size

There are more intersections for the supplied data value than can be returned in

the supplied output arrays. Increase the value of nptout and size of the ptout1

(and ptout2) arrays.

CGM Errors

The error number is followed by the error message which is accompanied by a

brief description of the possible cause of the error.

1 CGM not in proper state. Should be in state KMFCL

An attempt has been made to begin an already open metafile

2 CGM not in proper state. Should be KMFDS, KPIDS, KPIOP or KPICL

An attempt has been made to process an external element in an invalid state

3 CGM not in proper state. Should be in state KMFDS

An attempt has been made to process a Metafile Descriptor element while not in

Metafile Descriptor state

4 CGM not in proper state. Should be in state KPIDS

An attempt has been made to process a Picture Descriptor element while not in

Picture Descriptor state

5 CGM not in proper state. Should be in state KMFDS or KPICL

An attempt has been made to end a metafile or open a picture from within an

open picture

881

ERROR AND WARNING MESSAGES CGM Errors

6 CGM not in proper state. Should be in state KPIOP

An attempt has been made to process a graphical primitive or attribute element

while picture is not open

7 CGM not in proper state. Should be in state KPIDS or KPIOP

An attempt has been made to close a picture while picture is not open

8 CGM not in proper state. Should be in state KPATX

An attempt has been made to append while text final/not final flag is set to final

9 CGM not in proper state. Should be in state KPIOP or KPATX

As error number 6 except covering special case of elements which can occur in

both states

10 CGM not in proper state. Should be in state KMFDEF

An attempt has been made to end metafile defaults replacement before a begin

metafile defaults replacement has been encountered

20 Invalid metafile

An attempt has been made to leave the Metafile Descriptor state without writing

the elements Metafile Version or Metafile Element List

30 Unknown element

An op-code has been encountered which is not included in the standard

45 Invalid rectangle definition. Zero area

A zero area rectangle has been defined within VDC Extent, Clip Rectangle or

Rectangle Elements

50 Element not included in metafile element list

Self explanatory

100 Invalid line bundle index

A line bundle index which is negative or greater than indicated by Index

Precision has been specified

101 Invalid marker bundle index

A marker bundle index which is negative or greater than indicated by Index

Precision has been specified

102 Invalid text bundle index

A text bundle index which is negative or greater than indicated by Index

Precision has been specified

882

CGM Errors ERROR AND WARNING MESSAGES

103 Invalid text font index

A text font index which is negative or greater than indicated by Font List or

Index Precision has been specified

104 Invalid character set index

A character set index which is negative or greater than indicated by Character Set

List or Index Precision has been specified

105 Invalid alternative character set index

An alternative character set index which is negative or greater than indicated by

Character Set List or Index Precision has been specified

106 Invalid fill bundle index

A fill bundle index which is negative or greater than indicated by Index Precision

has been specified

107 Invalid pattern index

A pattern index which is negative or greater than indicated by Index Precision or

Pattern Table has been specified

108 Invalid edge bundle index

An edge bundle index which is negative or greater than indicated by Index

Precision has been specified

130 Invalid line colour

A line colour whose index is negative or greater than Maximum Colour Index or

at least one of whose components lies outside the range indicated by Colour

Value Extent has been specified

131 Invalid marker colour

A marker colour whose index is negative or greater than Maximum Colour Index

or at least one of whose components lies outside the range indicated by Colour

Value Extent has been specified

132 Invalid text colour

A text colour whose index is negative or greater than Maximum Colour Index or

at least one of whose components lies outside the range indicated by Colour

Value Extent has been specified

133 Invalid fill colour

A fill colour whose index is negative or greater than Maximum Colour Index or

at least one of whose components lies outside the range indicated by Colour

Value Extent has been specified

883

ERROR AND WARNING MESSAGES CGM Errors

134 Invalid edge colour

An edge colour whose index is negative or greater than Maximum Colour Index

or at least one of whose components lies outside the range indicated by Colour

Value Extent has been specified

200 Loss of integer precision

An integer value outside the range indicated by Integer Precision has been

specified

202 Loss of real precision

A real value outside the range indicated by Real Precision has been specified

204 Real VDC lost precision

A real VDC value outside the range indicated by VDC Real Precision has been

specified

205 Real point lost precision

One of x,y in (a real point) lies outside the range indicated by VDC Real

Precision

206 Integer VDC lost precision

An integer VDC value outside the range indicated by VDC Integer Precision has

been specified

207 Integer point lost precision

One of x,y in (an integer point) lies outside the range indicated by VDC Integer

Precision

210 Invalid VDC distance

A negative or ‘zero’ distance has been specified. e.g. Circle Radius, Character

Height

220 Point outside VDC Extent

At least one of the coordinates of a point is greater (or less) than the relevant

VDC EXTENT coordinate

230 Invalid colour list

An error list has been encountered when processing a colour list. Perhaps invalid

type, colour specification greater than maximum

302 Invalid line width

A negative or ‘zero’ line width has been specified

304 Invalid marker size

A negative or ‘zero’ marker size has been specified

884

CGM Errors ERROR AND WARNING MESSAGES

306 Invalid edge width

A negative or ‘zero’ edge width has been specified

310 Invalid character expansion factor

A negative character expansion factor has been specified

312 Invalid character spacing

A negative character spacing width has been specified

320 Invalid test alignment

A value outside the enumerated range for text alignment [0,4] & [0,6] has been

specified

332 Invalid text final/not-final flag

A value other than 0 or 1 for either a closure flag or an edge visibility flag was

specified

333 Invalid closure/edge visibility flag

A value other than 0 or 1 for either a closure flag or an edge visibility flag was

specified

334 Invalid line type

A value greater than 5 for line type was specified

336 Invalid marker type

A value greater than 5 for marker type was specified

338 Invalid text precision

A value outside the range [0,2] for text precision was specified

340 Invalid text path

A value outside the range [0,2] for text path was specified

350 Invalid interior style

A value greater than 4 for interior style was specified

352 Invalid hatch index

A value greater than 6 for hatch index was specified

354 Invalid edge type

A value greater than 5 for edge type was specified

360 Aspect source flag error

An unacceptable value for aspect [0,17] or [506,511] or a value other than 0 or 1

for aspect source was specified

885

ERROR AND WARNING MESSAGES CGM Errors

370 Invalid message action flag

A value other than 0 or 1 was encountered as a message action flag

401 Invalid VDC type

A value other than 0 or 1 has been specified

402 Invalid maximum colour index

A maximum colour index which is either negative or greater than that indicated

by Colour Index Precision

403 Invalid colour value extent

A colour value extent where either minimum colour value is greater than

maximum colour value or a component lies outside the range indicated by Colour

Precision has been specified

404 Invalid real precision

An inconsistent set of parameters for real precision (e.g. smallest real code

greater than largest real code) or a value other than 0 or 1 for exponents allowed

flag has been specified. An invalid combination of real precision for binary

encoding

405 Invalid integer precision

An invalid value for integer precision was encountered. A number less than 1. Or

an unspecified precision for binary encoding

406 Invalid background colour

A background colour at least one of whose components lies outside the range

indicated by Colour Value Extent has been specified

407 Invalid auxiliary colour

An auxiliary colour whose index is negative or greater than Maximum Colour

Index or at least one of whose components lies outside the range indicated by

Colour Value Extent has been specified

408 Invalid index precision

An invalid value for index precision was encountered. A number less than 1. Or

an Unspecified precision for binary encoding

409 Invalid colour precision

An invalid value for colour precision was encountered. A number less than 1. Or

an unspecified precision for binary encoding

886

CGM Errors ERROR AND WARNING MESSAGES

410 Invalid colour index precision

An invalid value for colour index precision was encountered. A number less than

1. Or an unspecified precision for binary encoding

411 Invalid metafile element list

Either an invalid op-code or a value greater than 1 has been specified in the

element list

412 Invalid character set type

A value other than the range [0,4] has been specified as a character set type

413 Invalid character coding announcer

A value greater than 3 as a character coding announcer has been specified

414 Invalid scaling mode

A value other than 0 or 1 for scaling mode has been specified

415 Invalid colour selection mode

A value other than 0 or 1 for colour selection mode has been specified

416 Invalid line width selection mode

A value other than 0 or 1 for line width selection mode has been specified

417 Invalid marker size selection mode

A value other than 0 or 1 for marker size selection mode has been specified

418 Invalid edge width selection mode

A value other than 0 or 1 for edge width selection mode has been specified

419 Invalid scale factor

A negative or ‘zero’ value for metric scale factor has been specified

422 Invalid VDC real precision

As for error number 404

423 Invalid VDC integer precision

As for error number 405

424 Invalid transparency indicator

A value other than 0 or 1 for the transparency indicator was specified

426 Invalid clip indicator

A value other than 0 or 1 for the clip indicator was specified

887

ERROR AND WARNING MESSAGES CGM Errors

700 Invalid CGM coding type

CGM file must be character or binary coding

708 No file opened for interpreter

A partial interpretation routine called before gOpenCGMFile

709 Error opening CGM file

Self explanatory

710 Error while writing to metafile

Self explanatory

711 Error while reading from CGM file

Self explanatory

712 End of CGM metafile reached

Self explanatory

720 Input buffer overflow

While storing data to send to (or read from) a file, the maximum has been

exceeded. This value is specified by the implementor

740 Invalid parameter data found

Some redundant parameter data at the end of an element was encountered (i.e. An

op-code was not found immediately following the end of an element)

750 String data overflow

A string variable has a length greater than the maximum string length

implemented (255)

760 Colour buffer overflow

A colour definition or cell array definition exceeds implementation maximum

(2048)

770 Polyline/polygon buffer overflow

Number of points in polyline or polygon exceeds implemented maximum (1024)

999 Unknown error

System Input and Output Errors

GINO System error - File unit number out of range (NDEVIC=nnnn)

888

System Input and Output Errors ERROR AND WARNING MESSAGES

A device file configuration setting has been set greater than the highest permitted

file unit number for your machine or less than -8.

GINO System error - Cannot open file (NDEVIC=nnnn, ERROR CODE

=nnnn)

A system error has occurred when opening the output file or port.

GINO System error - Cannot input from output only file

A GINO input routine has been used when outputting to a disk file.

GINO System error - Error (nnnn) reading from device

A system error has occurred during input from the desired device.

GINO System error - Error (nnnn) writing to output file

A system error has occurred during output to the desired device.

For OpenVMS and UNIX error codes, please refer to the relevant system

documentation.

Configuration File Errors

*** Missing or Empty GINO Configuration File - Program Aborted! ***

Check the Getting Started guide for the correct location of the Configuration

File. If it is missing, either it has been accidentally deleted or you have been

supplied with an update pack assuming that you have a configuration file from a

previous release. Contact Bradly Associates or your dealer if this error continues.

*** Incorrect GINO-C/F Serial No. - Program Aborted! ***

Check the contents of your configuration file. There should be a serial number

line beginning with FSERIAL= or CSERIAL = followed by a string of ASCII

characters. Contact Bradly Associates or your dealer if this error continues.

*** GINO-C/F Evaluation period expired! ***

You have a temporary licence which has now expired - Contact Bradly

Associates or your dealer.

889

ERROR AND WARNING MESSAGES Configuration File Errors

Appendix F
GINO STRUCTURES

Structures Introduction

There follows an alphabetical listing of the GINO structures for reference

purposes. These structures are defined within the GINO-C header file <gino-c.h>.

Equivalent structures exist for the Fortran 90 implementation of GINO using the

derived type construct and are included in the Fortran 90 interface module for

GINO.

GBRKSTY

typedef struct {
int mode;
float repeat;
float dash;
float dot;

} GBRKSTY;

type GBRKSTY
integer:: mode
real :: repeat
real :: dash
real :: dot

end type

GCHASTY

typedef struct {
int type;
float width;
float height;
int size;
float slant;
float angle;

} GCHASTY;

type GCHASTY
integer:: type
real :: width
real :: height
integer:: size
real :: slant
real :: angle

end type

891

GINO STRUCTURES Structures Introduction

GDATE

typedef struct {
int year;
int month;
int day;

} GDATE;

type GDATE
integer:: year
integer:: month
integer:: day

end type

GDEVSTATE

typedef struct {
char name[8];
int ddver;
int ndevty;
GFILE *ndev;
int ntype;
float xmm;
float xdu;
float unitsc;
int atrib;
int ahard;
float arctol;
int cwt;
int nbrk;
int nlend;
int thick;
int chard;
int nchard;
int cangm;
int rectfi;
int npolmx;
int nvermx;
int ndcmax;
int ndtmax;
int whard;
int nsegmx;
int ncurtp;
int nevetp;
int nquemx;
float xpixel;
float ypixel;
int npixdp;
int nxpix;
int nypix;
int maxaux;
int dddim;
int mhard;
int dialog;

} GDEVSTATE;

type GDEVSTATE
character :: name*8
integer:: ddver
integer:: ndevty
integer:: ndev
integer:: ntype
real :: xmm
real :: xdu
real :: unitsc
integer:: atrib
integer:: ahard
real :: arctol
integer:: cwt
integer:: nbrk
integer:: nlend
integer:: thick
integer:: chard
integer:: nchard
integer:: cangm
integer:: rectfi
integer:: npolmx
integer:: nvermx
integer:: ndcmax
integer:: ndtmax
integer:: whard
integer:: nsegmx
integer:: ncurtp
integer:: nevetp
integer:: nquemx
real :: xpixel
real :: ypixel
integer:: npixdp
integer:: nxpix
integer:: nypix
integer:: maxaux
integer:: dddim
integer:: mhard
integer:: dialog

end type

GDIM

typedef struct {
float xpap;
float ypap;

} GDIM;

type GDIM
real :: xpap
real :: ypap

end type

892

Structures Introduction GINO STRUCTURES

GEVEREC

typedef struct {
int key;
int impkey;
int impdat;
int nseg;
GPOINT pos;
int nargs;
float args[80];
int iargs[80];

} GEVEREC;

type GEVEREC
integer:: key
integer:: impkey
integer:: impdat
integer:: nseg
type (GPOINT):: pos
integer:: nargs
real :: args (80)
integer:: iargs (80)

end type

GFILE

typedef struct ginofile {
int unit;
struct ginofile *nextfcb;

} GFILE;

GFNTFILSTY

typedef struct {
int type;
int ffill;
int fline;
int bfill;
int bline;

} GFNTFILSTY;

type GFNTFILSTY
integer:: type
integer:: ffill
integer:: fline
integer:: bfill
integer:: bline

end type

GFOGATT

typedef struct {
int mode;
int colour;
float density;
float start;
float end;

} GFOGATT;

type GFOGATT
integer:: mode
integer:: colour
real :: density
real :: start
real :: end

end type

893

GINO STRUCTURES Structures Introduction

GHATSTY

typedef struct {
float pitch;
float angle;
float xshift;
float yshift;
float xshear;
int xhatch;

} GHATSTY;

type GHATSTY
real :: pitch
real :: angle
real :: xshift
real :: yshift
real :: xshear
integer:: xhatch

end type

GHLSSTY

typedef struct {
float hue;
float light;
float sat;

} GHLSSTY;

type GHLSSTY
real :: hue
real :: light
real :: sat

end type

GHSVSTY

typedef struct {
float hue;
float sat;
float value;

} GHSVSTY;

type GHSVSTY
real :: hue
real :: sat
real :: value

end type

894

Structures Introduction GINO STRUCTURES

GIMPLEMENTATION

typedef struct {
float rmin;
float rmax;
float rsmall;
float rsig;
int imin;
int imax;
int nipr;
int nfmax;
int nbits;
int nbmask;
int iwtres;
int nbyter;
int nfumin;
int nfumax;
int ndevdf;
int ndsavf;
int nfdinp;
int nfdout;
int nfertr;
int nfmess;
int nfsdf;
int nffont;
int nficon;
int nfstat;
int nfimpl;
int nflice;
int iso;
char dsep;

} GIMPLEMENTATION;

type GIMPLEMENTATION
real :: rmin
real :: rmax
real :: rsmall
real :: rsig
integer:: imin
integer:: imax
integer:: nipr
integer:: nfmax
integer:: nbits
integer:: nbmask
integer:: iwtres
integer:: nbyter
integer:: nfumin
integer:: nfumax
integer:: ndevdf
integer:: ndsavf
integer:: nfdinp
integer:: nfdout
integer:: nfertr
integer:: nfmess
integer:: nfsdf
integer:: nffont
integer:: nficon
integer:: nfstat
integer:: nfimpl
integer:: nflice
integer:: iso
character:: dsep*1

end type

GLIBSTATE

typedef struct {
int gino;
int graf;
int surf;
int menu

} GLIBSTATE;

type GLIBSTATE
integer:: gino
integer:: graf
integer:: surf
integer:: menu

end type

GLIMIT

typedef struct {
float xmin;
float xmax;
float ymin;
float ymax;

} GLIMIT;

type GLIMIT
real :: xmin
real :: xmax
real :: ymin
real :: ymax

end type

895

GINO STRUCTURES Structures Introduction

GLIMIT3

typedef struct {
float xmin;
float xmax;
float ymin;
float ymax;
float zmin;
float zmax;

} GLIMIT3;

type GLIMIT3
real :: xmin
real :: xmax
real :: ymin
real :: ymax
real :: zmin
real :: zmax

end type

GLINSTY

typedef struct {
int vis;
int brk;
int col;
float width;
int type;
int end;

} GLINSTY;

type GLINSTY
integer:: vis
integer:: brk
integer:: col
real :: width
integer:: type
integer:: end

end type

GLITATT

typedef struct {
int state;
int type;
int col;
int spec;
GPOINT3 pos;
GPOINT3 dir;
float att1;
float att2;
float conc;
float spang;

} GLITATT;

type GLITATT
integer:: state
integer:: type
integer:: col
integer:: spec
type (GPOINT3):: pos
type (GPOINT3):: dir
real :: att1
real :: att2
real :: conc
real :: spang

end type

GMAT2D

typedef float GMAT2D [2][3];

GMAT3D

typedef float GMAT3D [4][4];

896

Structures Introduction GINO STRUCTURES

GMATSTY

typedef struct {
float ambient;
float diffuse;
float specular;
float shine;
float trans;

} GMATSTY;

type GMATSTY
real :: ambient
real :: diffuse
real :: specular
real :: shine
real :: trans

end type

GMATV

typedef float GMATV [15];

GPICATT

typedef struct {
int exist;
int vis;
int sens;
int mark;
GPOINT3 anchor;

} GPICATT;

type GPICATT
integer:: exist
integer:: vis
integer:: sens
integer:: mark
type (GPOINT3) :: anchor

end type

GPIXEL

typedef struct {
int ix;
int iy;

} GPIXEL;

type GPIXEL
integer:: ix
integer:: iy

end type

GPOINT

typedef struct {
float x;
float y;

} GPOINT;

type GPOINT
real :: x
real :: y

end type

GPOINT3

typedef struct {
float x;
float y;
float z;

} GPOINT3;

type GPOINT3
real :: x
real :: y
real :: z

end type

897

GINO STRUCTURES Structures Introduction

GPOLYGON

typedef struct {
int nvert;
GPOINT *verts;

} GPOLYGON;

type GPOLYGON
integer:: nvert
type (GPOINT),dimension(:), &

pointer :: verts
end type

GPOLYGON3

typedef struct {
int nvert;
GPOINT3 *verts;

} GPOLYGON3;

type GPOLYGON3
integer:: nvert
type (GPOINT3),dimension(:), &

pointer ::verts
end type

GRGBSTY

typedef struct {
float red;
float green;
float blue;

} GRGBSTY;

type GRGBSTY
real :: red
real :: green
real :: blue

end type

GSHADING

typedef struct {
int mode;
int culling;
int blending;
int winding;

} GSHADING;

type GSHADING
integer:: mode
integer:: culling
integer:: blending
integer:: winding

end type

GTEXATT

typedef struct {
int mode;
int blendcol;
int wraps;
int wrapt;
int maxfil;
int minfil;
int bordercol;

} GTEXATT;

type GTEXATT
integer :: mode
integer :: blendcol
integer :: wraps
integer :: wrapt
integer :: maxfil
integer :: minfil
integer :: bordercol

end type

898

Structures Introduction GINO STRUCTURES

GTIME

typedef struct {
int hour;
int min;
int sec;
int millsec;

} GTIME;

type GTIME
integer:: hour
integer:: min
integer:: sec
integer:: millsec

end type

GVIEWSTATE

typedef struct {
int mode;
int cflag;
int upflag;
GPOINT3 dir;
GPOINT3 centre;
float dist;
GPOINT shift;
GPOINT3 upvec;

} GVIEWSTATE;

type GVIEWSTATE
integer :: mode
integer :: cflag
integer :: upflag
type (GPOINT3) :: dir
type (GPOINT3) :: centre
real :: dist
type (GPOINT) :: shift
type (GPOINT3) :: upvec

end type

899

GINO STRUCTURES Structures Introduction

Appendix G
CROSS REFERENCES

Cross References Introduction

GINO is supplied as either a C library or FORTRAN library. The FORTRAN

library includes two bindings; an F77 binding using short names and simple

arguments and an F90 binding using long names and structures/optional

arguments as appropriate. This Appendix gives the cross-references from both

short name to long name and vice-versa.

