Introduction.........ooi. 5

1.1 OVEIVIBW ittt e 5
1.2 What is MATFORcuiii e 6
1.3 The MATFOR COMPONENTS....uuiiiieiiieiiii et s ee e ee e e e 6
1.4 MATFOR Function Naming Conventionsccccoovveiiiinneniinnnnn. 9
1.5 Array Terminologyooooeuuiiiiiiiieii e 11
1.6 MATFOR Installation...........cccoooiiiiiiiii 12
1.7 MATFOR Documentation and Examplesc.c.ocovviiiiiiiinninnnnnn, 13
1.8 Technical SUPPOItunieiii e 13
Working with mfArray... i
2.1 What iS MTATITAY coovvtiiiiii e 15
2.2 Create and Initialize MFAITAYoovvviiiiii 16
2.2.1 Declaring an MFATTAY ...coovviiiiii e 16
2.2.2 Initializing an MFATITAY ..o 20
2.3 Access Elements and Sections of an mfArrayccooeeviiiiiieiiinnnnn. 28
2.3.1 Element SUBSCIIPLS .oovvniiii e 28
2.3.2 mfArray Accessing Methodsccooveii i 30
2.4 MEAITAY O i 36
2.4.1 Displaying mfArray Data........ccooovviiiiiiiiiiiiinec e, 37
2.4.2 MFATrray File 1O oo 40
2.5 mfArray Inquiry FUNCLIONSiiiiiiiiiii e 45
2.5.1 Logical INQUIMY.....coovuiiiiiie e 46
2.5.2 Size, Shape, and EXTeNtc.oooiiiiiiiiii e 48
2.5.3 Logical Operationsc..uuvieieiuiiiiiiiiieeeei e 50

2.6 MFATTAY OPEIAtOrS .uvuiiiiii et 55

2.6.1 Arithmetic OpPeratorsS....c.cvvvie i e 57

2.6.2 Relational Operatorsoooveuviiiiiiiiiiiie e 58
2.6.3 Matrix Operators and FUNCLIONS........ccoviviiiiiniiiiiieciieeis 60
2.6.4 MATFOR Parametersccouiiiiiiiiiiiieiiiiiiee e 66
Linear Algebra.................. 60
3.1 MAaLiX INVEISE it 69
3.2 Application of Eigenvalues and Eigenvectors...........c..ccoovevvnnennnnn. 73
3.3 Least Square OPerationscouuiieiiiiiiieiiec e e 76
Visualization Basics ... 81
4.1 Plotting YOUr Dataooviiviiiiiiiiici e 81
4.2 MATFOR Graphics VIBWEToiiuiiiiiiiiiiecie e 84
4.2.1 Window Frame and Figure WindowsScccooeiiiiiiiineennenn. 84
4.2.2 SUDPIOLS e 85
4.2.3 Menu and TooIbarccooooviiiiiiii 87
4.3 Creating 3-D MOAElS ...uiiiiiiiiiic e 89
4.3.1 Generating the Datacccoeevviiiiiiiiei e 89
4.3.2 Loading Data (mfb, asCii)........c.ccovvveiiiiiii e, 92
4.4 Displaying 3-D ObjeCtS...c.uiiiiieiiiiiii e 94
4.4.1 Adjusting the VIewpoint........ooooeiiiiiiiiii e, 94
4.4.2 Shifting the ODjJects ..o, 95
4.4.3 Rescaling the ODJectS. ..o, 97
4.4.4 Changing the Displaying Mode..........c..ccooiiiiiiiiiiiiie, 98
4.4.5 Setting the AXiS ODJECt ...cceuiiiiiiii e, 98
4.5 Colormap, Shading and TeXtUIe.........veeuieiiiiiiiiee e 100
4.5.1 Adjusting Colormapcooovviiiiiiiiiie e 100
4.5.2 Displaying Colorbar.........ccccociiiiiiiieiiii e 104

4.5.3 Shading ObjJeCtS...ccuviiiiiiiii e 105

4.5.4 Mapping TEXTUIE ..uiiur e e e e e e e 109

4.6 Annotating Your Graph......ccooooiiiiiiii 113
4.6.1 Setting the Title and Axis Labels.........ccccooiiiiiiiiinnnn, 113
4.6.2 TexXt ANNOTAtIONcovtiiiiiii e 114