F77-F90 Cross-Reference

F77 names F90 names

AKIBY2 gDrawAkimaBy2D

AKITO2 gDrawAkimaTo2D

ARCBY2 gDrawArcBy2D

ARCBY3 gDrawArcBy3D

ARCENQ gEnqArcState

ARCINC gSetArcIncrement

ARCSWI gSetArcMode

ARCTO2 gDrawArcTo2D

ARCTO3 gDrawArcTo3D

ARCTOL gSetArcTolerance

AUXCLO gCloseAuxDrawingArea

AUXOPN gOpenAuxDrawingArea

AUXSEL gSelectDrawingArea

BEZBY2 gDrawBezierBy2D

901

CROSS REFERENCES F77-F90 Cross-Reference

BEZBY3 gDrawBezierBy3D

BEZ|EL2 gElevateBezierTo2D

BEZ|EL3 gElevateBezier3D

BEZRE2 gReduceBezier2D

BEZRE3 gReduceBezier3D

BEZSPH gDrawBezierSphere

BEZSUR gDrawBezierSurface

BEZ|TO2 gDrawBezierTo2D

BEZTO3 gDrawBezierTo3D

BEZVOL gDrawBezierVolume

BLDTM2 gBuildMatrix2D

BLDTM3 gBuildMatrix3D

BOX gDrawBox

BOXBY3 gDrawBox

BOXTO3 gDrawBox

BRKDEF gDefineBrokenLineStyle

BRKENQ gEnqBrokenLineStyle

BRKMOD gSwitchBrokenLineStyles

BRKSWI gSetBrokenLineMode

BROENQ gEnqBrokenLine

BROKEN gSetBrokenLine

BUFLIM gSetWorkspaceLimit

BUFLNQ gEnqWorkspaceLimit

CALNOR gReturnPlanarNormal

CELDRA gDrawCellArray

CHAANG gSetStrAngle

CHAASC gDisplayAsciiChar

CHABEG gStartTextBlock

CHABY2 gDisplayStrPolylineBy2D

CHAENQ gEnqCharAttribs

CHAEXI gSetStrExponent

CHAEXP gDisplayRealExponent

CHAFIT gFitCharStr

CHAFIX gDisplayRealFixed

CHAFLO gDisplayRealFloat

CHAFNT gSetCharFont

902

F77-F90 Cross-Reference CROSS REFERENCES

CHAHAR gSetHardCharSize

CHAILS gSetInterlineSpace

CHAINT gDisplayInteger

CHAJUS gSetStrJustify

CHAMOD gSetAlphaMode

CHANUL gDefineNullChar

CHANXT gMoveToNextLine

CHAPNT gSetCharSizePoint

CHASIZ gSetCharSize

CHASTR gDisplayStr

CHASWI gSetCharTransformMode

CHATO2 gDisplayStrPolylineTo2D

CHATRA gEnqCharTransform

CHAUND gSetStrUnderscore

CLPENQ gEnqClippingMode

CLPSWI gSetClippingMode

COLENQ gEnqLineColour

COLINF gEnqColourInfo

COLSET gSetColourInfo

COMTM2 gCombineMatrix2D

COMTM3 gCombineMatrix3D

CONBY3 gDrawCone

CONE gDrawCone

CONTO3 gDrawCone

CUBE gDrawCube

CURACQ gEnqCursorAction

CURACT gSetCursorAction

CURBY2 gDrawCurveBy2D

CURENQ gEnqCurveAttribs2D

CUREQ3 gEnqCurveAttribs3D

CURPOS gSetCursorPos

CURSET gSetCurveAttribs2D

CURSOR gGetCursorEvent

CURST3 gSetCurveAttribs3D

CURTO2 gDrawCurveTo2D

CURTYP gSetCursorType

903

CROSS REFERENCES F77-F90 Cross-Reference

CURTYQ gEnqCursorType

CYLBY3 gDrawCylinder

CYLIND gDrawCylinder

CYLTO3 gDrawCylinder

DEBUG gDebug

DEBUGT gSetDebugSwitch

DEPENQ gEnqDepthMode

DEPMOD gSetDepthMode

DEVEND gCloseDevice

DEVFIL gSetDeviceFilename

DEVINF gEnqDeviceState

DEVPAP gSetDrawingLimits

DEVSUS gSuspendDevice

DEVTTL gSetDeviceTitle

DIAVIS gSetDialogueVis

DIRDAT gReturnDirDate

DIRDEL gRemoveDir

DIRENQ gEnqWorkingDir

DIRFUL gGetFullDirList

DIRLIS gGetDirList

DIRMK gMakeDir

DIRSET gSetWorkingDir

DRAG gDragSeg

EDITR2 gEditSeg2D

EDITR3 gEditSeg3D

ENDENQ gEnqLineEnd

ERRDEV gSetErrorFile

ERRENQ gEnqLastErrors

ERRGET gEnqNumberOfErrors

ERRMAX gSetMaxErrorLimit

ERRSET gSetErrorTrap

ERRSWI gSetErrorMode

EVEDEL gRemoveEventType

EVEENQ gGetEventRecord

EVENT gWaitForEvent

EVESET gAddEventType

904

F77-F90 Cross-Reference CROSS REFERENCES

EXIENQ gEnqStrExponent

FACET gDrawFacet

FACETC gDrawFacet

FACETN gDrawFacet

FACETT gDrawFacet

FACFIL gSetFacetFillStyle

FACFIQ gEnqFacetFillStyle

FACMAQ gEnqFacetMaterialProps

FACMAT gSetFacetMaterialProps

FACOSM gSetFacetOffsetMode

FACOSQ gEnqFacetOffsetMode

FILCLS gFclose

FILCOP gCopyFile

FILDEL gRemoveFile

FILOPN gFopen

FILREN gRenameFile

FILSWI gSetFillMode

FLUSHG gFlushGraphics

FNTENQ gEnqFontStyle

FNTLIS gEnqHardFontList

FNTREP gSetFontForm

FNTSPA gSetFontSpacing

FNTSTY gSetFontFillStyle

FNTWGT gSetFontWeight

FOGATT gDefineFog

FOGENQ gEnqFog

FOGMOD gDefineFog

GDELAY gTimeDelay

GETDRA gGetDrawing

GETIMG gGetImageFile

GETPIC gGetPicture

GETPNT gGetPixel

GETRAN gGetRand

GETSEQ gEnqSavdraSegAttribs

GETSNQ gEnqSavdraSegList

GFILL gFillSelectedPolygons

905

CROSS REFERENCES F77-F90 Cross-Reference

GINCON gEnqConfigStatus

GINEND gCloseGino

GINENQ gEnqGinoState

GINO gOpenGino

GINRES gRestoreGinoState

GINSAV gSaveGinoState

GRAVIS gSetGraphicsVis

GRPENQ gEnqSegGroup

GSOUND gPlaySound

HARCHA gSetHardChars

HATDEF gDefineHatchStyle

HATENQ gEnqHatchStyle

HLSDEF gDefineHLS

HLSENQ gEnqHLS

HSVDEF gDefineHSV

HSVENQ gEnqHSV

IMGENQ gEnqImageFile

ITALIC gSetItalicAngle

JUSENQ gEnqStrJustify

KEYSTA gEnqKeyState

LINBY2 gDrawLineBy2D

LINBY3 gDrawLineBy3D

LINCOL gSetLineColour

LINDEF gDefineLineStyle

LINEND gSetLineEnd

LINENQ gEnqLineStyle

LINSAV gSaveLineStyle

LINSEL gSetLineStyle

LINTO2 gDrawLineTo2D

LINTO3 gDrawLineTo3D

LINVIS gSetLineVis

LINWID gSetLineWidth

LITAMB gDefineLightSource

LITDIR gDefineLightSource

LITENQ gEnqLightAttribs

LITPNT gDefineLightSource

906

F77-F90 Cross-Reference CROSS REFERENCES

LITSPC gDefineLightSource

LITSPT gDefineLightSource

LITSWI gSetLightSwitch

MARKER gDrawMarker

MASENQ gEnqMaskState

MASK2 gSetMask2D

MASSWI gSetMaskMode

MATATQ gEnqMaterialAttribs

MATCOL gSetMaterialColour

MATDEF gDefineMaterial

MATENQ gEnqMaterial

MIXCHA gSetMixedChars

MODBEG gStartBatchUpdate

MODEND gEndBatchUpdate

MOUENQ gEnqMousePos

MOUSET gSetMousePos

MOVBY2 gMoveBy2D

MOVBY3 gMoveBy3D

MOVTO2 gMoveTo2D

MOVTO3 gMoveTo3D

OBJANG -

OBJCOM -

PAPENQ gEnqDrawingLimits

PAPMAX gEnqMaxDrawingLimits

PENENQ gEnqSelectedPen

PENTYP gSetPenType

PICBEG gOpenSeg

PICBY gMoveSegBy2D

PICCOP gCopySeg

PICDEL gDeleteSeg

PICDGP gRemoveSegGroup

PICDRA gDrawSeg

PICEND gCloseSeg

PICENQ gEnqSegAttribs

PICEXT gExtendSeg

PICFGP gDefineSegGroup

907

CROSS REFERENCES F77-F90 Cross-Reference

PICHIT gEnqSegHit

PICMAR gMarkSeg

PICNUM gEnqOpenSeg

PICREF gInsertSegRef

PICREN gRenameSeg

PICSEN gSetSegHit

PICTAG gInsertSegTag

PICTO gMoveSegTo2D

PICTQ2 gEnqSegTransform2D

PICTR2 gSetSegTransform2D

PICTRA gSetSegTransform

PICTRQ gEnqSegTransform

PICVIS gSetSegVis

PIXATQ gEnqPixelAttribs

PIXCOP gCopyPixelArea

PIXDEF gDefinePixelPacking

PIXDEQ gEnqPixelPacking

PIXDRA gDrawPixelArea

PIXENQ gEnqPixelResolution

PIXGET gGetPixelArea

PIXPNT gDrawPixel

PIXPOS gEnqPosOfPixel

PIXREP gSetPixelReplication

PIXSWI gSetPixelDisplayMode

PIXTRA gSetPixelTransform

PLSTO2 gDrawPolylineSet2D

PLSTO3 gDrawPolylineSet3D

PNTBUF gDefinePointWorkspace

PNTENQ gEnqPointMode

PNTSWI gSetPointMode

POFBY2 gFillPolygonBy2D

POFBY3 gFillPolygonBy3D

POFTO2 gFillPolygonTo2D

POFTO3 gFillPolygonTo3D

POLBEG gStartPolygon

POLBND gDrawPolygonBound

908

F77-F90 Cross-Reference CROSS REFERENCES

POLBUF gDefinePolygonWorkspace

POLBY2 gDrawPolylineBy2D

POLBY3 gDrawPolylineBy3D

POLCLE gClearPolygonWorkspace

POLEND gEndPolygon

POLENQ gEnqPolygonWorkspace

POLHIT gPolygonHit

POLIDN gSetPolygonIdent

POLLIS gEnqPolygonList

POLMAS gSetPolygonMask

POLSEL gSelectPolygons

POLSWI gSetPolygonMode

POLTO2 gDrawPolylineTo2D

POLTO3 gDrawPolylineTo3D

POLWIN gSetPolygonWindow

POMLIS gEnqPolygonMaskList

POSPIC gEnqPicturePos

POSPIX gEnqPixelPos

POSSPA gEnqSpacePos

POSTO3 gDrawShadedPolylineTo3D

POTTO3 gDrawShadedPolylineTo3D

POWLIS gEnqPolygonWindowList

PSFTO2 gFillPolygonSet2D

PSFTO3 gFillPolygonSet3D

PT2ENQ gReturnInternalPoints2D

PT3ENQ gReturnInternalPoints3D

PT2INT gInterpolateData2D

PT3INT gInterpolateData3D

QUEDEL gDeleteEventQueue

QUEUE gEnqQueueLength

RANGGP gDefineGroupRange

RECT3D gDrawRect3D

RGBDEF gDefineRGB

RGBENQ gEnqRGB

ROTAT2 gRotate2D

ROTAT3 gRotate3D

909

CROSS REFERENCES F77-F90 Cross-Reference

RTFILL gFillRect

RULBEZ gDrawRuledBezierSurface

SAVENQ gEnqSavdraDimension

SCALE2 gScale2D

SCALE3 gScale3D

SCRCLE gNewDrawing

SDFARC gArchiveSegs

SDFBFQ gEnqSegWorkspace

SDFBUF gDefineSegWorkspace

SDFMAR gSetSegMarkColour

SDFRES gRetrieveSegs

SDFSWI gSetSegMode

SETMAT gSetMaterialIndex

SETPRI gSetSysPriority

SETRAN gSetRandSeed

SETVP2 gSetViewport2D

SETVP3 gSetViewport3D

SHADOW gCreatePlanarShadowMatrix

SHAENQ gEnqShadingMode

SHAMOD gSetShadingMode

SHEAR2 gShear2D

SHEAR3 gShear3D

SHIFT2 gShift2D

SHIFT3 gShift3D

SOFCHA gSetSoftChars

SPHERE gDrawSphere

SPLBY2 gDrawSplineBy2D

SPLBY3 gDrawSplineBy3D

SPLSUR gDrawSplineSurface

SPLTEN gSetSplineTension

SPLTO2 gDrawSplineTo2D

SPLTO3 gDrawSplineTo3D

STRESC gSetEscapeChar

STRESQ gEnqEscapeChar

STREXP gConvertRealExponent

STRFIX gConvertRealFixed

910

F77-F90 Cross-Reference CROSS REFERENCES

STRFLO gConvertRealFloat

STRINF gReturnStrInfo

STRINT gConvertInteger

SWEBEZ gDrawSweptBezierSurface

SYMBOL gDrawMarker

SYMBY2 gDrawPolymarkerBy2D

SYMBY3 gDrawPolymarkerBy3D

SYMTO2 gDrawPolymarkerTo2D

SYMTO3 gDrawPolymarkerTo3D

SYSARG gEnqSysArgs

SYSCOM gExecuteSysCommand

SYSDAS gEnqSysDateStr

SYSDAT gEnqSysDate

SYSENV gEnqSysEnviron

SYSNAM gEnqSysUsername

SYSPRI gEnqSysPriority

SYSTIM gEnqSysTime

SYSTTM gEnqSysTime

TABBEZ gDrawTabulatedBezierSurface

TBKENQ gEnqTextBlockAttribs

TENENQ gEnqSplineTension

TRABEG gPushTransform

TRACER gSetTracerMode

TRAEND gPopTransform

TRAENQ gEnqTransformState

TRAMU2 gModifyTransform2D

TRAMU3 gModifyTransform3D

TRANS2 gTransformPoint2D

TRANS3 gTransformPoint3D

TRANS4 gTransformHomogPoint3D

TRANSF gSetTransform

TRAPIC gSetTransformMode

TRARES gRestoreTransform

TRASA2 gGetTransform2D

TRASA3 gGetTransform3D

TRASAV gSaveTransform

911

CROSS REFERENCES F77-F90 Cross-Reference

TRASE2 gSetTransform2D

TRASE3 gSetTransform3D

TRASEQ gEnqViewTransformMode

TRASWI gSetViewTransformMode

TRUCOL gTrueCol

TRULEN gTrueLen

TXMATQ gEnqTextureMappingMode

TXMATT gSetTextureMappingMode

TXMENQ gEnqTextureMappingMode

TXMGEN gSetTextureCoordGeneration

TXMGEQ gEnqTextureCoordGeneration

TXMMAP gDefineTexture

TXMMOD gSetTextureMappingMode

TYPENQ gEnqPenType

UNDENQ gEnqStrUnderscore

UNITS gDefinePictureUnits

UNTRA2 gUntransformPoint2D

UNTRA3 gUntransformPoint3D

UNTRA4 gUntransformHomogPoint3D

VALONG gMoveViewCentre

VIEW gGenerateView

VIEWSE gSetViewAxis

VIEWUP gUpdateView

VINIT gInitView

VISENQ gEnqLineVis

VMULT gModifyView

VOLBY3 gDrawVolume

VOLTO3 gDrawVolume

VOLUME gDrawVolume

VP2CLE gClearViewport

VP2ENQ gEnqViewport2D

VP3ENQ gEnqViewport3D

VPARAL gDefineParallelView

VPERSP gSetViewEyeDistance

VPOINT gDefinePerspView

VPOSIT gPosViewCentre

912

F77-F90 Cross-Reference CROSS REFERENCES

VPTCLP gSetViewportClipSwitch

VPTENQ gEnqViewportState

VPTSWI gSetViewportMode

VPTSWQ gEnqViewportMode

VRESET gSetViewParams, gSetViewState

VROTAT gViewRotate

VSAVE gGetViewParams, gGetViewState

VSHIFT gViewShift

VSPHER gDefineSphericalView

VTURN gViewTurn

VUPDIR gSetViewUpDirection

VZOOM gSetViewPlaneDistance

WEDGE gDrawWedge

WEGBY3 gDrawWedge

WEGTO3 gDrawWedge

WIDENQ gEnqLineWidth

WIDSCA gSetLineWidthScaling

WIDSCQ gEnqLineWidthScaling

WIDSWI gSetLineWidthMode

WIDSWQ gEnqLineWidthMode

WINDO2 gSetWindow2D

WINDO3 gSetWindow3D

WINDOW gSetWindowMode

WINENQ gEnqWindowState

WINSWI gSetWindowMode

F90-F77 Cross-Reference

F90 names F77 names

gAddEventType EVESET

gArchiveSegs SDFARC

gBuildMatrix2D BLDTM2

gBuildMatrix3D BLDTM3

gClearPolygonWorkspace POLCLE

gClearViewport VP2CLE

gCloseAuxDrawingArea AUXCLO

913

CROSS REFERENCES F90-F77 Cross-Reference

gCloseDevice DEVEND

gCloseGino GINEND

gCloseSeg PICEND

gCombineMatrix2D COMTM2

gCombineMatrix3D COMTM3

gConvertInteger STRINT

gConvertRealExponent STREXP

gConvertRealFixed STRFIX

gConvertRealFloat STRFLO

gCopyPixelArea PIXCOP

gCopyFile FILCOP

gCopySeg PICCOP

gCreatePlanarShadowMatrix SHADOW

gDebug DEBUG

gDefineBrokenLineStyle BRKDEF

gDefineFog FOGATT, FOGMOD

gDefineGroupRange RANGGP

gDefineHatchStyle HATDEF

gDefineHLS HLSDEF

gDefineHSV HSVDEF

gDefineLightSource LITAMB, LITDIR, LITPNT, LITSPC,

LITSPT

gDefineLineStyle LINDEF

gDefineMaterial MATDEF

gDefineNullChar CHANUL

gDefineParallelView VPARAL

gDefinePerspView VPOINT

gDefinePictureUnits UNITS

gDefinePixelPacking PIXDEF

gDefinePointWorkspace PNTBUF

gDefinePolygonWorkspace POLBUF

gDefineRGB RGBDEF

gDefineSegGroup PICFGP

gDefineSegWorkspace SDFBUF

gDefineSphericalView VSPHER

gDefineTexture TXMMAP

914

F90-F77 Cross-Reference CROSS REFERENCES

gDeleteEventQueue QUEDEL

gDeleteSeg PICDEL

gDisplayAsciiChar CHAASC

gDisplayInteger CHAINT

gDisplayRealExponent CHAEXP

gDisplayRealFixed CHAFIX

gDisplayRealFloat CHAFLO

gDisplayStr CHASTR

gDisplayStrPolylineBy2D CHABY2

gDisplayStrPolylineTo2D CHATO2

gDragSeg DRAG

gDrawAkimaBy2D AKIBY2

gDrawAkimaTo2D AKITO2

gDrawArcBy2D ARCBY2