4.7 Animation and ReCOrdingccooveiiiiiiiiiiiii e 115
A7 L ANIMATION it 116
4.7.2 Recording your animationcooveiiiiiinniiiee e 118
4.7.3 Image EXPOrting.....ccuvviiiiiiiiiiiii e 120

4.8 MATFOR Data VIBWET ...uiiiiiiiieiiii ettt 120
4.8.1 Matrix Table. ..o 121
4.8.2 MENU ..coiiiiiiii e 123
4.8.3 TOOIDAT .o 124
4.8.4 SamMPliNg TY P it 125
4.8.5 Snapshot Panel ..., 125
4.8.6 Analysis Panel ..., 127
4.8.7 Filter Panel ..o 127
4.8.8 STATUS BAr ..oeviiiiii i 128

Visualization Methods.... 1

5.1 Linear Graph ... 131
5.1.1 Two-dimensional Linear Graphccccoiiiiiiiiiiieiiiinneenns 131
5.1.2 Three-dimensional Linear Graph........ccc.ccoiviiiiiiiiiiiinennnn. 133

5.2 SUMACE PIOL..uuiiiiiii 136
5.2.1 SUITaCe PIOt coooiiiii e 136
5.2.2 CONOUT PIOt..cciiiiiiiiieecccc e 138
5.2.3 PSeudocolor PlOt........cccoviviiiiiii e 140

5.3 VolUME RENAEBIING . .cvviiiiii et e e 142

5.3.1 Surface (surf, mesh, outline, contour)...........ccooevvivivinennnnn. 143

5.3.2 SHICEA-PlaNES ..o 145

5.3 3 I1SOSUITACE . .etiieiie e 146
5.4 VeCtor FIeld... .o 148
5.4.1 Quiver and Streamling...........ccovvviiiiii i 148
5.5 Elementary 3-D ODJeCtS...c..uiiieiiiiiiiiiiiieei e 149
5.5, L PrimMITIVES cooeeiiiiii e 149
5.5.2 MOIECUIE .o 150
5.6 Unstructured Mesh ..o 152
B5.B.1 SUITACE ..ottt 153
5.6.2 CONTOUN c.euiiiiiiiiiicc e 156
5.7 UNStructured GridS ... oooeiiiiiiiiiiiiie e 157
5.7.1 Surface, Contour and Iso-surface plots of unstructured grids
... 158
5.8 Delaunay Triangulation...........cooiiiiiiiniiii e 169
5.8.1 Two-dimensional Delaunayccoooviiniiiiiinniiiiie, 169
5.8.2 Three-dimensional Delaunaycccooovviiiiiiniiiinnen, 172

Introduction

1.1 Overview

This guide is written as an introduction to users who are new to MATFOR in C++ —a
scientific and visualization library for Scientists and Engineers. In this guide, the
MATFOR foundation array — mfArray is introduced and discussed with some depths
in Chapter 2. This is followed by the application of MATFOR in linear algebra in
Chapter 3 and then with the introduction of visualization basics in Chapter 4. Chapter 5
describes the categories of the graphical functions. We assume that the user has some
prior knowledge of programming.

The guide contains the following chapters:

Chapter 1. Introduction, provides an overview of MATFOR, Conventions,
Documentation, and Licensing.

Chapter 2. Working with mfArrays, provides an overview of MATFOR mfArray,
including its structure, constructors, operators, and general array syntax.

Chapter 3. Linear Algebra, highlights the linear algebra functions available in
MATFOR and their usage.

Chapter 4. Visualization Basics, contains some basic knowledge regarding
MATFOR’s visualization toolkits and functional capabilities, including MATFOR
Graphics Viewer, MATFOR Data Viewer, and steps to visualization, animation, and
presentation.

6 MATFOR User’'s Guide
1

Chapter 5. Visualization Methods, covers most of MATFOR Graphical functions that
are categorized into different groups including Linear Graph, Surface Plot, Volume
Rendering, Vector Field, Elementary 3-D Objects, Unstructured Grids, and Delaunay
Triangulation.