gDrawArcBy3D ARCBY3

gDrawArcTo2D ARCTO2

gDrawArcTo3D ARCTO3

gDrawBezierBy2D BEZBY2

gDrawBezierBy3D BEZBY3

gDrawBezierSphere BEZSPH

gDrawBezierSurface BEZSUR

gDrawBezierTo2D BEZTO2

gDrawBezierTo3D BEZTO3

gDrawBezierVolume BEZVOL

gDrawBox BOX, BOXBY3, BOXTO3

gDrawCellArray CELDRA

gDrawCone CONBY3, CONE, CONTO3

gDrawCube CUBE

gDrawCurveBy2D CURBY2

gDrawCurveTo2D CURTO2

gDrawCylinder CYLBY3, CYLIND, CYLTO3

gDrawFacet FACET, FACETC, FACETN,

FACETT,FACETX

gDrawLineBy2D LINBY2

gDrawLineBy3D LINBY3

gDrawLineTo2D LINTO2

915

CROSS REFERENCES F90-F77 Cross-Reference

gDrawLineTo3D LINTO3

gDrawMarker MARKER, SYMBOL

gDrawPixel PIXPNT

gDrawPixelArea PIXDRA

gDrawPolygonBound POLBND

gDrawPolylineBy2D POLBY2

gDrawPolylineBy3D POLBY3

gDrawPolylineSet2D PLSTO2

gDrawPolylineSet3D PLSTO3

gDrawPolylineTo2D POLTO2

gDrawPolylineTo3D POLTO3

gDrawPolymarkerBy2D SYMBY2

gDrawPolymarkerBy3D SYMBY3

gDrawPolymarkerTo2D SYMTO2

gDrawPolymarkerTo3D SYMTO3

gDrawRect3D RECT3D

gDrawRuledBezierSurface RULBEZ

gDrawSeg PICDRA

gDrawShadedPolyline3D POSTO3,POTTO3

gDrawSphere SPHERE

gDrawSplineBy2D SPLBY2

gDrawSplineBy3D SPLBY3

gDrawSplineSurface SPLSUR

gDrawSplineTo2D SPLTO2

gDrawSplineTo3D SPLTO3

gDrawSweptBezierSurface SWEBEZ

gDrawTabulatedBezierSurface TABBEZ

gDrawVolume VOLBY3, VOLTO3, VOLUME

gDrawWedge WEDGE, WEGBY3, WEGTO3

gEditSeg2D EDITR2

gEditSeg3D EDITR3

gEndBatchUpdate MODEND

gEndPolygon POLEND

gElevateBezier2D BEZEL2

gElevateBezier3D BEZEL3

gEnqArcState ARCENQ

916

F90-F77 Cross-Reference CROSS REFERENCES

gEnqBrokenLine BROENQ

gEnqBrokenLineStyle BRKENQ

gEnqCharAttribs CHAENQ

gEnqCharTransform CHATRA

gEnqClippingMode CLPENQ

gEnqColourInfo COLINF

gEnqConfigStatus GINCON

gEnqCursorAction CURACQ

gEnqCursorType CURTYQ

gEnqCurveAttribs2D CURENQ

gEnqCurveAttribs3D CUREQ3

gEnqDepthMode DEPENQ

gEnqDeviceState DEVINF

gEnqDrawingLimits PAPENQ

gEnqEscapeChar STRESQ

gEnqFacetFillStyle FACFIQ

gEnqFacetMaterialProps FACMAQ

gEnqFacetOffsetMode FACOSQ

gEnqFog FOGENQ

gEnqFontStyle FNTENQ

gEnqGinoState GINENQ

gEnqHardFontList FNTLIS

gEnqHatchStyle HATENQ

gEnqHLS HLSENQ

gEnqHSV HSVENQ

gEnqImageFile IMGENQ

gEnqKeyState KEYSTA

gEnqLastErrors ERRENQ

gEnqLightAttribs LITENQ

gEnqLineColour COLENQ

gEnqLineEnd ENDENQ

gEnqLineStyle LINENQ

gEnqLineVis VISENQ

gEnqLineWidth WIDENQ

gEnqLineWidthMode WIDSWQ

gEnqLineWidthScaling WIDSCQ

917

CROSS REFERENCES F90-F77 Cross-Reference

gEnqMaskState MASENQ

gEnqMaterial MATENQ

gEnqMaterialAttribs MATATQ

gEnqMaxDrawingLimits PAPMAX

gEnqMousePos MOUENQ

gEnqNumberOfErrors ERRGET

gEnqOpenSeg PICNUM

gEnqPenType TYPENQ

gEnqPicturePos POSPIC

gEnqPixelAttribs PIXATQ

gEnqPixelPacking PIXDEQ

gEnqPixelPos POSPIX

gEnqPixelResolution PIXENQ

gEnqPointMode PNTENQ

gEnqPolygonList POLLIS

gEnqPolygonMaskList POMLIS

gEnqPolygonWindowList POWLIS

gEnqPolygonWorkspace POLENQ

gEnqPosOfPixel PIXPOS

gEnqQueueLength QUEUE

gEnqRGB RGBENQ

gEnqSavdraDimension SAVENQ

gEnqSavdraSegAttribs GETSEQ

gEnqSavdraSegList GETSNQ

gEnqSegAttribs PICENQ

gEnqSegGroup GRPENQ

gEnqSegHit PICHIT

gEnqSegTransform PICTRQ

gEnqSegTransform2D PICTQ2

gEnqSegWorkspace SDFBFQ

gEnqSelectedPen PENENQ

gEnqShadingMode SHAENQ

gEnqSpacePos POSSPA

gEnqSplineTension TENENQ

gEnqStrExponent EXIENQ

gEnqStrJustify JUSENQ

918

F90-F77 Cross-Reference CROSS REFERENCES

gEnqStrUnderscore UNDENQ

gEnqSysArgs SYSARG

gEnqSysDate SYSDAT

gEnqSysDateStr SYSDAS

gEnqSysEnviron SYSENV

gEnqSysPriority SYSPRI

gEnqSysTime SYSTIM

gEnqSysTime SYSTTM

gEnqSysUsername SYSNAM

gEnqTextBlockAttribs TBKENQ

gEnqTextureCoordGeneration TXMGEQ

gEnqTextureMappingMode TXMENQ

gEnqTransformState TRAENQ

gEnqViewport2D VP2ENQ

gEnqViewport3D VP3ENQ

gEnqViewportMode VPTSWQ

gEnqViewportState VPTENQ

gEnqViewTransformMode TRASEQ

gEnqWindowState WINENQ

gEnqWorkingDir DIRENQ

gEnqWorkspaceLimit BUFLNQ

gExecuteSysCommand SYSCOM

gExtendSeg PICEXT

gFclose FILCLS

gFillPolygonBy2D POFBY2

gFillPolygonBy3D POFBY3

gFillPolygonSet2D PSFTO2

gFillPolygonSet3D PSFTO3

gFillPolygonTo2D POFTO2

gFillPolygonTo3D POFTO3

gFillRect RTFILL

gFillSelectedPolygons GFILL

gFitCharStr CHAFIT

gFlushGraphics FLUSHG

gFopen FILOPN

gGenerateView VIEW

919

CROSS REFERENCES F90-F77 Cross-Reference

gGetCursorEvent CURSOR

gGetDirList DIRLIS

gGetDrawing GETDRA

gGetEventRecord EVEENQ

gGetFullDirList DIRFUL

gGetImageFile GETIMG

gGetPicture GETPIC

gGetPixel GETPNT

gGetPixelArea PIXGET

gGetRand GETRAN

gGetTransform2D TRASA2

gGetTransform3D TRASA3

gGetViewParams VSAVE

gGetViewState VSAVE

gInitView VINIT

gInsertSegRef PICREF

gInsertSegTag PICTAG

gInterpolateData2D PT2INT

gInterpolateData3D PT3INT

gMakeDir DIRMK

gMarkSeg PICMAR

gModifyTransform2D TRAMU2

gModifyTransform3D TRAMU3

gModifyView VMULT

gMoveBy2D MOVBY2

gMoveBy3D MOVBY3

gMoveSegBy2D PICBY

gMoveSegTo2D PICTO

gMoveTo2D MOVTO2

gMoveTo3D MOVTO3

gMoveToNextLine CHANXT

gMoveViewCentre VALONG

gNewDrawing SCRCLE

gOpenAuxDrawingArea AUXOPN

gOpenGino GINO

gOpenSeg PICBEG

920

F90-F77 Cross-Reference CROSS REFERENCES

gPlaySound GSOUND

gPolygonHit POLHIT

gPopTransform TRAEND

gPosViewCentre VPOSIT

gPushTransform TRABEG

gReduceBezier2D BEZRE2

gReduceBezier3D BEZRE3

gRemoveDir DIRDEL

gRemoveEventType EVEDEL

gRemoveFile FILDEL

gRemoveSegGroup PICDGP

gRenameFile FILREN

gRenameSeg PICREN

gRestoreGinoState GINRES

gRestoreTransform TRARES

gRetrieveSegs SDFRES

gReturnDirDate DIRDAT

gReturnInternalPoints2D PT2ENQ

gReturnInternalPoints3D PT3ENQ

gReturnPlanarNormal CALNOR

gReturnStrInfo STRINF

gRotate2D ROTAT2

gRotate3D ROTAT3

gSaveGinoState GINSAV

gSaveLineStyle LINSAV

gSaveTransform TRASAV

gScale2D SCALE2

gScale3D SCALE3

gSelectDrawingArea AUXSEL

gSelectPolygons POLSEL

gSetAlphaMode CHAMOD

gSetArcIncrement ARCINC

gSetArcMode ARCSWI

gSetArcTolerance ARCTOL

gSetBrokenLine BROKEN

gSetBrokenLineMode BRKSWI

921

CROSS REFERENCES F90-F77 Cross-Reference

gSetCharFont CHAFNT

gSetCharSize CHASIZ

gSetCharSizePoint CHAPNT

gSetCharTransformMode CHASWI

gSetClippingMode CLPSWI

gSetColourInfo COLSET

gSetCursorAction CURACT

gSetCursorPos CURPOS

gSetCursorType CURTYP

gSetCurveAttribs2D CURSET

gSetCurveAttribs3D CURST3

gSetDebugSwitch DEBUGT

gSetDepthMode DEPMOD

gSetDeviceFilename DEVFIL

gSetDeviceTitle DEVTTL

gSetDialogueVis DIAVIS

gSetDrawingLimits DEVPAP

gSetErrorFile ERRDEV

gSetErrorMode ERRSWI

gSetErrorTrap ERRSET

gSetEscapeChar STRESC

gSetFacetFillStyle FACFIL

gSetFacetMaterialProps FACMAT

gSetFacetOffsetMode FACOSM

gSetFillMode FILSWI

gSetFontFillStyle FNTSTY

gSetFontForm FNTREP

gSetFontSpacing FNTSPA

gSetFontWeight FNTWGT

gSetGraphicsVis GRAVIS

gSetHardChars HARCHA

gSetHardCharSize CHAHAR

gSetInterlineSpace CHAILS

gSetItalicAngle ITALIC

gSetLightSwitch LITSWI

gSetLineColour LINCOL

922

F90-F77 Cross-Reference CROSS REFERENCES

gSetLineEnd LINEND

gSetLineStyle LINSEL

gSetLineVis LINVIS

gSetLineWidth LINWID

gSetLineWidthMode WIDSWI

gSetLineWidthScaling WIDSCA

gSetMask2D MASK2

gSetMaskMode MASSWI

gSetMaterialColour MATCOL

gSetMaterialIndex SETMAT

gSetMaxErrorLimit ERRMAX

gSetMixedChars MIXCHA

gSetMousePos MOUSET

gSetPenType PENTYP

gSetPixelDisplayMode PIXSWI

gSetPixelReplication PIXREP

gSetPixelTransform PIXTRA

gSetPointMode PNTSWI

gSetPolygonIdent POLIDN

gSetPolygonMask POLMAS

gSetPolygonMode POLSWI

gSetPolygonWindow POLWIN

gSetRandSeed SETRAN

gSetSegHit PICSEN

gSetSegMarkColour SDFMAR

gSetSegMode SDFSWI

gSetSegTransform PICTRA

gSetSegTransform2D PICTR2

gSetSegVis PICVIS

gSetShadingMode SHAMOD

gSetSoftChars SOFCHA

gSetSplineTension SPLTEN

gSetStrAngle CHAANG

gSetStrExponent CHAEXI

gSetStrJustify CHAJUS

gSetStrUnderscore CHAUND

923

CROSS REFERENCES F90-F77 Cross-Reference

gSetSysPriority SETPRI

gSetTextureCoordGeneration TXMGEN

gSetTextureMappingMode TXMMOD

gSetTracerMode TRACER

gSetTransform TRANSF

gSetTransform2D TRASE2

gSetTransform3D TRASE3

gSetTransformMode TRAPIC

gSetViewAxis VIEWSE

gSetViewEyeDistance VPERSP

gSetViewParams VRESET

gSetViewState VRESET

gSetViewPlaneDistance VZOOM

gSetViewport2D SETVP2

gSetViewport3D SETVP3

gSetViewportClipSwitch VPTCLP

gSetViewportMode VPTSWI

gSetViewTransformMode TRASWI

gSetViewUpDirection VUPDIR

gSetWindow2D WINDO2

gSetWindow3D WINDO3

gSetWindowMode WINDOW, WINSWI

gSetWorkingDir DIRSET

gSetWorkspaceLimit BUFLIM

gShear2D SHEAR2

gShear3D SHEAR3

gShift2D SHIFT2

gShift3D SHIFT3

gStartBatchUpdate MODBEG

gStartPolygon POLBEG

gStartTextBlock CHABEG

gSuspendDevice DEVSUS

gSwitchBrokenLineStyles BRKMOD

gTimeDelay GDELAY

gTransformHomogPoint3D TRANS4

gTransformPoint2D TRANS2

924

F90-F77 Cross-Reference CROSS REFERENCES

gTransformPoint3D TRANS3

gTrueCol TRUCOL

gTrueLen TRULEN

gUntransformHomogPoint3D UNTRA4

gUntransformPoint2D UNTRA2

gUntransformPoint3D UNTRA3

gUpdateView VIEWUP

gViewRotate VROTAT

gViewShift VSHIFT

gViewTurn VTURN

gWaitForEvent EVENT

925

CROSS REFERENCES F90-F77 Cross-Reference

Appendix H
DEPRECATED ROUTINES

Deprecated Routines Introduction

This appendix contains routines that are being deprecated because of the

developing nature of GINO as it keeps in line with changes in the graphics and

general computing environment.

A routine will go through two intermediate stages prior to being removed from

the GINO library:

Stage 0: Routine has no further use in GINO library. Documentation will be removed

from the reference section and temporarily placed in ‘DEPRECATED

ROUTINES’. The routine will not however be removed from the library.

Stage 1: Routine will generate a warning message but will function correctly.

Documentation will be removed from the reference section and placed in

‘DEPRECATED ROUTINES’.

Stage 2: Routine will generate an error message and will not have any effect on a

user’s program. Its routine specification and arguments will remain in

‘DEPRECATED ROUTINES’, but without the description. Alternative

functions (where applicable) will be indicated.

Stage 3: The routine will be removed from the GINO library.

Each stage represents one major release of GINO which gives about 2-3 years in

order to facilitate changes to an application program to reflect any deprecations

of a routine.

However, it is stressed that no routine will be deprecated without alternatives

being provided, unless it is offering a facility that has fallen out of use, and in

both cases discussed in the GINO Technical Committee. If there are any

problems due to routine deprecation then they should be addressed to the Product

Development Manager of Bradly Associates Limited.

927

DEPRECATED ROUTINES Deprecated Routines Introduction

Due to a rationalisation, the following F77 routines have not been included in the

F90 interface due to duplication or lack of use. The following table lists an

alternative F90 routine if appropriate.

If users of these routines have a pressing requirement for an equivalent routine in

Fortran 90, they should address their case to the Product Development Manager

as above.

Fortran-77 F90 alternative

ASCII gDisplayAsciiChar

CENTRE gShift2D

CHAPOS gMoveTo2D and gSetAlphaMode

CURSTR

DASENQ gEnqBrokenLineStyle

DASHED gDefineBrokenLineStyle

DATENQ

DEVATT

DEVENQ gEnqDeviceState

DEVICE gSetDeviceFilename

DEVSPE

DIAATT

DIACLE

DIASTC

DIASTP

DOT gDrawMarker

DRAW2 gMoveBy2D/To2D gDrawLineBy2D/To2D

DRAW3 gMoveBy3D/To3D gDrawLineBy3D/To3D

DSEENQ

ESCAPE

ESCIN

ESCOUT

GETEND

IRCBY2 gSetLineVis and gDrawArcBy2D

IRCBY3 gSetLineVis and gDrawArcBy3D

IRCTO2 gSetLineVis and gDrawArcTo2D

IRCTO3 gSetLineVis and gDrdawArcTo3D

928

Deprecated Routines Introduction DEPRECATED ROUTINES

Fortran-77 F90 alternative

KEYSTR

LINPEN

LINPNQ

NUMENQ gEnqLineColour

PAPHEA

PENDEF

PENEND

PENNUM

PENSEL gSetLineColour

PENSPE

PICCLE gNewDrawing and gDeleteSeg

RFILL gFillRect

SCALE gScale2D

STRCEN gDrawMarker

929

DEPRECATED ROUTINES Deprecated Routines Introduction

Appendix I
TECHNICAL INFORMATION

Homogeneous Coordinate Transformations

Includes information on:

• 2-D Transformations

• 2-D Matrices

• 2-D Homogeneous Transformations

• Combining Transformations

• 2-D Summary

• Extending 2-D Operations

• Perspective Transformations

2-D Transformations

The 2-D transformations may be described algebraically as follows:

Let (X,Y) be the coordinate of any point in MAN.

Then the transformed coordinates (X’,Y’) are:

Null transformation

X’=X

Y’=Y

931

TECHNICAL INFORMATION Homogeneous Coordinate Transformations

Shifting

X’=X+DX

Y’=Y+DY

Rotating

X’=X*COS(ANGLE)-Y*SIN(ANGLE)

Y’=X*SIN(ANGLE)+Y*COS(ANGLE)

Permutating

X’=Y

Y’=X

Scaling

X’=Sx*X

Y’=Sy*Y

Shearing

2-D Matrices

All these operations can be rewritten in a consistent form if matrix rotation is

used:

Then:

932

2-D Matrices TECHNICAL INFORMATION

Null transformation:

Rotating:

Permutating

Scaling:

Shearing:

3-D Homogeneous Transformations

To incorporate shifts into this simple scheme, the 3-D plane of Z=1 is used as XY

plane, and all 2-D operations are treated as 3-D operations on this plane. Thus:

Null transformation:

933

TECHNICAL INFORMATION 3-D Homogeneous Transformations

Rotating:

Permutating:

Scaling:

Shearing:

Shifting:

Note: This 2-D shift is achieved by means of a 3-D shear.

The third component of the vector is called the homogeneous item. The

transformations generated by treating the 2-D plane as the 3-D plane of Z=1 are

called homogeneous transformations.

Combining Multiple Transformations

All matrix and vector multiplications are associative. It is not necessary to hold a

series of transformations separately - they may be multiplied together and the

composite matrix applied to each point.

934

Combining Multiple Transformations TECHNICAL INFORMATION

For example, the result of:

gShift2D(10.0,20.0);
gRotate2D(30.0);
gScale2D(1.0,2.0);
gMoveTo2D(x,y);

call gShift2D(10.0,20.0)
call gRotate2D(30.0)
call gScale2D(1.0,2.0)
call gMoveTo2D(x,y)

is:

So the statements above are equivalent to:

gMoveTo2D(0.866*X-Y+10.0,0.5*X+1.732*Y+20.0)

2-D Summary

To summarize, for 2-D transformations, two parts of the 3*3 matrix are used:

Extending 2-D Operations

All the 2-D operations can be simply extended to 3-D by using 4x4 matrices:-

Shifting:

935

TECHNICAL INFORMATION 2-D Summary

a b c
d e f
g h i Shift vector

Combined

rotation, scale,

shear and

permutation

Rotating about the X axis:

Rotating about the Y axis:

Rotating about the Z axis:

Scaling:

936

Extending 2-D Operations TECHNICAL INFORMATION

Perspective Transformations

Consider the eye to be at a point S along the Z axis. Let the point (X,Y,Z) be

projected on to the point (X’,Y’) in the Z=0 plane to give 3-D point projection

onto this plane.

By similar triangles:

Thus:

And

It would be convenient if we could do the same with 4x4 matrix.

937

TECHNICAL INFORMATION Perspective Transformations

X’

Z

X

Point (X,Y,Z)

Consider:

This no longer yields a homogeneous term of 1. In order to restore the

homogeneous term to 1, we adopt the convention of dividing through by it,

hence:

Ignoring the Z’ term gives the required point projection. By combining this

matrix with rotations, shifts, etc. arbitrary perspective transformations may be

generated. In general these will have non zero terms in the bottom row.