1.2 What is MATFOR

MATFOR is a set numerical and visualization libraries developed specially for
scientists and engineers. The functions in the libraries enhance your C++ program with
dynamic visualization capability, shorten your numerical codes, and speed up your
development process.

By adding a few lines of MATFOR function calls to your C++ program, you can easily
visualize your computing results, perform run-time animations, or even produce a
movie presentation file as you execute your program.

You also have the choice to record an animation as a MATFOR .mfa file, and view it
later using MATFOR mfPlayer.

Debugging is facilitated with the debugging facilities provided by MATFOR Graphics
Viewer. You can pause an animation, view the current data using MATFOR Data
Viewer, and examine any aberrations.

MATFOR numerical functions are designed to be intuitive and simple to use. Using the
numerical functions, you can solve many technical computing systems, especially those
involving linear algebra systems, in a fraction of the time it would take to write a
program traditionally in C++.

1.3 The MATFOR Components

The standard edition of MATFOR consists of five main components, namely MATFOR
mfArray, MATFOR Numerical Library (named as cml), MATFOR Graphics Library
(named as fgl), MATFOR Graphics Viewer, and MATFOR Data Viewer.

Chapter 1 Introduction 7
-]

MATFOR functions are packaged into two main modules — the cml and gl modules.
The cml module contains the numerical functions while the gl module contains the
graphical functions. MATFOR mfArray is included in both modules. The Graphics
Viewer and Data Viewer are included in the fgl module.

Numerical functions included in cml are further categorized into several groups such as
the Essential Set of MATFOR Routines, Elementary Matrix-manipulating Functions,
Matrix Functions, Matrix and Array Manipulation Operators and Functions, Data
Manipulation Functions, and Elementary Math Functions.

MATFOR mfArray

At the heart of MATFOR is a special array - the mfArray. The mfArray is a highly
flexible array. It does not require explicit data typing nor dimensioning. All you need is
a simple declaration:

mFArray Xx;

The data type and dimensions of the mfArray are determined internally by MATFOR
when you initialize it. It is so flexible that you can assign your C++ array to an mfArray,
and visualize your array data using MATFOR graphical functions, without having to
consider the dimension or data type of your original C++ array.

MATFOR mfArray enables you to write programs with the ease of interactive language
in the C++ programming environment. With mfArray, powerful routines from the likes
of LAPACK are packaged into simple and intuitive functions. For example, the original
function DGESVX for calculating Singular Value Decomposition in LAPACK requires
twenty-two individual arguments that are of different data type and array dimensions. In
MATFOR, the same function is reduced to three arguments of the same data type — the
mfArray. As a result, you can focus more of your time on problem-solving, rather than
handling inputs and outputs.

8 MATFOR User’'s Guide
1

MATFOR Numerical Library

The MATFOR Numerical Library is a collection of mfArray inquiries and mathematical
functions, ranging from inquiry functions such as mfShape, mfSize, mflsLogical,
and elementary mathematical functions such as mfSin, mfCos, and complex
arithmetic, to sophisticated functions like eigenvalues, LU decomposition, matrix
inverse and conditioning functions. Most functions use mfArray as the input and output
argument.

MATFOR Graphics Library

MATFOR Graphics Library is a set of high-level visualization functions for two-
dimensional and three-dimensional data visualization, animation, and graphical
debugging. They are easy-to-use and have wide-ranging applications. All functions use
mfArray as input and output argument.

MATFOR Graphics Viewer

The Graphics Vieweris a window for displaying your graphs on the screen. The
Graphics Viewer provides menu and toolbar functions for editing and debugging.

Figure Wiew 3Setting Tools Toolbar Help Continue

o ®@sX e bepha|du s 1@ad|E]]

y=x""2

Figure 1

Chapter 1 Introduction 9
-

Figure 1.3.1 MATFOR Graphics Viewer

MATFOR Data Viewer

MATFOR Data Viewer (Figure 1.3.2) is a spreadsheet-like window for displaying your
mfArray data. It displays both complex and real data. Menu and toolbar functions are
available for manipulating the array data. You can perform statistical analysis on your
mfArray data and filter it with conditions specified using mathematical expressions.

A MATFOR 3.0 - Data Viewer (=13
File Yiew Continue
B = B Grid width: 80 F—— [Digits: 6 — [——
1 z ; : ; : : | me S
1 02062 O721R0 1473196 2088102 252aas 2e0dton 28 |
2 208420 0240685 0eA048E 1431241 2124712 2eeescs zesoopd 3| [Samolina Type
3 A26a762 027363 0674360 1500635 2170030 2637268 2ees39 ane| | i s
1 341 Dam2aE| 06372 1G23ETE 2229644 2748757 3108618 3%
5 TAEIEM5 03I U247 15aES0 2asved 2smwsd aoe0ol ao| o | anapis | Fier |
6 AGEATES 0482303 051800 1541180 2367523 2027035 3493754 37| (21x61x1)
7 6224 OBME7EZ 0536320 1541931 2432311 3ieeeas| aearozn 400
g A7aarz 0617112 0490490 153068 2495699 22ee2z9 3671388 41
3 A7ME19 0E7S38E| 0440798 1527088 2522467 2379787 4004E12 4%
10 825427 0714827 0415320 1612970 253017 adazell 4080208 44
11 1824380 0731627 039330 1495980 2533723 3440953 41ME15 44
12 7950 0724123 038004 1477934 2507118 G404673 405808 4%
13 A7aCa 0RAAAD| 0391129 14E0540) 2461792 3326634 3950578 4%
14 AB4EIES DB414ED| 0411118 1445493 2402185 221535 3797287 40
15 A5ATIS4 0674373 0443012 1434285 2334136 2091013 309911 38
16 0234 0432386 0483633 1427995 2264302 2937008 3407162 3E
17 7676 0420826 05916Y 1427244 2199820 2797402 3208esR a4
18 A26E0ZE 0343676 0574888 1432007 2046132 2e7Re7d 303l ax
19 A20sE 0291321 0616632 1442107 2103363 2504315 2901103 300 (2161 ol
20 AT74S73 DZE18EZ] OEAO0IES 148E2en 2092913 2531689 2821708 24 Dlaka Flaiegs 5 =ieetion
21 A17SE20 -0Z3E062| 0672150 1473195 20302 2523148 28000 2% e
o | |
Surfacel_x lSurface1_p J Surfacel_z]
| [0%

Figure 1.3.2 MATFOR Data Viewer

1.4 MATFOR Function Naming Conventions

MATFOR functions are all characterized by prefixing with an ““m¥”’. By default,
MATFOR functions use the mfArray as input and output arguments. In special cases,
functions may also accept C++ data types as input and output arguments. Refer to the
MATFOR Reference Guide for more detailed documentation regarding individual
functions and their input and output argument types.

10 MATFOR User’s Guide
1

Functions with “mf” as prefix

MATFOR functions generally adopt the following function prototypes.

mFArray mfFunction(mfArray x, ...);

void mfFunction(mfOutArray OutArray, mfArray
X, --2);

The first function prototype returns an mfArray as a function output. For example,

y = mfSin(x).

The second function prototype introduced does not return a typical function output, but
introduces a new MATFOR class — the mfOutArray class. A variable declared as type
mfOutArray is recognized by MATFOR internally as a function’s return argument. This
was designed to handle functions with multiple outputs conveniently. Function mfOut
is typically used to convert a list of mfArrays to the mfOutArray class. For example, the
LU decomposition function mfLu returns two variables 1 and u, containing the lower
and upper triangular matrix of the input mfArray respectively. This is implemented as,

mfFLu(mfout(l, u), a);

The statements below list some typical MATFOR function calls.

mfViewPause();

mfSurf(x, y, z);

mfSubplot(2, 2, 1);
mfCos(mfOut(y), x);
mfLU(mfOut(l, u), a);
mfMeshgrid(mfOut(a, b), m, n);

Chapter 1 Introduction 11
-]

1.5 Array Terminology

Throughout this guide, we will be using the following array terminologies to describe an

array.
Properties Descriptions
rank number of dimensions
bounds upper and lower limits of indices
size total number of elements
shape lengths of dimensions
conformance two arrays are of the same shape
Example