938

Perspective Transformations TECHNICAL INFORMATION

Index
!
2D

devices · 42

drawing · 77

3D

devices · · · · · · · · · · · · · · · · 42,271,371

drawing · 277

graphics · 269

objects· 305

primitives · · · · · · · · · · · · · · · · 307 - 311

A
Adobe Pagemaker - importing GINO files into · · · 62

Adobe Photoshop - importing GINO files into · · · 62

Alphanumeric mode · · · · · · · · · · · · · · · · · 51

Ambient light · 330

Animation · 49

Application name · · · · · · · · · · · · · · · · · · 463

Archiving segments· · · · · · · · · · · · · · · · · 442

Arcs

2D · 86

3D· 284 - 287

chord control · · · · · · · · · · · · · · · · · · 89

Array transformation · · · · · · · · · · · · · 375 - 377

ASCII character output · · · · · · · · · · · · · · · 137

Auxiliary Drawing Areas · · · · · · · · · · · · · · 49

Axes

2D · 78

3D · 278

swapping · · · · · · · · · · · · · · · · · · · 362

B
Background · 118

Backing store· 49

Bezier

sphere · 322

surface· 317

volume · 323

Bitmaps· 57

Blending · 326

Blending textures · · · · · · · · · · · · · · · · · · 354

BMP· 825

BMP files· 58

Boxes · 307

Building transformations· · · · · · · · · · · 378 - 380

C
Calcomp plotters · · · · · · · · · · · · · · · 799 - 801

Cell array · 191

CGM · 819 - 823

elements · 820

errors · · · · · · · · · · · · · · · · · · 881 - 887

files · 58

Character

Attributes · · · · · · · · · · · · · · · · 147 - 152

country specific · · · · · · · · · · · · · · · · 160

default settings · · · · · · · · · · · · · · · · 147

Escape character · · · · · · · · · · · · · · · 158

Font enquiry · · · · · · · · · · · · · · · · · 147

Font fill style · · · · · · · · · · · · · · · · · 144

Font pitch control · · · · · · · · · · · · · · · 146

Font representation · · · · · · · · · · · · · · 146

Font weight · · · · · · · · · · · · · · · · · · 145

Fonts · · · · · · · · · · · · · · · · 141 - 146,156

Output · 137

output ASCII characters · · · · · · · · · · · 137

output strings · · · · · · · · · · · · · · · · · 138

positioning along curve· · · · · · · · · · · · 159

positioning exponents & indices · · · · · · · 155

size · 147

string angle · · · · · · · · · · · · · · · · · · 149

string enquiry · · · · · · · · · · · · · · 159 - 160

string fitting · · · · · · · · · · · · · · · · · · 158

text blocks· · · · · · · · · · · · · · · · · · · 154

zero representation · · · · · · · · · · · · · · 152

Character transforming· · · · · · · · · · · · 239 - 240

Characters · 135

Circles

2-D · 88

hardware · 89

number of chords· · · · · · · · · · · · · · · · 89

Clamping · 354

Clipping

939

mode · · · · · · · · · · · · · · · · · · 222 - 223

Colour · 205

conversion between systems · · · · · · · · · 210

coordinate system · · · · · · · · · · · 207 - 210

definition · · · · · · · · · · · · · · · · · · · 205

dynamic · 47

facet · 299

matching of facets · · · · · · · · · · · · · · 340

setting and enquiring · · · · · · · · · · · · · 117

static · 47

Combining transformations

2D· 232 - 237

3D · 364

Command-line · · · · · · · · · · · · · · · · · · · 463

Cones · 309

Configuration file · · · · · · · · · · · · · · · · 26,741

Control arc smoothness · · · · · · · · · · · · · · · 89

Converstion of numbers to strings · · · · · · · · · 140

Coordinate systems · · · · · · · · · · · · · · · 36 - 38

Coordinates

2D · 78

3D · 278

homogeneous · · · · · · · · · · · · · · · · · 369

picture · · · · · · · · · · · · · · · · · · 238,368

space · · · · · · · · · · · · · · · · · · · 238,368

texture · 349

Corel Ventura - importing GINO files into · · · · · 62

Corel WordPerfect - importing GINO files into· · · 62

CorelDraw - importing GINO files into · · · · · · · 62

Culling · 326

Current point · · · · · · · · · · · · · · · · 79,238,368

Cursor

action types · · · · · · · · · · · · · · · · · · 243

input · 241

shapes · 242

shapes with GLX driver · · · · · · · · · · · 750

shapes with X driver · · · · · · · · · · · · · 795

Curves

akima · · · · · · · · · · · · · · · · · · · 93 - 97

Bezier · · · · · · · · · · · · · · · 101 - 102,290

end conditions · · · · · · · · · · · · · · · · · 94

spline · · · · · · · · · · · · · · · · 98 - 102,290

spline tension · · · · · · · · · · · · · · · · · 100

Cylinders · 309

D
Dashed Lines · · · · · · · · · · · · · · · · · · 116,124

Debugging · 31

DEC LA100/LN03 · · · · · · · · · · · · · · · · · 812

Defining colour · · · · · · · · · · · · · · · · · · · 205

Deprecated routines · · · · · · · · · · · · · 927 - 929

Depth-cueing · 337

Device

attributes · 43

defaults · · · · · · · · · · · · · · · 43,859 - 866

dependent routine · · · · · · · · · · · · · 49 - 51

filename · 44

initialization · · · · · · · · · · · · · · · · · · 48

nomination · · · · · · · · · · · · · · · · · · · 42

qualification · · · · · · · · · · · · · · · · 43 - 47

release and suspension · · · · · · · · · · · · · 52

Device Drivers · · · · · · · · · · · · · · · · 739 - 740

Diagnostics · · · · · · · · · · · · · · · · · · · 29 - 32

Dialogue area visibility · · · · · · · · · · · · · · · 51

Direct colour · 47

Direction vectors (arcs)· · · · · · · · · · · · · · · 288

Directional light · · · · · · · · · · · · · · · · · · 330

Directory enquiry and setting · · · · · · · · · · · 460

DOS VGA/SVGA Driver · · · · · · · · · · 755 - 758

Double Buffering· · · · · · · · · · · · · · · · · · · 49

Dragging · 440

Drawing

2D · 77

3D · 277

arcs · 86 - 92

limits · 45

new · 48

units · 44

Drawing Mode · · · · · · · · · · · · · · · · · · · 120

Drawing routine names

2D · 79

3D · 278

DTP packages · 57

DUMMY (device driver) · · · · · · · · · · · · · · 741

DXF · 824

DXF files · 59

E
Environment mapping · · · · · · · · · · · · · · · 353

Environment Variables - system · · · · · · · · · · 464

Error handling · 29

Errors and Warnings · · · · · · · · · · · · · 867 - 880

Escape characters · · · · · · · · · · · · · · · · · · 156

Euro symbol · 161

Event

data · 451

programming · · · · · · · · · · · · · · 454 - 455

Events· 447 - 448

Execute System Command · · · · · · · · · · · · · 465

Exporting · 57

External files · 28

External Images · · · · · · · · · · · · · · · · · · · 73

Eye position· 386

940

Index D

F
F77-F90 Cross Reference · · · · · · · · · · 901 - 912

F90-F77 Cross Reference · · · · · · · · · · 913 - 925

Facet· 295

attributes · · · · · · · · · · · · · · · · 301 - 303

coloured · 299

face · 296

normal· 297

offset · 302

textured · 299

Field width of numbers · · · · · · · · · · · · · · · 139

File handling · 460

Fill

hardware/software · · · · · · · · · · · · · · 171

single polygons · · · · · · · · · · · · · · · · 257

Filtering textures · · · · · · · · · · · · · · · · · · 355

Flat shading · 326

Fog · 337 - 338

Font tables · 835

Fonts · 141 - 146

G
gAddEventType Usage · · · · · · · · · · · · · · · 450

gArchiveSegs Usage · · · · · · · · · · · · · · · · 442

gBuildMatrix2D Usage · · · · · · · · · · · · · · · 378

gBuildMatrix3D Usage · · · · · · · · · · · · · · · 378

gCGMInterpreter Usage · · · · · · · · · · · · · · · 69

gClearPolygonWorkspace Usage· · · · · · · · · · 250

gClearViewport Usage · · · · · · · · · · · · · · · 221

gCloseAuxDrawingArea Usage · · · · · · · · · · · 50

gCloseCGMFile Usage · · · · · · · · · · · · · · · 70

gCloseDevice Usage · · · · · · · · · · · · · · · · · 52

gCloseGino Usage · · · · · · · · · · · · · · · · · · 26

gCloseSeg Usage · · · · · · · · · · · · · · · · · · 426

gCombineMatrix2D Usage · · · · · · · · · · · · · 378

gCombineMatrix3D Usage · · · · · · · · · · · · · 378

gConvertInteger Usage · · · · · · · · · · · · · · · 140

gConvertRealExponent Usage · · · · · · · · · · · 140

gConvertRealFixed Usage · · · · · · · · · · · · · 140

gConvertRealFloat Usage · · · · · · · · · · · · · 140

gCopyFile Usage · · · · · · · · · · · · · · · · · · 461

gCopyPixelArea Usage · · · · · · · · · · · · · · · 203

gCopySeg Usage · · · · · · · · · · · · · · · · · · 434

gCreateDir Usage · · · · · · · · · · · · · · · · · · 461

gCreatePlanarShadowMatrix Usage · · · · · · · · 342

gDebug Usage · 31

gDefineBrokenLineStyle Usage · · · · · · · · · · 124

gDefineFog Usage · · · · · · · · · · · · · · · · · 337

gDefineGroupRange Usage · · · · · · · · · · · · 438

gDefineHatchStyle Usage · · · · · · · · · · · · · 172

gDefineHLS Usage · · · · · · · · · · · · · · · · · 216

gDefineHSV Usage · · · · · · · · · · · · · · · · · 214

gDefineLightSource Usage· · · · · · · · · · · · · 329

gDefineLineStyle Usage · · · · · · · · · · · · · · 129

gDefineMaterial Usage · · · · · · · · · · · · · · · 340

gDefineNullChar Usage · · · · · · · · · · · · · · 152

gDefineParallelView Usage · · · · · · · · · · · · 396

gDefinePerspView Usage · · · · · · · · · · · · · 393

gDefinePictureUnits Usage · · · · · · · · · · · · · 44

gDefinePixelPacking Usage · · · · · · · · · · · · 194

gDefinePointWorkspace Usage · · · · · · · · · · 104

gDefinePolygonWorkspace Usage · · · · · · 104,245

gDefineRGB Usage· · · · · · · · · · · · · · · · · 212

gDefineSegGroup Usage · · · · · · · · · · · · · · 437

gDefineSegWorkspace Usage · · · · · · · · · · · 426

gDefineSphericalView Usage · · · · · · · · · · · 388

gDefineTexture Usage · · · · · · · · · · · · · · · 346

gDeleteEventQueue Usage · · · · · · · · · · · · · 456

gDeleteSeg Usage · · · · · · · · · · · · · · · · · 427

gDisplayAsciiChar Usage · · · · · · · · · · · · · 137

gDisplayInteger Usage · · · · · · · · · · · · · · · 138

gDisplayRealExponent Usage · · · · · · · · · · · 138

gDisplayRealFixed Usage · · · · · · · · · · · · · 138

gDisplayRealFloat Usage· · · · · · · · · · · · · · 138

gDisplayStr Usage · · · · · · · · · · · · · · · · · 138

gDisplayStrPolylineBy2D Usage · · · · · · · · · 159

gDisplayStrPolylineTo2D Usage· · · · · · · · · · 159

gDragSeg Usage · · · · · · · · · · · · · · · · · · 440

gDrawAkimaBy2D Usage · · · · · · · · · · · · · · 93

gDrawAkimaTo2D Usage · · · · · · · · · · · · · · 93

gDrawArcBy2D Usage · · · · · · · · · · · · · · · 86

gDrawArcBy3D Usage · · · · · · · · · · · · · · · 284

gDrawArcTo2D Usage· · · · · · · · · · · · · · · · 86

gDrawArcTo3D Usage · · · · · · · · · · · · · · · 284

gDrawBezierBy2D Usage · · · · · · · · · · · · · 101

gDrawBezierBy3D Usage · · · · · · · · · · · · · 290

gDrawBezierSphere Usage · · · · · · · · · · · · · 323

gDrawBezierSurface Usage · · · · · · · · · · · · 317

gDrawBezierTo2D Usage · · · · · · · · · · · · · 101

gDrawBezierTo3D Usage · · · · · · · · · · · · · 290

gDrawBezierVolume Usage · · · · · · · · · · · · 324

gDrawBox Usage · · · · · · · · · · · · · · · · · · 307

gDrawCellArray Usage· · · · · · · · · · · · · · · 191

gDrawCone Usage · · · · · · · · · · · · · · · · · 309

gDrawCube Usage · · · · · · · · · · · · · · · · · 307

gDrawCurveBy2D Usage · · · · · · · · · · · · · · 93

gDrawCurveTo2D Usage · · · · · · · · · · · · · · 93

gDrawCylinder Usage · · · · · · · · · · · · · · · 309

gDrawFacet Usage · · · · · · · · · · · · · · · · · 296

gDrawLineBy2D Usage · · · · · · · · · · · · · · · 80

gDrawLineBy3D Usage · · · · · · · · · · · · · · 280

gDrawLineTo2D Usage · · · · · · · · · · · · · · · 80

gDrawLineTo3D Usage · · · · · · · · · · · · · · 280

gDrawMarker Usage · · · · · · · · · · · · · · · · 161

941

F Index

gDrawPixel Usage · · · · · · · · · · · · · · · · · 191

gDrawPixelArea Usage· · · · · · · · · · · · · · · 191

gDrawPolygonBound Usage · · · · · · · · · · · · 251

gDrawPolylineBy2D Usage · · · · · · · · · · · · · 82

gDrawPolylineBy3D Usage · · · · · · · · · · · · 280

gDrawPolylineSet2D Usage · · · · · · · · · · · · · 85

gDrawPolylineSet3D Usage · · · · · · · · · · · · 283

gDrawPolylineTo2D Usage · · · · · · · · · · · · · 82

gDrawPolylineTo3D Usage · · · · · · · · · · · · 280

gDrawPolymarkerBy2D Usage · · · · · · · · · · 163

gDrawPolymarkerBy3D Usage · · · · · · · · · · 163

gDrawPolymarkerTo2D Usage· · · · · · · · · · · 163

gDrawPolymarkerTo3D Usage· · · · · · · · · · · 163

gDrawRect3D Usage · · · · · · · · · · · · · · · · 307

gDrawRuledBezierSurface Usage · · · · · · · · · 322

gDrawSeg Usage · · · · · · · · · · · · · · · · · · 433

gDrawShadedPolylineTo3D Usage · · · · · · · · 307

gDrawSphere Usage · · · · · · · · · · · · · · · · 310

gDrawSplineBy2D Usage · · · · · · · · · · · · · · 98

gDrawSplineBy3D Usage · · · · · · · · · · · · · 288

gDrawSplineSurface Usage · · · · · · · · · · · · 313

gDrawSplineTo2D Usage · · · · · · · · · · · · · · 98

gDrawSplineTo3D Usage · · · · · · · · · · · · · 288

gDrawSweptBezierSurface Usage · · · · · · · · · 321

gDrawTabulatedBezierSurface Usage · · · · · · · 320

gDrawVolume Usage · · · · · · · · · · · · · · · · 311

gDrawWedge Usage · · · · · · · · · · · · · · · · 309

gEditSeg2D Usage · · · · · · · · · · · · · · · · · 436

gEditSeg3D Usage · · · · · · · · · · · · · · · · · 436

gElevateBezier2D Usage · · · · · · · · · · · · · · 103

gElevateBezier3D Usage · · · · · · · · · · · · · · 290

gEndBatchUpdate Usage · · · · · · · · · · · · · · 50

gEndPolygon Usage · · · · · · · · · · · · · · · · 247

gEnqArcState Usage · · · · · · · · · · · · · · · · · 91

gEnqBrokenLine Usage · · · · · · · · · · · · · · 116

gEnqBrokenLineStyle Usage· · · · · · · · · · · · 124

gEnqCharAttribs Usage · · · · · · · · · · · · · · 151

gEnqCharTransform Usage· · · · · · · · · · · · · 152

gEnqClippingMode Usage · · · · · · · · · · · · · 222

gEnqColourInfo Usage · · · · · · · · · · · · · 46,206

gEnqConfigStatus Usage · · · · · · · · · · · · · · 26

gEnqCursorAction Usage · · · · · · · · · · · · · 243

gEnqCursorType Usage · · · · · · · · · · · · · · 242

gEnqCurveAttribs2D Usage · · · · · · · · · · · · 100

gEnqCurveAttribs3D Usage · · · · · · · · · · · · 289

gEnqDepthMode Usage · · · · · · · · · · · · · · 329

gEnqDeviceState Usage · · · · · · · · · · · · · · · 43

gEnqDrawingLimits Usage · · · · · · · · · · · 45,272

gEnqEscapeChar Usage · · · · · · · · · · · · · · 158

gEnqFacetFillStyle Usage · · · · · · · · · · · · · 302

gEnqFacetMaterialProps Usage · · · · · · · · · · 342

gEnqFacetOffsetMode Usage · · · · · · · · · · · 303

gEnqFog Usage · · · · · · · · · · · · · · · · · · · 338

gEnqFontStyle Usage· · · · · · · · · · · · · · · · 147

gEnqGinoState Usage · · · · · · · · · · · · · · · · 26

gEnqHardFontList Usage· · · · · · · · · · · · · · 147

gEnqHatchStyle Usage · · · · · · · · · · · · 172,182

gEnqHLS Usage · · · · · · · · · · · · · · · · · · 216

gEnqHSV Usage · · · · · · · · · · · · · · · · · · 214

gEnqImageFile Usage · · · · · · · · · · · · · · · · 74

gEnqKeyState Usage · · · · · · · · · · · · · · · · 457

gEnqLastErrors Usage · · · · · · · · · · · · · · · · 30

gEnqLightAttribs Usage · · · · · · · · · · · · · · 333

gEnqLineColour Usage · · · · · · · · · · · · · · · 117

gEnqLineEnd Usage · · · · · · · · · · · · · · · · 120

gEnqLineStyle Usage· · · · · · · · · · · · · · · · 129

gEnqLineVis Usage· · · · · · · · · · · · · · · · · 116

gEnqLineWidth Usage · · · · · · · · · · · · · · · 119

gEnqLineWidthMode Usage · · · · · · · · · · · · 119

gEnqLineWidthScaling Usage · · · · · · · · · · · 120

gEnqMaskState Usage · · · · · · · · · · · · · · · 225

gEnqMaterial Usage · · · · · · · · · · · · · · · · 341

gEnqMaterialAttribs Usage · · · · · · · · · · · · 341

gEnqMaxDrawingLimits Usage · · · · · · · · · · · 46

gEnqMousePos Usage · · · · · · · · · · · · · · · 456

gEnqNumberOfErrors Usage · · · · · · · · · · · · 30

gEnqOpenSeg Usage · · · · · · · · · · · · · · · · 427

gEnqPenType Usage · · · · · · · · · · · · · · · · 120

gEnqPicturePos Usage · · · · · · · · · · · · · 238,368

gEnqPixelAttribs Usage · · · · · · · · · · · · · · 202

gEnqPixelPacking Usage · · · · · · · · · · · · · · 202

gEnqPixelPos Usage · · · · · · · · · · · · · · · · 198

gEnqPixelResolution Usage · · · · · · · · · · · · 190

gEnqPointMode Usage · · · · · · · · · · · · · · · 104

gEnqPolygonList Usage · · · · · · · · · · · · · · 257

gEnqPolygonMaskList Usage · · · · · · · · · · · 266

gEnqPolygonWindowList Usage· · · · · · · · · · 266

gEnqPolygonWorkspace Usage · · · · · · · · · · 250

gEnqPosOfPixel Usage · · · · · · · · · · · · · · · 198

gEnqQueueLength Usage · · · · · · · · · · · · · 456

gEnqRGB Usage · · · · · · · · · · · · · · · · · · 212

gEnqSavdraDimension Usage · · · · · · · · · · · · 64

gEnqSavdraSegAttribs Usage · · · · · · · · · · · · 65

gEnqSavdraSegList Usage· · · · · · · · · · · · · · 65

gEnqSegAttribs Usage · · · · · · · · · · · · · · · 432

gEnqSegGroup Usage · · · · · · · · · · · · · · · 438

gEnqSegHit Usage · · · · · · · · · · · · · · · · · 439

gEnqSegTransform Usage · · · · · · · · · · · · · 432

gEnqSegTransform2D Usage · · · · · · · · · · · 432

gEnqSegWorkspace Usage · · · · · · · · · · · · · 426

gEnqSelectedPen Usage · · · · · · · · · · · · · · 113

gEnqShadingMode Usage · · · · · · · · · · · · · 327

gEnqSpacePos Usage · · · · · · · · · · · · · 238,368

gEnqSplineTension Usage · · · · · · · · · · · · · 100

gEnqStrExponent Usage · · · · · · · · · · · · · · 155

gEnqStrJustify Usage · · · · · · · · · · · · · · · · 153

gEnqStrUnderscore Usage · · · · · · · · · · · · · 152

gEnqSysArgs Usage · · · · · · · · · · · · · · · · 463

942

Index G

gEnqSysDate Usage · · · · · · · · · · · · · · · · 463

gEnqSysDateStr Usage · · · · · · · · · · · · · · · 463

gEnqSysEnviron Usage· · · · · · · · · · · · · · · 464

gEnqSysPriority Usage · · · · · · · · · · · · · · · 466

gEnqSysTime Usage · · · · · · · · · · · · · · · · 463

gEnqSysUsername Usage · · · · · · · · · · · · · 464

gEnqTextBlockAttribs Usage · · · · · · · · · · · 155

gEnqTextureCoordGeneration Usage · · · · · · · 351

gEnqTextureMappingMode Usage · · · · · · · · · 358

gEnqTransformState Usage · · · · · · · · · · · · 381

gEnqViewport2D Usage · · · · · · · · · · · · · · 221

gEnqViewport3D Usage · · · · · · · · · · · · · · 274

gEnqViewportMode Usage · · · · · · · · · · · · · 220

gEnqViewportState Usage · · · · · · · · · · · · · 221

gEnqViewTransformMode Usage · · · · · · · · · 371

gEnqWindowState Usage · · · · · · · · · · · 224,275

gEnqWorkingDir Usage · · · · · · · · · · · · · · 460

gEnqWorkspaceLimit Usage· · · · · · · · · · · · · 36

gExecuteSysCommand Usage · · · · · · · · · · · 465

gExtendSeg Usage · · · · · · · · · · · · · · · · · 427

gFclose Usage · 28

gFillPolygonBy2D Usage · · · · · · · · · · · · · 167

gFillPolygonBy3D Usage · · · · · · · · · · · · · 290

gFillPolygonSet2D Usage · · · · · · · · · · · · · 170

gFillPolygonSet3D Usage · · · · · · · · · · · · · 290

gFillPolygonTo2D Usage· · · · · · · · · · · · · · 167

gFillPolygonTo3D Usage· · · · · · · · · · · · · · 290

gFillRect Usage · · · · · · · · · · · · · · · · · · · 165

gFillSelectedPolygons Usage · · · · · · · · · · · 257

gFitCharStr Usage · · · · · · · · · · · · · · · · · 158

gFlushGraphics Usage · · · · · · · · · · · · · · · · 49

gFopen Usage · 28

gGenerateView Usage · · · · · · · · · · · · · · · 399

gGetCGMElement Usage · · · · · · · · · · · · · · 70

gGetCursorEvent Usage · · · · · · · · · · · · · · 241

gGetDirList Usage · · · · · · · · · · · · · · · · · 461

gGetDrawing Usage · · · · · · · · · · · · · · · · · 65

gGetEventRecord Usage · · · · · · · · · · · · · · 451

gGetFullDirList Usage · · · · · · · · · · · · · · · 461

gGetImageFile Usage · · · · · · · · · · · · · · 74,346

gGetPicture Usage · · · · · · · · · · · · · · · · · · 67

gGetPixel Usage · · · · · · · · · · · · · · · · · · 191

gGetPixelArea Usage · · · · · · · · · · · · · · · · 203

gGetRand Usage · · · · · · · · · · · · · · · · · · 466

gGetTransform2D Usage · · · · · · · · · · · · · · 377

gGetTransform3D Usage · · · · · · · · · · · · · · 377

gGetViewParams Usage · · · · · · · · · · · · · · 416

gGetViewState Usage· · · · · · · · · · · · · · · · 416

gInitView Usage · · · · · · · · · · · · · · · · · · 399

GINO

Closing · 26

facilities · 24

general description · · · · · · · · · · · · · · · 23

State · 54

States · · · · · · · · · · · · · · · · · · · 26 - 27

structures · · · · · · · · · · · · · · · · 891 - 899

gInsertSegRef Usage · · · · · · · · · · · · · · · · 435

gInsertSegTag Usage · · · · · · · · · · · · · · · · 436

gInterpolateData2D Usage · · · · · · · · · · · · · 107

gInterpolateData3D Usage · · · · · · · · · · · · · 294

gInterpretCGMElement Usage · · · · · · · · · · · 70

GLX · 743

gMarkSeg Usage · · · · · · · · · · · · · · · · · · 431

gModify View Usage · · · · · · · · · · · · · · · · 417

gModifyTransform2D Usage · · · · · · · · · · · · 377

gModifyTransform3D Usage · · · · · · · · · · · · 377

gModifyView Usage · · · · · · · · · · · · · · · · 342

gMoveBy2D Usage · · · · · · · · · · · · · · · · · 80

gMoveBy3D Usage · · · · · · · · · · · · · · · · · 279

gMoveSegBy2D Usage· · · · · · · · · · · · · · · 431

gMoveSegTo2D Usage · · · · · · · · · · · · · · · 431

gMoveTo2D Usage · · · · · · · · · · · · · · · · · 80

gMoveTo3D Usage · · · · · · · · · · · · · · · · · 279

gMoveToNextLine Usage · · · · · · · · · · · · · 154

gMoveViewCentre Usage · · · · · · · · · · · · · 404

gNewDrawing Usage · · · · · · · · · · · · · · · · 48

gOpenAuxDrawingArea Usage · · · · · · · · · · · 49

gOpenCGMFile Usage· · · · · · · · · · · · · · · · 70

gOpenGino Usage · · · · · · · · · · · · · · · · · · 25

gOpenSeg Usage · · · · · · · · · · · · · · · · · · 426

Gouraud shading · · · · · · · · · · · · · · · · · · 326

gPlaySound Usage · · · · · · · · · · · · · · · · · 466

gPolygonHit Usage · · · · · · · · · · · · · · · · · 261

gPopTransform Usage · · · · · · · · · · · · · · · 376

gPosViewCentre Usage· · · · · · · · · · · · · · · 402

gPrintf Usage · 138

gPushTransform Usage · · · · · · · · · · · · · · · 376

Graphics buffer· 49

gReduceBezier2D Usage · · · · · · · · · · · · · · 103

gRemoveDir Usage · · · · · · · · · · · · · · · · · 461

gRemoveEventType Usage · · · · · · · · · · · · · 450

gRemoveFile Usage · · · · · · · · · · · · · · · · 461

gRemoveSegGroup Usage · · · · · · · · · · · · · 437

gRenameFile Usage · · · · · · · · · · · · · · · · 461

gRenameSeg Usage· · · · · · · · · · · · · · · · · 427

gRestoreGinoState Usage · · · · · · · · · · · · · · 54

gRestoreTransform Usage · · · · · · · · · · · · · 376

gRetrieveSegs Usage · · · · · · · · · · · · · · · · 442

gReturnDirDate Usage · · · · · · · · · · · · · · · 463

gReturnInternalPoints2D Usage · · · · · · · · · · 104

gReturnInternalPoints3D Usage · · · · · · · · · · 293

gReturnPlanarNormal Usage · · · · · · · · · · · · 297

gReturnStrInfo Usage · · · · · · · · · · · · · · · 159

gRotate2D Usage · · · · · · · · · · · · · · · · · · 228

gRotate3D Usage · · · · · · · · · · · · · · · · · · 360

gSaveGinoState Usage · · · · · · · · · · · · · · · · 54

gSaveLineStyle Usage · · · · · · · · · · · · · · · 131

gSaveTransform Usage · · · · · · · · · · · · · · · 376

943

G Index

gScale2D Usage · · · · · · · · · · · · · · · · · · 229