Arrays a and b with the following values,

mfArray a(3,3),b(1,5);

are described by the following:

ma mb
rank 2 2
bounds [1,3] and [1,3] [1,1] and [1,5]
extent [3,3] [1,5]
size 9 5
shape [3,3] [1,5]

conformance a and b does not conform

Bliayer

12 MATFOR User’s Guide

1.6 MATFOR Installation

MATFOR comes with an installation package that automatically installs all MATFOR
components and tools in your computer. The installation package automatically adds the
installed MATFOR directory to the system path and performs some of the Visual Studio
project configuration. In some cases, manual configuration is required. More details on
using the installation package are available in the Installation Guide that comes with
the installation package.

MATFOR Directory Structure

MATFOR is installed with the directory structure as illustrated in Figure 1.6.1.

MATFOR
bin
fortran
demo
Cpp
doc
Cpp_r1g
examples
cpp_ug
include
bcb
lib
\(e
tools matlab

Figure 1.6.1 MATFOR installed directory structure

By default, the installer creates a program group in your C drive under the path
C:\Program Fi1les\AnCAD\MATFOR3\. We shall use <MATFOR> to represent
your installation location henceforth.

Chapter 1 Introduction 13
-]

The common utilities include collateral program, tools, redistributables, such as
MATFOR CA, dynamically linked libraries, etc. The library (e.g. MATFOR in C++
Library) specifics are mainly components such as C++ header file and import
library . 11D files, and the associated examples and documentations.

1.7 MATFOR Documentation and Examples

MATFOR C++ Library has two main documentations, namely MATFOR in C++
User’s Guide, and MATFOR in C++ Reference Guide. The documents are available
in Acrobat Reader pdf format.

If you are new to MATFOR, start with MATFOR in C++ User’s Guide. When you
need extensive write-up on a function, refer to the Reference Guide.

Throughout the MATFOR in C++ User’s Guide, examples are used to illustrate
certain concepts or usages of MATFOR mfArray and functions. Examples that are
labeled with numbers such as Example 2.2.2 are provided as *.cpp C++ function
source files and located in your C++ directory. The general path is:

<MATFOR>\examples\cpp_ug\

The *_cpp source files are named following their labels in the User’s Guide. For
example, Example 2.1.6.1 would be saved as Example2_1 6 1.cpp-. In some of
the examples, the results of the codes are not displayed in this guide, instead, you are
encouraged to compile and execute each program as you go through the User’s Guide to
get a first-hand experience of MATFOR.

1.8 Technical Support

For more information about MATFOR 3 in C++, please visit our website
http://www.ancad.com. If you have further questions or doubts, you may directly write
to support@ancad.com or post them on the online forum at

http://www.ancad.com/
mailto:support@ancad.com

14 MATFOR User’s Guide
[

http://ww.ancad.com/servicecounter/onlineforum.html. Our technical support staff will
be glad to service you.

http://ww.ancad.com/servicecounter/onlineforum.html

Working with
mfArray

2.1 What is mfArray

MATFOR mfArray is an advanced dynamic array class that supports automatic data
typing and dimensioning. You only have to write,

mfArray a
a=20

at the variable declaration section and initialize it in order to use an mfArray. The size,
shape, and data type of the mfArray is automatically determined when you initialize it.
In the example above, mfArray a automatically assumes the shape of 1-by-1, storing
double precision real value 2.0.

The mfArray class public interface consists of constructors, a destructor, indexing
function and operator, array and matrix operator functions, and member functions.

Using a combination of the mfArray operators and subscript functions, you can perform
whole array operations or element-by-element operations.

In this chapter, we will cover the mfArray class, look at its constructors and special
array creation functions, its subscript methods, its operators, its 1/O interface, and its
member functions. We will use examples to help facilitate understanding. At the same
time, we will be using functions from other libraries in MATFOR in our examples.

16 MATFOR User’s Guide
1

2.2 Create and Initialize mfArray

This section provides a first step on using mfArray in your C++ program. We will be
covering the mfArray constructors and special array creation functions.

2.2.1 Declaring an mfArray
The mfArray class public interface contains many useful constructors. You can

construct an mfArray using string, double, float, and Booleans. MATFOR stores all data
in double format.

Table 2.2.1 mfArray constructors

Constructor Creates Example

mfArray(); Uninitialized array mfArray a;

mfArray(const mfArray & rhs); Copy of input data mfArray a = 10;
mfArray b(a);

mfArray(int row, int col, int depth, ..., Construct mfArray whose | mfArray a(2,3);
int idx7); shape is specified by row,

col, depth, idx4, idx5, idx6

and idx7. By default, the

array is not initialized.

static mfArray mfComplexArray (int Construct mfArray of mfArray a =
row, int col, int depth, ..., intidx7); complex values whose mfArray::mfComplexArray(2
shape is specified by row, ,3);
col, depth, idx4, idx5, idx6
and idx7. By default, the
array is not initialized.

mfArray(const char* str); Construct mfArray froma mfArray a(“string”)
string.
mfArray(int value) Construct mfArray from an mfArray a(2);

integer value.

mfArray(double value) Construct mfArray froma mfArray a(2.5);
double value.

mfArray(dcomplex value) Construct mfArray froma dcomplex q(2.0,3.0);

Constructor
mfArray(bool value)
mfArray(const double* p, int idx1, int

idx2, ...,int idx7);

mfArray(const float* p, int idx1, int
idx2, ...,int idx7);

mfArray(const dcomplex* p, int idx1,
intidx2, ...,int idx7);

mfArray(const bool* p, int idx1, int
idx2, ...,int idx7);

Chapter 2 Working with mfArray 17
-

Creates
complex value.

Construct mfArray from a
boolean value.

Construct mfArray from a
double pointer and repack
the data into shape
specified by row, col, depth,
idx4, idx5, idx6 and idx7.

Construct mfArray from a
float pointer and repack the
data into shape specified by
row, int, depth, idx4, idx5,
idx6, and idx7.

Construct mfArray from a
complex pointer and repack
the data into shape
specified by row, int, depth,
idx4, idx5, idx6, and idx7.

Construct mfArray from a
boolean pointer and repack
the data into shape
specified by row, int, depth,
idx4, idx5, idx6, and idx7.

Example 2.2.1 Construct and initialize mfArray

Example
mfArray a(q);

mfArray a(true);

double e[3]={1.0,2.0,3.0};
mfArray f(e,3,1);

float e[3]={1.0,2.0,3.0};
mfArray f(e,3,1);

dcomplex c[2] =

{ dcomplex(1.0,2.0),dcomple
X(3.0,4.0) };

mfArray f(c, 1,2);

bool b[3] = {true,true,false};

mfArray f(b, 3, 1);

Next, we shall go through an example below to construct and initialize an mfArray

using one of its constructors.

Step 1.

Start a new program and save it as Example2_2 1 .cpp- Add the

preprocessor directives to include the header file “cml . h” in your function.

#include “cml.h”
int main()

18 MATFOR User’s Guide
1

Step 2. Next we shall construct an uninitialized mfArray a and initialize it using the
assignment operator to a scalar. You can initialize to a scalar of type double,
complex, float, and integer. MATFOR mfArray stores all data in double
format.

mfArray a;
a=20;

Step 3. That was one of the more common construction and initialization while
using MATFOR. We shall now try to construct and initialize an mfArray
using an existing double array. You can initialize the mfArray with double,
integer, float, and complex arrays of up to seven in dimension.

We shall first create a 6-element double array and use it to construct a 2-by-3
matrix mfArray.

double input[6]={1.0,3.0,4.0,5.0,6.0,2.0};
mfArray b(input, 2,3);

Step 4. You can display the content of an mfArray on the console using mfArray
function - mfDisplay (). Display the content of the mfArray to see how
the elements have been rearranged.

mfDisplay(b);

Figure 2.2.1.1 Repacked mfArray

Figure 2.2.1.1 shows the displayed mfArray b. Notice that function

Chapter 2 Working with mfArray 19

Step 5.

Step 6.

mfDisplay() displays the elements as integers although they stored in
double precision format. The function displays data in integer format when
only zeroes are trailing behind the decimal place to make the presentation
neater.