gScale3D Usage · · · · · · · · · · · · · · · · · · 363

gSelectDrawingArea Usage · · · · · · · · · · · · · 50

gSelectPolygons · · · · · · · · · · · · · · · · · · 256

gSelectPolygons Usage · · · · · · · · · · · · · · · 254

gSetAlphaMode Usage· · · · · · · · · · · · · · · · 51

gSetArcIncrement Usage · · · · · · · · · · · · · · 89

gSetArcMode Usage · · · · · · · · · · · · · · · · · 89

gSetArcTolerance Usage· · · · · · · · · · · · · · · 89

gSetBrokenLine Usage · · · · · · · · · · · · · · · 116

gSetBrokenLineMode Usage · · · · · · · · · · · · 116

gSetCharFont Usage · · · · · · · · · · · · · · · · 141

gSetCharSize Usage · · · · · · · · · · · · · · · · 147

gSetCharSizePoint Usage · · · · · · · · · · · · · 149

gSetCharTransformMode Usage · · · · · · · · · · 239

gSetClippingMode Usage · · · · · · · · · · · · · 222

gSetColourInfo Usage · · · · · · · · · · · · · · · · 47

gSetCursorAction Usage · · · · · · · · · · · · · · 243

gSetCursorPos Usage · · · · · · · · · · · · · · · · 242

gSetCursorType Usage · · · · · · · · · · · · · · · 242

gSetCurveAttribs2D Usage · · · · · · · · · · · 94,100

gSetCurveAttribs3D Usage· · · · · · · · · · · · · 289

gSetDebugSwitch Usage· · · · · · · · · · · · · · · 32

gSetDepthMode Usage · · · · · · · · · · · · · · · 328

gSetDeviceFilename Usage · · · · · · · · · · · · · 44

gSetDeviceTitle Usage· · · · · · · · · · · · · · · · 52

gSetDialogueVis Usage · · · · · · · · · · · · · · · 51

gSetDrawingLimits Usage · · · · · · · · · · · · · · 45

gSetErrorFile Usage · · · · · · · · · · · · · · · · · 31

gSetErrorMode Usage · · · · · · · · · · · · · · · · 30

gSetErrorTrap Usage· · · · · · · · · · · · · · · · · 30

gSetEscapeChar Usage · · · · · · · · · · · · · · · 158

gSetFacetFillStyle Usage · · · · · · · · · · · · · · 301

gSetFacetMaterialProps Usage · · · · · · · · · · · 342

gSetFacetOffsetMode Usage · · · · · · · · · · · · 302

gSetFillMode Usage · · · · · · · · · · · · · · · · 171

gSetFontFillStyle Usage · · · · · · · · · · · · · · 144

gSetFontForm Usage · · · · · · · · · · · · · · · · 146

gSetFontSpacing Usage · · · · · · · · · · · · · · 146

gSetFontWeight Usage · · · · · · · · · · · · · · · 145

gSetGraphicsVis Usage · · · · · · · · · · · · · · · 51

gSetInterlineSpace Usage · · · · · · · · · · · · · 154

gSetItalicAngle Usage · · · · · · · · · · · · · · · 150

gSetLightSwitch Usage· · · · · · · · · · · · · · · 332

gSetLineColour Usage · · · · · · · · · · · · · · · 117

gSetLineEnd Usage · · · · · · · · · · · · · · · · · 120

gSetLineStyle Usage · · · · · · · · · · · · · · · · 131

gSetLineVis Usage · · · · · · · · · · · · · · · · · 116

gSetLineWidth Usage· · · · · · · · · · · · · · · · 119

gSetLineWidthMode Usage · · · · · · · · · · · · 119

gSetLineWidthScaling Usage · · · · · · · · · · · 119

gSetMask2D Usage · · · · · · · · · · · · · · · · · 224

gSetMaskMode Usage · · · · · · · · · · · · · · · 225

gSetMaterialColour Usage · · · · · · · · · · · · · 341

gSetMaterialIndex Usage· · · · · · · · · · · · · · 341

gSetMaxErrorLimit Usage· · · · · · · · · · · · · · 30

gSetMousePos Usage · · · · · · · · · · · · · · · · 456

gSetPenType Usage· · · · · · · · · · · · · · · · · 120

gSetPixelDisplayMode Usage · · · · · · · · · · · 197

gSetPixelReplication Usage · · · · · · · · · · · · 201

gSetPixelTransform Usage · · · · · · · · · · · · · 198

gSetPointMode Usage · · · · · · · · · · · · · · · 104

gSetPolygonIdent Usage · · · · · · · · · · · · · · 249

gSetPolygonMask Usage · · · · · · · · · · · · · · 265

gSetPolygonMode Usage· · · · · · · · · · · · · · 247

gSetPolygonWindow Usage · · · · · · · · · · · · 264

gSetRandSeed Usage · · · · · · · · · · · · · · · · 466

gSetSegHit Usage· · · · · · · · · · · · · · · · · · 431

gSetSegMarkColour Usage· · · · · · · · · · · · · 431

gSetSegMode Usage · · · · · · · · · · · · · · · · 424

gSetSegTransform Usage· · · · · · · · · · · · · · 431

gSetSegTransform2D Usage · · · · · · · · · · · · 431

gSetSegVis Usage · · · · · · · · · · · · · · · · · 430

gSetShadingMode Usage · · · · · · · · · · · · · · 325

gSetSplineTension Usage· · · · · · · · · · · · · · 100

gSetStrAngle Usage · · · · · · · · · · · · · · · · 149

gSetStrExponent Usage· · · · · · · · · · · · · · · 155

gSetStrJustify Usage · · · · · · · · · · · · · · · · 153

gSetStrUnderscore Usage · · · · · · · · · · · · · 152

gSetSysPriority Usage · · · · · · · · · · · · · · · 466

gSetTextureCoordGeneration Usage · · · · · · · · 351

gSetTextureMappingMode Usage · · · · · · · 345,354

gSetTracerMode Usage · · · · · · · · · · · · · · · 31

gSetTransform Usage· · · · · · · · · · · · · · · · 372

gSetTransform2D Usage · · · · · · · · · · · · · · 377

gSetTransform3D Usage · · · · · · · · · · · · · · 377

gSetTransformMode Usage · · · · · · · · · · 239,382

gSetViewAxis Usage · · · · · · · · · · · · · · · · 362

gSetViewEyeDistance Usage· · · · · · · · · · · · 404

gSetViewParams Usage · · · · · · · · · · · · · · 416

gSetViewPlaneDistance Usage · · · · · · · · · · · 404

gSetViewport2D Usage· · · · · · · · · · · · · · · 219

gSetViewport3D Usage· · · · · · · · · · · · · · · 273

gSetViewportClipSwitch Usage · · · · · · · · · · 221

gSetViewportMode Usage · · · · · · · · · · · 220,274

gSetViewState Usage · · · · · · · · · · · · · · · · 416

gSetViewTransformMode Usage· · · · · · · · · · 371

gSetViewUpDirection Usage · · · · · · · · · · · · 402

gSetWindow2D Usage · · · · · · · · · · · · · · · 223

gSetWindow3D Usage · · · · · · · · · · · · · · · 275

gSetWindowMode Usage· · · · · · · · · · · · · · 222

gSetWorkingDir Usage · · · · · · · · · · · · · · · 460

gSetWorkspaceLimit Usage · · · · · · · · · · · · · 33

gShear2D Usage · · · · · · · · · · · · · · · · · · 231

gShear3D Usage · · · · · · · · · · · · · · · · · · 364

gShift2D Usage · · · · · · · · · · · · · · · · · · · 228

gShift3D Usage · · · · · · · · · · · · · · · · · · · 360

gSkipCGMElement Usage · · · · · · · · · · · · · · 70

944

Index G

gStartBatchUpdate Usage · · · · · · · · · · · · · · 50

gStartPolygon Usage · · · · · · · · · · · · · · · · 247

gStartTextBlock Usage · · · · · · · · · · · · · · · 154

gSuspendDevice Usage · · · · · · · · · · · · · · · 52

gSwitchBrokenLineStyles Usage · · · · · · · · · 128

gTimeDelay Usage · · · · · · · · · · · · · · · · · 463

gTransformHomogPoint3D Usage · · · · · · · · · 369

gTransformPoint2D Usage · · · · · · · · · · · · · 238

gTransformPoint3D Usage · · · · · · · · · · · · · 369

gTrueCol Usage· · · · · · · · · · · · · · · · · · · 217

gTrueLen Usage · · · · · · · · · · · · · · · · · · 467

gUntransformHomogPoint3D Usage· · · · · · · · 368

gUntransformPoint2D Usage· · · · · · · · · · · · 238

gUntransformPoint3D Usage· · · · · · · · · · · · 368

gUpdateView Usage · · · · · · · · · · · · · · · · 388

gViewRotate Usage · · · · · · · · · · · · · · · · · 411

gViewShift Usage· · · · · · · · · · · · · · · · · · 410

gViewTurn Usage· · · · · · · · · · · · · · · · · · 410

gWaitForEvent Usage · · · · · · · · · · · · · · · 451

H
Hardware

arcs · 89

transformations · · · · · · · · · · · · · · · · 371

Hatch styles - defining · · · · · · · · · · · · 172 - 182

Hewlett-Packard plotters

HPGL · 802

HPGL/2 · 806

Hewlett-Packard printers

laserjet· 809

paintjet and deskjet · · · · · · · · · · · · · · 810

Hidden Surface Removal · · · · · · · · · · · · · · 327

Hierarchical Segments · · · · · · · · · · · · · · · 434

Highlighting segments · · · · · · · · · · · · · · · 431

HLS colour system · · · · · · · · · · · · · · 215 - 216

Homogeneous coordinates · · · · · · · · · · · · · 369

HSV colour system· · · · · · · · · · · · · · 212 - 214

I
ICO files · 60

Image handling · · · · · · · · · · · · · · · · · · · 189

display · · · · · · · · · · · · · · · · · 191 - 197

hiding · 197

reading · 203

replication· · · · · · · · · · · · · · · · · · · 201

Importing · 57

Initializing GINO · · · · · · · · · · · · · · · · · · 25

Input

device · 454

Interaction

advanced · · · · · · · · · · · · · · · · · · · 447

basic · 241

Interpolation

2D · 107

3D · 294

Italic Characters · · · · · · · · · · · · · · · · · · 150

J
Joining of lines · · · · · · · · · · · · · · · · · · · 120

JPEG · 827 - 828

JPEG files · 60

Justification of character strings · · · · · · · · · · 153

K
Key values from keyboard and mouse· · · · 452 - 453

Keyboard state · · · · · · · · · · · · · · · · 457 - 458

L
Light pen simulation · · · · · · · · · · · · · · · · 439

Light switch· 332

Lighting· 329 - 336

Line

attributes · · · · · · · · · · · · · · · · · · · 111

attributes affecting characters · · · · · · · · 152

colour · 117

current · · · · · · · · · · · · · 112,114,130 - 131

style table · · · · · · · · · · · · · · · · · · · 866

styles · · · · · · · · · · · · · · · · · · 124 - 133

Line of sight · · · · · · · · · · · · · · · 386,410 - 414

Lines

2D · 80 - 81

3D · 280

Lotus 1-2-3 - importing GINO files into · · · · · · 62

Lotus Freelance - importing GINO files into · · · · 62

Lotus WordPro - importing GINO files into · · · · 62

M
Machine independence of GINO · · · · · · · · · · 23

Mapping - viewport · · · · · · · · · · · · · 219 - 221

Markers · 161 - 163

Marking segments · · · · · · · · · · · · · · · · · 431

Masking

enquiry · 225

polygonal · · · · · · · · · · · · · · · · · · · 265

rectangular · · · · · · · · · · · · · · · 224 - 225

Material properties · · · · · · · · · · · · · · · · · 339

Messages - errors and warnings · · · · · · · · · · · 29

Metafile

drivers · 818

945

H Index

formats · · · · · · · · · · · · · · · · · · 58 - 61

Microsoft Excel - importing GINO files into · · · · 62

Microsoft IE5 - importing GINO files into · · · · · 62

Microsoft PowerPoint - importing GINO files into · 62

Microsoft Word - importing GINO files into · · · · 62

Mipmapped textures · · · · · · · · · · · · · · · · 348

Modelling · 359

Modify transformations · · · · · · · · · · · · · · 377

Mouse

pointer shapes with GLX driver · · · · · · · 750

pointer shapes with X driver · · · · · · · · · 795

Mouse position · · · · · · · · · · · · · · · · · · · 456

Multiple Devices · · · · · · · · · · · · · · · · 52 - 56

N
Netscape - importing GINO files into · · · · · · · · 62

Normals · 297

Notional device · · · · · · · · · · · · · · · · · · · 40

Numerical output · · · · · · · · · · · · · · · 138 - 140

O
Object

axes system · · · · · · · · · · · · · · · · · · 306

complexity · · · · · · · · · · · · · · · · · · 306

shading · 306

Oblique projection · · · · · · · · · · · · · · · · · 415

OpenGL

features · · · · · · · · · · · · · · · · · 269 - 271

performance· · · · · · · · · · · · · · · · · · 271

X-Windows driver · · · · · · · · · · · · · · 743

OpenVMS specifics · · · · · · · · · · · · · · · · 737

P
Paintshop Pro - importing GINO files into · · · · · 62

Paper size and type· · · · · · · · · · · · · · · · · · 45

Parallel projection · · · · · · · · · · · · · · 396 - 397

Pen · 77

position · · · · · · · · · · · · · · · · · · 80,279

Permutating axes · · · · · · · · · · · · · · · · · · 362

Perspective view · · · · · · · · · · · · · · · 388 - 392

Phong shading · · · · · · · · · · · · · · · · · · · 326

Picture coordinates

2D · 238

3D · 368

Picture mode · 382

Picture segments · · · · · · · · · · · · · · · · · · 423

Pixel · 189

coordinates · · · · · · · · · · · · · · · · · · 190

data definition· · · · · · · · · · · · · · · · · 194

enquiry / resolution · · · · · · · · · · · · · · 202

single pixel reading / writing · · · · · · · · · 191

Planar normal · 297

Plotter devices· · · · · · · · · · · · · · · 41,797 - 798

PNG · 829

PNG files · 60

Point light source · · · · · · · · · · · · · · · · · · 330

Point storage

2D · 103

3D · 293

Polygon

3D· 290 - 292

area filling · · · · · · · · · · · · · · · 169 - 170

complex area filling · · · · · · · · · · · · · 257

drawing · · · · · · · · · · · · · · 247 - 249,251

enquiry · 250

identification · · · · · · · · · · · · · · · · · 249

interaction· · · · · · · · · · · · · · · · · · · 261

selection · · · · · · · · · · · · · · · · 254 - 256

simple area filling· · · · · · · · · · · · · · · 165

vertices · · · · · · · · · · · · · · · · · 247 - 249

workspace · · · · · · · · · · · · · 250,252 - 253

Polyline set

2D · 84 - 85

3D· 282 - 283

Polylines

2D · 82 - 83

3D· 280 - 281

shaded · 307

Position

2D · 80

3D · 279

segment · · · · · · · · · · · · · · · · · 430 - 431

POSTSCRIPT · · · · · · · · · · · · · · · · 813 - 817

POSTSCRIPT files· · · · · · · · · · · · · · · · · · 59

Printer devices · · · · · · · · · · · · · · 41,797 - 798

Priority of task · · · · · · · · · · · · · · · · · · · 466

Q
Quark Xpress - importing GINO files into · · · · · 62

Queues · 456

R
Random number generation · · · · · · · · · · · · 466

Rectangular area fill · · · · · · · · · · · · · 165 - 166

Reflection · 230

Refresh displays · · · · · · · · · · · · · · · 423 - 425

REGIS · 752 - 754

RGB colour system · · · · · · · · · · · · · · · · · 211

Rotation

2D · 228

3D · 360

946

Index N

Ruled surface · 321

S
SAVDRA · · · · · · · · · · · · · · · · · · · 830 - 832

SAVDRA files · 60

Scaling

2D · 229

3D · 363

Screen devices · · · · · · · · · · · · · · · · · · 41,742

SDF · 424

Segment

anchor · 427

body · 430

building · · · · · · · · · · · · · · · · · 426 - 429

copying · 434

enquiry · 432

groups · 437

hierarchies · · · · · · · · · · · · · · · · · · 434

modelling transformations · · · · · · · · · · 435

redrawing · · · · · · · · · · · · · · · · · · · 433

structures · · · · · · · · · · · · · · · · 434 - 438

transformation · · · · · · · · · · · · · · · · 431

Sensitivity of segments · · · · · · · · · · · · · · · 431

Shading· 270,325

Shadows · · · · · · · · · · · · · · · · · · · 342 - 343

Shearing

2D · 231

3D · 364

Shifting

2D · 227

3D · 360

Smooth shading · · · · · · · · · · · · · · · · · · · 326

Smoothness of arcs· · · · · · · · · · · · · · · · · · 89

Software Characters · · · · · · · · · · · · · · · · 136

Software Display File

archive · 442

hard copy · · · · · · · · · · · · · · · · · · · 440

Sound · 466

Space

axes · 227

mode · 382

Space coordinates

2D · 238

3D · 368

Specular light · 332

Sphere

Bezier · 322

faceted· 310

Spline Curves · · · · · · · · · · · · · · · · · 98 - 100

3D· 288 - 289

end conditions · · · · · · · · · · · · · · · · · 99

Spline surface · 313

Spot light · 331

Storage tube· 243

Straight lines

2D · 80 - 81

3D · 280

SUN raster files · · · · · · · · · · · · · · · · · · · 825

Surface primitive · · · · · · · · · · · · · · · 312 - 324

Swept surface · 320

System errors · 888

System Utilities · · · · · · · · · · · · · · · · · · · 459

T
Tables

colour · 113

hatch style· · · · · · · · · · · · · · · · · · · 172

line definition · · · · · · · · · · · · · · · · · 129

Tabulated surface · · · · · · · · · · · · · · · · · · 320

Texel · 355

Text output · 135

Texture coordinates · · · · · · · · · · · · · · · · · 349

Texture mapping · · · · · · · · · · · · · · · · · · 345

Textured facet · 299

Tiling images · 349

Time Delay · 463

Time enquiry · 463

Titling · 52

Tolerance

arc · 91

Tolerance of arcs · · · · · · · · · · · · · · · · · · · 90

Trace facilities · 31

Transformation

enquiry · 381

initializing· · · · · · · · · · · · · · · · · · · 372

matrix · 375

mode · · · · · · · · · · · · · · · · · · · 239,382

state · · · · · · · · · · · · · · · · · · · 372 - 374

Transformation control · · · · · · · · · · · · · · · 371

Transformations

2D · 227

3D · 359

characters · · · · · · · · · · · · · · · · · · · 239

pixel· · · · · · · · · · · · · · · · · · · 198 - 201

Translucence · 342

Transparent · 326

Trapping error messages · · · · · · · · · · · · · · · 30

U
Underlining characters · · · · · · · · · · · · · · · 152

UNIX specifics · · · · · · · · · · · · · · · · · · · 736

Untransforming

2D · 238

947

S Index

3D · 368

User name· 464

V
View plane · 386

View transform mode· · · · · · · · · · · · · · · · 371

Viewing · 385

modifications · · · · · · · · · · · · · · 400 - 403

modify matrix · · · · · · · · · · · · · · · · · 417

state · 416

transformations · · · · · · · · · · · · · 398 - 399

Viewport

2D· 219 - 221

3D· 273 - 274

Visibility

line · 116

segments · · · · · · · · · · · · · · · · · · · 430

Visual Basic

calling GINO from · · · · · · · · · · · · · · 776

importing GINO files into · · · · · · · · · · · 62

Volume

faceted· 311

W
Warning messages · · · · · · · · · · · · · · · · · · 29

WEB Browsers · 57

Wedges · 309

Width of lines · 119

Winding rule · 327

Window visibility · · · · · · · · · · · · · · · · · · 51

Windowing

2D polygonal · · · · · · · · · · · · · · 261 - 267

3D polygonal · · · · · · · · · · · · · · · · · 275

enquiry · · · · · · · · · · · · · · · · · · 224,275

mode · 222

rectangular · · · · · · · · · · · · · · · · · · 223

switching · · · · · · · · · · · · · · · · · · · 222

Windows driver (MWIN) · · · · · · · · · · 759 - 777

Windows OpenGL Driver · · · · · · · · · · 778 - 789

Windows Programming· · · · · · · · · · · · · · · 769

Windows specifics · · · · · · · · · · · · · · · · · 738

WMF · 833 - 834

WMF files · 61

Workspace

clearing · 250

enquiry · 36

management · · · · · · · · · · · · · · · · 33 - 35

polygon · · · · · · · · · · · · · · 245,252 - 253

Workstation devices · · · · · · · · · · · · · · · · · 41

Workstations · 742

WP packages · 57

X
X Windows · · · · · · · · · · · · · · · · · · 790 - 796

XWD Driver · 825

XWD files · 61

Z
Z Buffering · 327

Zooming · 404

948

Index V

	Contents
	INTRODUCTION 23
	General Description 23
	Facilities 24
	Initializing GINO 25
	GINO States 26
	Use of External Files 28
	Diagnostic Facilities 29
	Output of Error and Warning Messages 29
	Error Limit 30
	Trapping of Errors and Warnings 30
	Enquiry of Errors and Warnings 30
	Routine Trace Facility 31
	Output File for Error and Tracer Messages 31
	DEBUG Utility 31

	Workspaces 33
	Management of Workspace Area 33
	Allocation of Workspace Area 34

	GINO Coordinate System 36

	GRAPHICS DEVICES 39
	Graphics Devices Introduction 39
	Device Drivers 39
	Device Class 40
	2D and 3D Devices 42

	Device Nomination 42
	Device Defaults 43
	Device Attributes 43

	Device Qualification 43
	Device Output Filename 44
	Drawing Units 44
	Drawing Limits 45
	Colour Capabilities 46

	Device Initialization 48
	New Drawing 48
	Device Dependent Routines 49
	Emptying the Graphics Buffer 49
	Auxiliary Drawing Areas 49
	Batch Modifications to Display 50
	Alphanumeric Mode 51
	Window visibility 51
	Device Titles 52

	Device Release and Suspension 52
	Using Multiple Devices 52
	Mapping to the Second Device 53
	Saving and Restoring GINO State 54
	Duplicating Output 55

	IMPORTING AND EXPORTING 57
	Importing and Exporting Introduction 57
	Overview 57
	Metafile Formats 58
	Summary 61

	Exporting Metafiles from GINO 62
	Metafiles into External Packages 62
	Importing Metafiles into GINO 64
	SAVDRA Metafile 64
	CGM Metafiles 69
	Image Metafiles 73

	2D DRAWING 77
	2D Drawing Introduction 77
	Pen 77
	Axes 78
	2D Start and End Pen Position 79
	2D Naming Conventions 79

	Positioning 80
	Straight Lines 80
	Polylines 82
	Polyline Sets 84
	Polyline Set Definition 84
	Polyline Usage 85

	Circular Arcs 86
	Two-Dimensional Arcs 86
	Drawing Circles 88
	Hardware and Software Arcs 89
	Arc Control Routines 89
	Arc Settings 91
	Use of Arc Routines 91

	Parametric Curves 93
	Curve End Conditions 94

	Spline Curves 98
	Spline Curve End Conditions 99
	Spline Curve Tension Control 100

	Bezier Curves 101
	End Conditions 102
	Elevation and Reduction 103

	Point Storage 103
	2D Interpolation 107

	LINE ATTRIBUTES 111
	Line Attributes Introduction 111
	Routines Described in this Chapter 111
	Current Line Definition and Enquiry 112
	Drawing Attribute Tables 113

	Individual Attributes 114
	Changing Individual Attributes of the Current Line 114
	Line Visibility 116
	Broken Line Type 116
	Line Colour 117
	Line Width 119
	Drawing Mode 120
	Line Ends 120
	Use of Current Attribute Enquiry Routines 122

	Attribute Tables 124
	Attribute Definition Tables 124
	Broken Line Types Table 124
	Continuous v Discontinuous 128
	Line Definition Table 129
	Changing the Current Line Attributes 130
	Retrieving and Storing Current Line Attributes 131

	CHARACTERS 135
	Character Introduction 135
	Character Mode - Hardware v Software 136
	Output of Characters 137
	Single ASCII Characters 137
	Character Strings 138

	Output of Numbers 138
	Field Width 139
	Conversion of Numbers to Character Strings 140

	Character Fonts 141
	Font styles 141
	Font Fill Style 144
	Font Weight 145
	Fixed Pitch Control 146
	Software Font Representation 146
	Font Enquiry 147

	Character Attributes 147
	Default Character Settings 147
	Character Size 147
	Character Orientation 149
	Italic Characters 150
	Current Character Settings Enquiry 151
	Underlining of Characters 152
	Representation of Zero Character 152
	Line Attributes affecting Characters 152

	Character String Attributes 153
	Justification 153
	Text Blocks 154
	Exponents and Indices 155
	Escape Characters 156
	Changing the Escape Character 158
	Escape Character Enquiry 158
	Character Strings Adjusted to Fit a Specified Width 158
	Character Strings Drawn Along a Curve 159
	Returning Information about a String 159
	Country Specific Characters 160

	Symbols 161
	Positioning Symbols 162
	Multiple Symbols 163

	AREA FILLING 165
	Area Filling Introduction 165
	Filling a Rectangle 165
	Filling Single Polygons 167
	Filling Polygon Sets 169
	Polygon Set Definition 169
	Polygon Usage 170

	Filling Modes 171
	Hatch Style Definition 172
	Example 1 178
	Example 2 180
	Hatch Style Enquiry 182

	Multiple Hatch Styles 183
	Box Hatch style 183
	Brick Hatch Style 184
	Honeycomb Hatch Style 185
	Trellis Hatch Style 187

	Complex Polygonal Definition, Drawing and Filling 188

	IMAGE HANDLING 189
	Image Handling Introduction 189
	Pixel Coordinate System 190

	Reading and Writing Single Pixels 191
	Image Display 191
	Image Data 192
	Sub Images 192
	Pixel Packing 194
	Image Display Mode 197

	Pixel Coordinate Conversion 198
	Pixel Transformations 198
	Pixel Rotation and Scaling 198
	Pixel Replication 201

	Pixel Enquiry Routines 202
	Reading Pixel Data 203
	Copying Pixel Images 203

	COLOUR DEFINITION 205
	Colour Definition Introduction 205
	Colour Table 205
	Display Types 206
	Colour Resolution 207

	Colour Coordinate Systems 207
	Conversion Between Coordinate Systems 210

	RGB Colour Coordinate System 211
	Using the RGB System 212

	HSV Colour Coordinate System 212
	Using the HSV System 214

	HLS Colour Coordinate System 215
	Using the HLS System 216

	Direct Colour Control 217

	MAPPING, WINDOWING AND MASKING 219
	Mapping, Windowing and Masking Introduction 219
	Viewport Mapping 219
	Viewport Enquiry 221
	Clearing the Viewport 221