Also note that the data from array 1nput has been repacked in column-
major format in the mfArray, first filling the columns then followed by the
rows. This is different from the typical row-major arrangement of C++
arrays, but follows the convention used in Fortran. More discussions about
the element ordering in mfArray will be covered in Section 2.3.

The complex data type is useful in many scientific computations where the
result of a computation might lie in the complex domain. MATFOR
functions and mfArray class support the complex type.

Next, we shall construct and initialize an mfArray using a complex variable.

dcomplex c(1.0, 2.0);
mfArray d(c);
mfDisplay(d);

1.88808 +2._8000i

Prezz any key to continujid

] |
Figure 2.2.1.2 Complex mfArray

Figure 2.2.1.2 shows the displayed complex mfArray. The complex values
are displayed in the mathematical format of a + bi.

You can use mfArray to store character strings without having to worry
about the allocated size of the mfArray. As an example, construct an
mfArray using a string, say, “It’s a wonderful day!” and display it in the
console.

mfArray mfg(“It's a wonderful day!");
mfDisplay(mfg);

20 MATFOR User’s Guide

Ans
It's a wonderful day?
Press any key to continue

Figure 2.2.1.3 mfArray containing string

In the example, we used the mfDisplay () function to display content of an mfArray.
By default the mfDisplay() function displays double data in ““short’ format, i.e. up
to four digits. You can display the full double data by specifying “long’” format
through function mFFormat(““long’”) . Remember to add the function call before
using the mfDisplay() function.

Here we end our exercise with mfArray constructors. Next, in Section 2.2.2, we shall
look at a few of the special array creating functions.

2.2.2 Initializing an mfArray

MATFOR contains a set of special array creating functions for quick creation of
mfArray. Table 2.2.2 below lists some of the mfArray creating functions available.

Table 2.2.2 mfArray creating functions

Essential Set of MATFOR routines

mfHCat Horizontally concatenate arrays.

mfVCat Vertically concatenate arrays.

mfColon Create vectors of specified increment.
mK:/reateVector, Create an mfArray 1-by-n vector from list of data.
m

mfCreateMatrix, Create an mfArray of specified shape from list of

Chapter 2 Working with mfArray 21
-

Essential Set of MATFOR routines
mfM data.

Elementary matrix-manipulating functions

mfEye Create identity arrays.

mfLinspace Create a linearly spaced vector with specified
number of points.

mfMagic Create a magic matrix of equal column, row and
diagonal sums.

mfMeshgrid Create matrices from vectors for functions of two
variables and three-dimensional figure.

mfOnes Create arrays containing all ones.

mfRand Create arrays containing random numbers.
mfRepmat Create an array by tiling smaller arrays.
mfReshape Repack vectors into specified array shapes.
mfZeros Create arrays containing all zeros.

All data are stored as character, double precision real, or double precision complex. The
mfArray automatically assumes the shape of the data used for initialization.

Example 2.2.2 mfArray creating functions

To get you familiar with the functions, we shall use some of the array creating functions
to create mfArrays.

22 MATFOR User’s Guide
1

Step 1. First create a new program and save it as Example2_2_2_cpp. Include
the header files in your preprocessor directives.

Step 2. Function mfCreateMatr ix (shorthand as mfM), creates two-dimensional
mfArray of specified shape from a list of double data. The function has the
following prototype.

mFArray mfCreateMatrix(int row, int col, double
data, ...);

The first two arguments are integers specifying the shape of the mfArray, i.e.
the numbers of rows and columns. The trailing arguments are the data to be
stored in the elements of the mfArray. The data must be double or dcomplex
and should fill the created mfArray. The data are packed column-wise,
following the MATFOR convention, filling the elements column-by-column.

Now, to get a feel of the function, we shall create a 3-by-2 mfArray.

mfArray a = mfM(3, 2, 1.0, 3.0, 5.1, 67.1, 4.4, 2.1);
mfDisplay(a);

e+ "C:\Program Files\AnC...

1.688688 67.16884
3 .88688 4.48608
5.18688 2.18688

Figure 2.2.2.1 mfArray created using function mfCreateMatrix (shorthand as
mfM)

Figure 2.2.2.1 displays the created mfArray. The list of data is packed nicely
into a 3-by-2 mfArray column-wise.