	Clipping 222
	Window Mode 222
	Rectangular Window 223
	Enquiring Window Limits 224

	Rectangular Masks 224
	Mask Enquiry 225

	2D TRANSFORMATIONS 227
	2D Transformations Introduction 227
	Simple 2D Transformations 227
	2D Shifting 227
	2D Rotation 228
	2D Scaling 229
	Mirror Images 230
	2D Shearing 231

	Combining Transformations 232
	Using the Same Transformation Type 232
	Using Different Transformation Types 233

	2D Transformation Enquiry 238
	Current Drawing Position 238
	2D Untransforming 238
	Point Testing of Current 2D Transformation 238

	2D Transformation Control 239
	Transforming Characters and Symbols 239

	BASIC INTERACTION 241
	Basic Interaction Introduction 241
	Cursor Input 241
	Defining Cursor Shapes 242
	Defining Cursor Action Types 243
	Application 243

	ADVANCED USE OF 2D POLYGONS 245
	Advanced Use of 2D Polygons Introduction 245
	Allocating Workspace for the Storage of Polygons 245
	Polygon Definition 247
	Polygon Identity 249

	Clearing Polygon Workspace 250
	Status of Polygon Workspace 250
	Drawing Polygon Boundaries 251
	Polygon Filling Workspace Requirements 252
	Hardware Fill Workspace Requirements 252
	Software Fill Workspace Requirements 253
	Example Calculations of Workspace Requirements 253

	Polygon Selection 254
	Polygon Selection Enquiry 257

	Filling a Polygon 257
	Interaction with Polygons 261
	Polygon Windowing and Masking 261
	Polygons Suitable for Windowing and Masking 261
	Workspace Requirements for Windowing and Masking of Filled Areas 262
	Windowing Requirements 262
	Masking Requirements 262
	Requirements for Simultaneous Windowing and Masking 263
	Example - Calculation of Fill Workspace Requirements 263
	Polygonal Windowing 264
	Polygonal Masking 265
	Windowing and Masking Polygon List Enquiry 266
	Windowing and Masking Control 267

	3D GRAPHICS 269
	3D Graphics Introduction 269
	Shaded Objects 270
	The Scene 270
	3D Device Drivers 271

	The 3D World 272
	3D Viewport Mapping 273
	3D Clipping 275
	Enquiring 3D Window Limits 275

	3D DRAWING 277
	3D Drawing Introduction 277
	3D Axes 278
	3D Start and End Pen Position 278
	3D Naming Conventions 278

	3D Positioning 279
	3D Straight Lines 280
	3D Polylines 280
	Shaded Polylines 281

	3D Polyline Sets 282
	3D Polyline Set Definition 282

	3D Arcs 284
	Direction Vector 288

	3D Spline Curves 288
	3D Spline Curve Control 289

	3D Bezier Curves 290
	3D Elevation and Reduction 290

	3D Polygons 290
	Overlapping Polygons 291

	3D Point Storage 293
	3D Interpolation 294

	FACETS 295
	Facets Introduction 295
	Facet Definition 296
	Facet Faces 296
	Normals 297
	Textured Facet 299
	Coloured Facet 299

	Facet Attributes 301
	Facet Fill Style 301
	Facet Offset 302

	3D OBJECTS 305
	3D Objects Introduction 305
	Local Axes System 306
	Object Complexity 306
	Object Shading 306
	Object Texture Mapping 306

	Shaded Polyline 307
	3D Primitives 307
	Boxes 307
	Wedges 309
	Cylinders and Cones 309
	Spheres 310
	Volumes of Rotation 311

	Surface Primitives 312
	Spline surface 313
	Bezier surface 317
	Tabulated Bezier surface 320
	Swept Bezier surface 320
	Ruled Bezier surface 321
	Bezier sphere 322
	Bezier volume 323

	LIGHTING AND SHADING 325
	Lighting and Shading Introduction 325
	Shading 325
	Culling 326
	Blending 326
	Winding Rule 327
	Shading Enquiry 327

	Depth Buffering 327
	Lighting 329
	Light Sources 329
	Light Switch 332
	Default Lights 332
	Light Source Enquiry 333
	Light Usage 333

	Fog 337
	Fog Enquiry 338

	MATERIAL PROPERTIES 339
	Material Properties Introduction 339
	Material Property Definition 339
	Colour Matching 340
	Material Table 340
	Facet Material Properties 342

	Translucence 342
	Shadows 342

	TEXTURE MAPPING 345
	Texture Mapping Introduction 345
	Texture Mapping Modes 345
	Texture Mapping Data 346
	Multiple Texture Maps 348
	Tiling Images 349

	Texture Mapping Coordinates 349
	Direct Assignment 350
	Automatic Generation 351
	Environment Mapping 353
	3D Objects 353

	Texture Mapping Attributes 354
	Blending Textures 354
	Repeating and Clamping Images 354
	Filtering Textures 355
	Texture Border Colour 357

	Texture Mapping Enquiry 358

	3D TRANSFORMATIONS 359
	3D Transformations Introduction 359
	Current Transformation 360

	Simple 3D Transformations 360
	3D Shifting 360
	3D Rotation 360
	Permutating the Axes 362
	3D Scaling 363
	3D Shearing 364

	Combining 3D Transformations 364
	Using the Same 3D Transformation Type 364
	Combining 3-D Rotations 365
	Using Different 3D Transformation Types 367

	3D Transformation Enquiry 368
	Finding the Current Drawing Position 368
	3D Untransforming 368
	Point Testing of Current 3D Transformation 369

	TRANSFORMATION CONTROL 371
	Transformation Control Introduction 371
	View Transform Mode 371
	Transformation State 372
	Reinitializing 372

	Transformations Matrix Control 375
	Push and Pop Transformation Matrix 376
	Saving and Restoring Transformation Matrix 376
	Getting and Setting Transformation Matrix 377
	Modify Transformation Matrix 377

	Transformation Matrix Building 378
	Example showing Building and Combining Transformation matrices 379

	Transformation Enquiry 381
	Transformation Mode 382

	VIEWING 385
	Viewing Introduction 385
	Useful Concepts 386
	From View Plane to Paper 387
	The Basic Viewing Routines 388
	Perspective Views of a Volume 388
	Perspective View from a Point 393
	Parallel Projection 396
	Setting Viewing Transformations 398
	Use of Superseded Routine 399

	Modifying the Drawing 400
	Re-specifying the View 400
	Positioning the Image 402
	Orientation of the Image 402

	Moving Eye, View Plane or both 404
	Zooming 404
	Moving Eye and View Plane 405
	Moving the Eye Alone 407

	Changing the Line of Sight 410
	Projections onto an Oblique Plane 415
	Saving and Restoring View Parameters 416
	Modifying the View Matrix 417
	Listings of the Routines used in this Chapter 417

	PICTURE SEGMENTS 423
	Picture Segments Introduction 423
	Software Display File Storage 426

	Segment Building 426
	Segment Anchor 427
	Picture Segment Body 430

	Segment Manipulation 430
	Picture Segment Transformations 431

	Segment Enquiry 432
	Segment Redrawing and Repairing 433
	Segment Structures 434
	Copying 434
	Hierarchical Segment Structures 434
	Use of Modelling Transformations within Segments 435
	Segment Groups 437
	Implicit Segment Groups 439

	Light Pen Simulation 439
	Dragging 440
	Software Display Files Across Devices 440
	Archiving and Restoring Software Display File 442

	ADVANCED INTERACTION 447
	Advanced Interaction Introduction 447
	Programming in a windowing environment 449

	Event Types 449
	Requesting Event Types 450
	Deleting Event Types 450
	Getting Next Event 451
	Reading Event Data 451
	Keys 452
	Event Generating Implements 454
	Event Programming 454
	Queues 456
	Mouse Position 456
	Keyboard State 457

	SYSTEM UTILITIES 459
	System Utilities Introduction 459
	File and Directory Handling 460
	Time and Date Utilities 463
	Other System Utilities 463
	Command-line arguments 463
	Enquire User Name 464
	Environment Variable Settings 464
	System Command Execution 465
	Task Priority 466
	Sound System Speaker 466
	Random Number Generation 466
	String Handling 467

	ROUTINE SPECIFICATIONS 469
	MACHINE IMPLEMENTATIONS 735
	GENERAL 735
	UNIX 736
	OpenVMS 737
	Microsoft Windows 738

	DEVICE DRIVERS 739
	Device Drivers Introduction 739
	Configuration File 741
	Dummy Device 741
	SCREENS AND WORKSTATIONS 742
	Output Filenames and Unit Numbers (Fortran only) 742
	Screen Driver Configuration Settings 743

	GLX OpenGL Extension to X 743
	Regis Series Devices 752
	VGA and SVGA PC Screens (LF90 only) 755
	Windows (Microsoft) System 759
	Using Windows Driver in Windows Programming Environment 769

	Windows OpenGL (Microsoft) System 778
	Using Windows OpenGL Driver in Windows Programming Environment 788

	X Windows System 790
	PRINTERS AND PLOTTERS 797
	Output Filename and Unit Numbers (Fortran only) 797
	Printer and Plotter Configuration Settings 798
	Intermediate Vector File 799
	8-bit data 799

	Calcomp 907 Series Plotters 799
	Hewlett-Packard Series Plotters (HPGL) 802
	Hewlett-Packard Series Plotters (HPGL-2) 806
	Hewlett-Packard Laserjet Series Printers (HPLJ) 809
	Hewlett-Packard Paintjet and Deskjet Printers (HPPJ) 810
	DEC LA100 andLN03 Series Printers 812
	Postscript Series Printers 813
	METAFILES 818
	Output Filename and Unit Numbers for Metafiles(Fortran only) 818
	File Format 819
	Metafile Configuration Settings 819

	Computer Graphics Metafile (CGM) 819
	Drawing Exchange Format (DXF) Metafile 824
	Image File Formats (BMP, XWD, SUNRAS) 825
	JPEG File Interchange Format (JPG) 827
	PNG Portable Network Graphics (PNG) 829
	SAVDRA and SAVPIC Metafile 830
	Windows Metafile (WMF) 833

	FONT TABLES 835
	Font Tables Introduction 835
	The Font Tables 836

	DEFAULTS 859
	Defaults Introduction 859

	ERROR AND WARNING MESSAGES 867
	Error and Warning Introduction 867
	GINO Errors and Warnings 867
	CGM Errors 881
	System Input and Output Errors 888
	Configuration File Errors 889

	GINO STRUCTURES 891
	Structures Introduction 891

	CROSS REFERENCES 901
	Cross References Introduction 901
	F77-F90 Cross-Reference 901
	F90-F77 Cross-Reference 913

	DEPRECATED ROUTINES 927
	Deprecated Routines Introduction 927

	TECHNICAL INFORMATION 931
	Homogeneous Coordinate Transformations 931
	2-D Transformations 931
	Null transformation 931
	Shifting 932
	Rotating 932
	Permutating 932
	Scaling 932
	Shearing 932

	2-D Matrices 932
	3-D Homogeneous Transformations 933
	Combining Multiple Transformations 934
	2-D Summary 935
	Extending 2-D Operations 935
	Perspective Transformations 937

	Index
	!
	2D
	devices 42
	drawing 77

	3D
	devices 42,271,371
	drawing 277
	graphics 269
	objects 305
	primitives 307 - 311

	A
	Adobe Pagemaker - importing GINO files into 62
	Adobe Photoshop - importing GINO files into 62
	Alphanumeric mode 51
	Ambient light 330
	Animation 49
	Application name 463
	Archiving segments 442
	Arcs
	2D 86
	3D 284 - 287
	chord control 89

	Array transformation 375 - 377
	ASCII character output 137
	Auxiliary Drawing Areas 49
	Axes
	2D 78
	3D 278
	swapping 362

	B
	Background 118
	Backing store 49
	Bezier
	sphere 322
	surface 317
	volume 323

	Bitmaps 57
	Blending 326
	Blending textures 354
	BMP 825
	BMP files 58
	Boxes 307
	Building transformations 378 - 380

	C
	Calcomp plotters 799 - 801
	Cell array 191
	CGM 819 - 823
	elements 820
	errors 881 - 887
	files 58

	Character
	Attributes 147 - 152
	country specific 160
	default settings 147
	Escape character 158
	Font enquiry 147
	Font fill style 144
	Font pitch control 146
	Font representation 146
	Font weight 145
	Fonts 141 - 146,156
	Output 137
	output ASCII characters 137
	output strings 138
	positioning along curve 159
	positioning exponents & indices 155
	size 147
	string angle 149
	string enquiry 159 - 160
	string fitting 158
	text blocks 154
	zero representation 152

	Character transforming 239 - 240
	Characters 135
	Circles
	2-D 88
	hardware 89
	number of chords 89

	Clamping 354
	Clipping
	mode 222 - 223

	Colour 205
	conversion between systems 210
	coordinate system 207 - 210
	definition 205
	dynamic 47
	facet 299
	matching of facets 340
	setting and enquiring 117
	static 47

	Combining transformations
	2D 232 - 237
	3D 364

	Command-line 463
	Cones 309
	Configuration file 26,741
	Control arc smoothness 89
	Converstion of numbers to strings 140
	Coordinate systems 36 - 38
	Coordinates
	2D 78
	3D 278
	homogeneous 369
	picture 238,368
	space 238,368
	texture 349

	Corel Ventura - importing GINO files into 62
	Corel WordPerfect - importing GINO files into 62
	CorelDraw - importing GINO files into 62
	Culling 326
	Current point 79,238,368
	Cursor
	action types 243
	input 241
	shapes 242
	shapes with GLX driver 750
	shapes with X driver 795

	Curves
	akima 93 - 97
	Bezier 101 - 102,290
	end conditions 94
	spline 98 - 102,290
	spline tension 100

	Cylinders 309

	D
	Dashed Lines 116,124
	Debugging 31
	DEC LA100/LN03 812
	Defining colour 205
	Deprecated routines 927 - 929
	Depth-cueing 337
	Device
	attributes 43
	defaults 43,859 - 866
	dependent routine 49 - 51
	filename 44
	initialization 48
	nomination 42
	qualification 43 - 47
	release and suspension 52

	Device Drivers 739 - 740
	Diagnostics 29 - 32
	Dialogue area visibility 51
	Direct colour 47
	Direction vectors (arcs) 288
	Directional light 330
	Directory enquiry and setting 460
	DOS VGA/SVGA Driver 755 - 758
	Double Buffering 49
	Dragging 440
	Drawing
	2D 77
	3D 277
	arcs 86 - 92
	limits 45
	new 48
	units 44

	Drawing Mode 120
	Drawing routine names
	2D 79
	3D 278

	DTP packages 57
	DUMMY (device driver) 741
	DXF 824
	DXF files 59

	E
	Environment mapping 353
	Environment Variables - system 464
	Error handling 29
	Errors and Warnings 867 - 880
	Escape characters 156
	Euro symbol 161
	Event
	data 451
	programming 454 - 455

	Events 447 - 448
	Execute System Command 465
	Exporting 57
	External files 28
	External Images 73
	Eye position 386

	F
	F77-F90 Cross Reference 901 - 912
	F90-F77 Cross Reference 913 - 925
	Facet 295
	attributes 301 - 303
	coloured 299
	face 296
	normal 297
	offset 302
	textured 299

	Field width of numbers 139
	File handling 460
	Fill
	hardware/software 171
	single polygons 257

	Filtering textures 355
	Flat shading 326
	Fog 337 - 338
	Font tables 835
	Fonts 141 - 146

	G
	gAddEventType Usage 450
	gArchiveSegs Usage 442
	gBuildMatrix2D Usage 378
	gBuildMatrix3D Usage 378
	gCGMInterpreter Usage 69
	gClearPolygonWorkspace Usage 250
	gClearViewport Usage 221
	gCloseAuxDrawingArea Usage 50
	gCloseCGMFile Usage 70
	gCloseDevice Usage 52
	gCloseGino Usage 26
	gCloseSeg Usage 426
	gCombineMatrix2D Usage 378
	gCombineMatrix3D Usage 378
	gConvertInteger Usage 140
	gConvertRealExponent Usage 140
	gConvertRealFixed Usage 140
	gConvertRealFloat Usage 140
	gCopyFile Usage 461
	gCopyPixelArea Usage 203
	gCopySeg Usage 434
	gCreateDir Usage 461
	gCreatePlanarShadowMatrix Usage 342
	gDebug Usage 31
	gDefineBrokenLineStyle Usage 124
	gDefineFog Usage 337
	gDefineGroupRange Usage 438
	gDefineHatchStyle Usage 172
	gDefineHLS Usage 216
	gDefineHSV Usage 214
	gDefineLightSource Usage 329
	gDefineLineStyle Usage 129
	gDefineMaterial Usage 340
	gDefineNullChar Usage 152
	gDefineParallelView Usage 396
	gDefinePerspView Usage 393
	gDefinePictureUnits Usage 44
	gDefinePixelPacking Usage 194
	gDefinePointWorkspace Usage 104
	gDefinePolygonWorkspace Usage 104,245
	gDefineRGB Usage 212
	gDefineSegGroup Usage 437
	gDefineSegWorkspace Usage 426
	gDefineSphericalView Usage 388
	gDefineTexture Usage 346
	gDeleteEventQueue Usage 456
	gDeleteSeg Usage 427
	gDisplayAsciiChar Usage 137
	gDisplayInteger Usage 138
	gDisplayRealExponent Usage 138
	gDisplayRealFixed Usage 138
	gDisplayRealFloat Usage 138
	gDisplayStr Usage 138
	gDisplayStrPolylineBy2D Usage 159
	gDisplayStrPolylineTo2D Usage 159
	gDragSeg Usage 440
	gDrawAkimaBy2D Usage 93
	gDrawAkimaTo2D Usage 93
	gDrawArcBy2D Usage 86
	gDrawArcBy3D Usage 284
	gDrawArcTo2D Usage 86
	gDrawArcTo3D Usage 284
	gDrawBezierBy2D Usage 101
	gDrawBezierBy3D Usage 290
	gDrawBezierSphere Usage 323
	gDrawBezierSurface Usage 317
	gDrawBezierTo2D Usage 101
	gDrawBezierTo3D Usage 290
	gDrawBezierVolume Usage 324
	gDrawBox Usage 307
	gDrawCellArray Usage 191
	gDrawCone Usage 309
	gDrawCube Usage 307
	gDrawCurveBy2D Usage 93
	gDrawCurveTo2D Usage 93
	gDrawCylinder Usage 309
	gDrawFacet Usage 296
	gDrawLineBy2D Usage 80
	gDrawLineBy3D Usage 280
	gDrawLineTo2D Usage 80
	gDrawLineTo3D Usage 280
	gDrawMarker Usage 161
	gDrawPixel Usage 191
	gDrawPixelArea Usage 191
	gDrawPolygonBound Usage 251
	gDrawPolylineBy2D Usage 82
	gDrawPolylineBy3D Usage 280
	gDrawPolylineSet2D Usage 85
	gDrawPolylineSet3D Usage 283
	gDrawPolylineTo2D Usage 82
	gDrawPolylineTo3D Usage 280
	gDrawPolymarkerBy2D Usage 163
	gDrawPolymarkerBy3D Usage 163
	gDrawPolymarkerTo2D Usage 163
	gDrawPolymarkerTo3D Usage 163
	gDrawRect3D Usage 307
	gDrawRuledBezierSurface Usage 322
	gDrawSeg Usage 433
	gDrawShadedPolylineTo3D Usage 307
	gDrawSphere Usage 310
	gDrawSplineBy2D Usage 98
	gDrawSplineBy3D Usage 288
	gDrawSplineSurface Usage 313
	gDrawSplineTo2D Usage 98
	gDrawSplineTo3D Usage 288
	gDrawSweptBezierSurface Usage 321
	gDrawTabulatedBezierSurface Usage 320
	gDrawVolume Usage 311
	gDrawWedge Usage 309
	gEditSeg2D Usage 436
	gEditSeg3D Usage 436
	gElevateBezier2D Usage 103
	gElevateBezier3D Usage 290
	gEndBatchUpdate Usage 50
	gEndPolygon Usage 247
	gEnqArcState Usage 91
	gEnqBrokenLine Usage 116
	gEnqBrokenLineStyle Usage 124
	gEnqCharAttribs Usage 151
	gEnqCharTransform Usage 152
	gEnqClippingMode Usage 222
	gEnqColourInfo Usage 46,206
	gEnqConfigStatus Usage 26
	gEnqCursorAction Usage 243
	gEnqCursorType Usage 242
	gEnqCurveAttribs2D Usage 100
	gEnqCurveAttribs3D Usage 289
	gEnqDepthMode Usage 329
	gEnqDeviceState Usage 43
	gEnqDrawingLimits Usage 45,272
	gEnqEscapeChar Usage 158
	gEnqFacetFillStyle Usage 302
	gEnqFacetMaterialProps Usage 342
	gEnqFacetOffsetMode Usage 303
	gEnqFog Usage 338
	gEnqFontStyle Usage 147
	gEnqGinoState Usage 26
	gEnqHardFontList Usage 147
	gEnqHatchStyle Usage 172,182
	gEnqHLS Usage 216
	gEnqHSV Usage 214
	gEnqImageFile Usage 74
	gEnqKeyState Usage 457
	gEnqLastErrors Usage 30
	gEnqLightAttribs Usage 333
	gEnqLineColour Usage 117
	gEnqLineEnd Usage 120
	gEnqLineStyle Usage 129
	gEnqLineVis Usage 116
	gEnqLineWidth Usage 119
	gEnqLineWidthMode Usage 119
	gEnqLineWidthScaling Usage 120
	gEnqMaskState Usage 225
	gEnqMaterial Usage 341
	gEnqMaterialAttribs Usage 341
	gEnqMaxDrawingLimits Usage 46
	gEnqMousePos Usage 456
	gEnqNumberOfErrors Usage 30
	gEnqOpenSeg Usage 427
	gEnqPenType Usage 120
	gEnqPicturePos Usage 238,368
	gEnqPixelAttribs Usage 202
	gEnqPixelPacking Usage 202
	gEnqPixelPos Usage 198
	gEnqPixelResolution Usage 190
	gEnqPointMode Usage 104
	gEnqPolygonList Usage 257
	gEnqPolygonMaskList Usage 266
	gEnqPolygonWindowList Usage 266
	gEnqPolygonWorkspace Usage 250
	gEnqPosOfPixel Usage 198
	gEnqQueueLength Usage 456
	gEnqRGB Usage 212
	gEnqSavdraDimension Usage 64
	gEnqSavdraSegAttribs Usage 65
	gEnqSavdraSegList Usage 65
	gEnqSegAttribs Usage 432
	gEnqSegGroup Usage 438
	gEnqSegHit Usage 439
	gEnqSegTransform Usage 432
	gEnqSegTransform2D Usage 432
	gEnqSegWorkspace Usage 426
	gEnqSelectedPen Usage 113
	gEnqShadingMode Usage 327
	gEnqSpacePos Usage 238,368
	gEnqSplineTension Usage 100
	gEnqStrExponent Usage 155
	gEnqStrJustify Usage 153
	gEnqStrUnderscore Usage 152
	gEnqSysArgs Usage 463
	gEnqSysDate Usage 463
	gEnqSysDateStr Usage 463
	gEnqSysEnviron Usage 464
	gEnqSysPriority Usage 466
	gEnqSysTime Usage 463
	gEnqSysUsername Usage 464
	gEnqTextBlockAttribs Usage 155
	gEnqTextureCoordGeneration Usage 351
	gEnqTextureMappingMode Usage 358
	gEnqTransformState Usage 381
	gEnqViewport2D Usage 221
	gEnqViewport3D Usage 274
	gEnqViewportMode Usage 220
	gEnqViewportState Usage 221
	gEnqViewTransformMode Usage 371
	gEnqWindowState Usage 224,275
	gEnqWorkingDir Usage 460
	gEnqWorkspaceLimit Usage 36
	gExecuteSysCommand Usage 465
	gExtendSeg Usage 427
	gFclose Usage 28
	gFillPolygonBy2D Usage 167
	gFillPolygonBy3D Usage 290
	gFillPolygonSet2D Usage 170
	gFillPolygonSet3D Usage 290
	gFillPolygonTo2D Usage 167
	gFillPolygonTo3D Usage 290
	gFillRect Usage 165
	gFillSelectedPolygons Usage 257
	gFitCharStr Usage 158
	gFlushGraphics Usage 49
	gFopen Usage 28
	gGenerateView Usage 399
	gGetCGMElement Usage 70
	gGetCursorEvent Usage 241
	gGetDirList Usage 461
	gGetDrawing Usage 65
	gGetEventRecord Usage 451
	gGetFullDirList Usage 461
	gGetImageFile Usage 74,346
	gGetPicture Usage 67
	gGetPixel Usage 191
	gGetPixelArea Usage 203
	gGetRand Usage 466
	gGetTransform2D Usage 377
	gGetTransform3D Usage 377
	gGetViewParams Usage 416
	gGetViewState Usage 416
	gInitView Usage 399
	GINO
	Closing 26
	facilities 24
	general description 23
	State 54
	States 26 - 27
	structures 891 - 899

	gInsertSegRef Usage 435
	gInsertSegTag Usage 436
	gInterpolateData2D Usage 107
	gInterpolateData3D Usage 294
	gInterpretCGMElement Usage 70
	GLX 743
	gMarkSeg Usage 431
	gModify View Usage 417
	gModifyTransform2D Usage 377
	gModifyTransform3D Usage 377
	gModifyView Usage 342
	gMoveBy2D Usage 80
	gMoveBy3D Usage 279
	gMoveSegBy2D Usage 431
	gMoveSegTo2D Usage 431
	gMoveTo2D Usage 80
	gMoveTo3D Usage 279
	gMoveToNextLine Usage 154
	gMoveViewCentre Usage 404
	gNewDrawing Usage 48
	gOpenAuxDrawingArea Usage 49
	gOpenCGMFile Usage 70
	gOpenGino Usage 25
	gOpenSeg Usage 426
	Gouraud shading 326
	gPlaySound Usage 466
	gPolygonHit Usage 261
	gPopTransform Usage 376
	gPosViewCentre Usage 402
	gPrintf Usage 138
	gPushTransform Usage 376
	Graphics buffer 49
	gReduceBezier2D Usage 103
	gRemoveDir Usage 461
	gRemoveEventType Usage 450
	gRemoveFile Usage 461
	gRemoveSegGroup Usage 437
	gRenameFile Usage 461
	gRenameSeg Usage 427
	gRestoreGinoState Usage 54
	gRestoreTransform Usage 376
	gRetrieveSegs Usage 442
	gReturnDirDate Usage 463
	gReturnInternalPoints2D Usage 104
	gReturnInternalPoints3D Usage 293
	gReturnPlanarNormal Usage 297
	gReturnStrInfo Usage 159
	gRotate2D Usage 228
	gRotate3D Usage 360
	gSaveGinoState Usage 54
	gSaveLineStyle Usage 131
	gSaveTransform Usage 376
	gScale2D Usage 229
	gScale3D Usage 363
	gSelectDrawingArea Usage 50
	gSelectPolygons 256
	gSelectPolygons Usage 254
	gSetAlphaMode Usage 51
	gSetArcIncrement Usage 89
	gSetArcMode Usage 89
	gSetArcTolerance Usage 89
	gSetBrokenLine Usage 116
	gSetBrokenLineMode Usage 116
	gSetCharFont Usage 141
	gSetCharSize Usage 147
	gSetCharSizePoint Usage 149
	gSetCharTransformMode Usage 239
	gSetClippingMode Usage 222
	gSetColourInfo Usage 47
	gSetCursorAction Usage 243
	gSetCursorPos Usage 242
	gSetCursorType Usage 242
	gSetCurveAttribs2D Usage 94,100
	gSetCurveAttribs3D Usage 289
	gSetDebugSwitch Usage 32
	gSetDepthMode Usage 328
	gSetDeviceFilename Usage 44
	gSetDeviceTitle Usage 52
	gSetDialogueVis Usage 51
	gSetDrawingLimits Usage 45
	gSetErrorFile Usage 31
	gSetErrorMode Usage 30
	gSetErrorTrap Usage 30
	gSetEscapeChar Usage 158
	gSetFacetFillStyle Usage 301
	gSetFacetMaterialProps Usage 342
	gSetFacetOffsetMode Usage 302
	gSetFillMode Usage 171
	gSetFontFillStyle Usage 144
	gSetFontForm Usage 146
	gSetFontSpacing Usage 146
	gSetFontWeight Usage 145
	gSetGraphicsVis Usage 51
	gSetInterlineSpace Usage 154
	gSetItalicAngle Usage 150
	gSetLightSwitch Usage 332
	gSetLineColour Usage 117
	gSetLineEnd Usage 120
	gSetLineStyle Usage 131
	gSetLineVis Usage 116
	gSetLineWidth Usage 119
	gSetLineWidthMode Usage 119
	gSetLineWidthScaling Usage 119
	gSetMask2D Usage 224
	gSetMaskMode Usage 225
	gSetMaterialColour Usage 341
	gSetMaterialIndex Usage 341
	gSetMaxErrorLimit Usage 30
	gSetMousePos Usage 456
	gSetPenType Usage 120
	gSetPixelDisplayMode Usage 197
	gSetPixelReplication Usage 201
	gSetPixelTransform Usage 198
	gSetPointMode Usage 104
	gSetPolygonIdent Usage 249
	gSetPolygonMask Usage 265
	gSetPolygonMode Usage 247
	gSetPolygonWindow Usage 264
	gSetRandSeed Usage 466
	gSetSegHit Usage 431
	gSetSegMarkColour Usage 431
	gSetSegMode Usage 424
	gSetSegTransform Usage 431
	gSetSegTransform2D Usage 431
	gSetSegVis Usage 430
	gSetShadingMode Usage 325
	gSetSplineTension Usage 100
	gSetStrAngle Usage 149
	gSetStrExponent Usage 155
	gSetStrJustify Usage 153
	gSetStrUnderscore Usage 152
	gSetSysPriority Usage 466
	gSetTextureCoordGeneration Usage 351
	gSetTextureMappingMode Usage 345,354
	gSetTracerMode Usage 31
	gSetTransform Usage 372
	gSetTransform2D Usage 377
	gSetTransform3D Usage 377
	gSetTransformMode Usage 239,382
	gSetViewAxis Usage 362
	gSetViewEyeDistance Usage 404
	gSetViewParams Usage 416
	gSetViewPlaneDistance Usage 404
	gSetViewport2D Usage 219
	gSetViewport3D Usage 273
	gSetViewportClipSwitch Usage 221
	gSetViewportMode Usage 220,274
	gSetViewState Usage 416
	gSetViewTransformMode Usage 371
	gSetViewUpDirection Usage 402
	gSetWindow2D Usage 223
	gSetWindow3D Usage 275
	gSetWindowMode Usage 222
	gSetWorkingDir Usage 460
	gSetWorkspaceLimit Usage 33
	gShear2D Usage 231
	gShear3D Usage 364
	gShift2D Usage 228
	gShift3D Usage 360
	gSkipCGMElement Usage 70
	gStartBatchUpdate Usage 50
	gStartPolygon Usage 247
	gStartTextBlock Usage 154
	gSuspendDevice Usage 52
	gSwitchBrokenLineStyles Usage 128
	gTimeDelay Usage 463
	gTransformHomogPoint3D Usage 369
	gTransformPoint2D Usage 238
	gTransformPoint3D Usage 369
	gTrueCol Usage 217
	gTrueLen Usage 467
	gUntransformHomogPoint3D Usage 368
	gUntransformPoint2D Usage 238
	gUntransformPoint3D Usage 368
	gUpdateView Usage 388
	gViewRotate Usage 411
	gViewShift Usage 410
	gViewTurn Usage 410
	gWaitForEvent Usage 451

	H
	Hardware
	arcs 89
	transformations 371

	Hatch styles - defining 172 - 182
	Hewlett-Packard plotters
	HPGL 802
	HPGL/2 806

	Hewlett-Packard printers
	laserjet 809
	paintjet and deskjet 810

	Hidden Surface Removal 327
	Hierarchical Segments 434
	Highlighting segments 431
	HLS colour system 215 - 216
	Homogeneous coordinates 369
	HSV colour system 212 - 214

	I
	ICO files 60
	Image handling 189
	display 191 - 197
	hiding 197
	reading 203
	replication 201

	Importing 57
	Initializing GINO 25
	Input
	device 454

	Interaction
	advanced 447
	basic 241

	Interpolation
	2D 107
	3D 294

	Italic Characters 150

	J
	Joining of lines 120
	JPEG 827 - 828
	JPEG files 60
	Justification of character strings 153

	K
	Key values from keyboard and mouse 452 - 453
	Keyboard state 457 - 458

	L
	Light pen simulation 439
	Light switch 332
	Lighting 329 - 336
	Line
	attributes 111
	attributes affecting characters 152
	colour 117
	current 112,114,130 - 131
	style table 866
	styles 124 - 133

	Line of sight 386,410 - 414
	Lines
	2D 80 - 81
	3D 280

	Lotus 1-2-3 - importing GINO files into 62
	Lotus Freelance - importing GINO files into 62
	Lotus WordPro - importing GINO files into 62

	M
	Machine independence of GINO 23
	Mapping - viewport 219 - 221
	Markers 161 - 163
	Marking segments 431
	Masking
	enquiry 225
	polygonal 265
	rectangular 224 - 225

	Material properties 339
	Messages - errors and warnings 29
	Metafile
	drivers 818
	formats 58 - 61

	Microsoft Excel - importing GINO files into 62
	Microsoft IE5 - importing GINO files into 62
	Microsoft PowerPoint - importing GINO files into 62
	Microsoft Word - importing GINO files into 62
	Mipmapped textures 348
	Modelling 359
	Modify transformations 377
	Mouse
	pointer shapes with GLX driver 750
	pointer shapes with X driver 795

	Mouse position 456
	Multiple Devices 52 - 56

	N
	Netscape - importing GINO files into 62
	Normals 297
	Notional device 40
	Numerical output 138 - 140

	O
	Object
	axes system 306
	complexity 306
	shading 306

	Oblique projection 415
	OpenGL
	features 269 - 271
	performance 271
	X-Windows driver 743

	OpenVMS specifics 737

	P
	Paintshop Pro - importing GINO files into 62
	Paper size and type 45
	Parallel projection 396 - 397
	Pen 77
	position 80,279

	Permutating axes 362
	Perspective view 388 - 392
	Phong shading 326
	Picture coordinates
	2D 238
	3D 368

	Picture mode 382
	Picture segments 423
	Pixel 189
	coordinates 190
	data definition 194
	enquiry / resolution 202
	single pixel reading / writing 191

	Planar normal 297
	Plotter devices 41,797 - 798
	PNG 829
	PNG files 60
	Point light source 330
	Point storage
	2D 103
	3D 293

	Polygon
	3D 290 - 292
	area filling 169 - 170
	complex area filling 257
	drawing 247 - 249,251
	enquiry 250
	identification 249
	interaction 261
	selection 254 - 256
	simple area filling 165
	vertices 247 - 249
	workspace 250,252 - 253

	Polyline set
	2D 84 - 85
	3D 282 - 283

	Polylines
	2D 82 - 83
	3D 280 - 281
	shaded 307

	Position
	2D 80
	3D 279
	segment 430 - 431

	POSTSCRIPT 813 - 817
	POSTSCRIPT files 59
	Printer devices 41,797 - 798
	Priority of task 466

	Q
	Quark Xpress - importing GINO files into 62
	Queues 456

	R
	Random number generation 466
	Rectangular area fill 165 - 166
	Reflection 230
	Refresh displays 423 - 425
	REGIS 752 - 754
	RGB colour system 211
	Rotation
	2D 228
	3D 360

	Ruled surface 321

	S
	SAVDRA 830 - 832
	SAVDRA files 60
	Scaling
	2D 229
	3D 363

	Screen devices 41,742
	SDF 424
	Segment
	anchor 427
	body 430
	building 426 - 429
	copying 434
	enquiry 432
	groups 437
	hierarchies 434
	modelling transformations 435
	redrawing 433
	structures 434 - 438
	transformation 431

	Sensitivity of segments 431
	Shading 270,325
	Shadows 342 - 343
	Shearing
	2D 231
	3D 364

	Shifting
	2D 227
	3D 360

	Smooth shading 326
	Smoothness of arcs 89
	Software Characters 136
	Software Display File
	archive 442
	hard copy 440

	Sound 466
	Space
	axes 227
	mode 382

	Space coordinates
	2D 238
	3D 368

	Specular light 332
	Sphere
	Bezier 322
	faceted 310

	Spline Curves 98 - 100
	3D 288 - 289
	end conditions 99

	Spline surface 313
	Spot light 331
	Storage tube 243
	Straight lines
	2D 80 - 81
	3D 280

	SUN raster files 825
	Surface primitive 312 - 324
	Swept surface 320
	System errors 888
	System Utilities 459

	T
	Tables
	colour 113
	hatch style 172
	line definition 129

	Tabulated surface 320
	Texel 355
	Text output 135
	Texture coordinates 349
	Texture mapping 345
	Textured facet 299
	Tiling images 349
	Time Delay 463
	Time enquiry 463
	Titling 52
	Tolerance
	arc 91

	Tolerance of arcs 90
	Trace facilities 31
	Transformation
	enquiry 381
	initializing 372
	matrix 375
	mode 239,382
	state 372 - 374

	Transformation control 371
	Transformations
	2D 227
	3D 359
	characters 239
	pixel 198 - 201

	Translucence 342
	Transparent 326
	Trapping error messages 30

	U
	Underlining characters 152
	UNIX specifics 736
	Untransforming
	2D 238
	3D 368

	User name 464

	V
	View plane 386
	View transform mode 371
	Viewing 385
	modifications 400 - 403
	modify matrix 417
	state 416
	transformations 398 - 399

	Viewport
	2D 219 - 221
	3D 273 - 274

	Visibility
	line 116
	segments 430

	Visual Basic
	calling GINO from 776
	importing GINO files into 62

	Volume
	faceted 311

	W
	Warning messages 29
	WEB Browsers 57
	Wedges 309
	Width of lines 119
	Winding rule 327
	Window visibility 51
	Windowing
	2D polygonal 261 - 267
	3D polygonal 275
	enquiry 224,275
	mode 222
	rectangular 223
	switching 222

	Windows driver (MWIN) 759 - 777
	Windows OpenGL Driver 778 - 789
	Windows Programming 769
	Windows specifics 738
	WMF 833 - 834
	WMF files 61
	Workspace
	clearing 250
	enquiry 36
	management 33 - 35
	polygon 245,252 - 253

	Workstation devices 41
	Workstations 742
	WP packages 57

	X
	X Windows 790 - 796
	XWD Driver 825
	XWD files 61

	Z
	Z Buffering 327
	Zooming 404