Step 3. Function mFColon is a useful function for creating a ramp of data. It creates
an mfArray consisting of linearly increasing or decreasing values. It has the
following prototype.

mFArray mfColon(mfArray start, mfArray step,
mFArray end);

Step 4.

Chapter 2 Working with mfArray 23

The first argument specifies the starting number. The second argument
specifies the increment per step. The third argument specifies the
upperbound or lowerbound of the values, depending on whether the
increment is positive or negative, respectively. By default, if the second
argument is not specified, the increment is assumed to be 1.0. As an
illustration, we shall construct an mfArray using function mfColon.

mfArray ramp = mfColon(2,0.4,3);
mfDisplay(ramp);

2 .88688 2.4088 2.8088

Prezs=z any key to continue

Figure 2.2.2.2 row vector created using function mfColon

Figure 2.2.2.2 shows the result of mfArray. A row vector is created with an
increment of 0.4, and a final value of 2.8 which is the last number that is less
than the specified ending number of 3.

Function mFLinspace is a similar function that generates a linear range of
data. However, instead of specifying the increment value, you specify the
number of points between the starting and ending numbers, inclusive. It has
the following prototype.

mFArray mfLinspace(mfArray start, mfArray end,
mFArray npts);

The first argument specifies the starting number. The second argument
specifies the ending number. The third argument specifies the number of
points. By default, the number of points is 100. As an illustration, we shall

24 MATFOR User’s Guide

Step 5.

construct an mfArray using function mfLinspace.

mfArray rampl = mfLinspace(2,3,3);
mfDisplay(rampl);

am FileshAnd

2.88688 2.58688 3.80680

Presz any key to continue_

Figure 2.2.2.3 mfArray created using mfLinspace

Figure 2.2.2.3 shows the elements of rampl . Compare its values with
mfArray ramp which was created using mfFColon. Specifying a starting
value of 2 and ending value of 3 created both mfArrays. Both are created
with three elements each. However, the increment in value between each
element differs.

mFVCat and mFHCat are two member functions of the mfArray class,
which can be used to concatenate vectors vertically and horizontally into
matrices.

mFVCat performs vertical concatenation between vectors that conform in
the number of columns. It has the following prototype.

mfArray mfvVCat(const mfArray& opl, const
mFArray& op2) { return opl.VC(op2); }

mFHCat performs horizontal concatenation between mfArrays that conform
in the number of rows. It has the following prototype.

Chapter 2 Working with mfArray 25

mFArray mfHCat(const mfArray& opl, const
mFArray& op2) { return opl.HC(op2); }

As an illustration, we shall perform a vertical concatenation between ramp
and rampl.

mfArray ramp2 = mfVCat(rampl, ramp);
mfDisplay(ramp?2);

2 .88688 2.58680 3.8080
2 .88688 2.40680 2.8080

Presz any key to continue_

Figure 2.2.2.4 Vertical concatenation

Figure 2.2.2.4 displays the elements of the mfArray created from the vertical
concatenation. Observe that the mfArray is composed from elements of
rampl placed on the top of elements of ramp.

MATFOR provided a few functions that creates special mfArrays such as
magic square (mfMagi c), identity matrix (nFEye), arrays containing ones
(mFOnes), arrays containing zeros (nfZeros), and arrays containing
random number (mfRand).

The magic square is a special matrix containing elements whose row,
column, and diagonal sums are equal. You can easily create a magic square
by using the function.

26 MATFOR User’s Guide
1

mfArray magic = mfMagic(3);
mfDisplay(magic);

Figure 2.2.2.5 A 3-by-3 magic square

Figure 2.2.2.5 displays the elements of a 3-by-3 magic square created using
function mfMagic. Observe that the row, column, and diagonal sums are
equal. Function mfMagic is used in many MATFOR examples to create
matrices for illustrating the functionality of MATFOR.

Functions mfOnes, mfZeros, and mfRand are three array-creating
functions that enable users to create arrays of up to seven in dimension.
These functions have the following general prototype.

mFArray mfFunction(mfArray Xx);
mFArray mfFunction(mfArray x1, mfArray x2, ..,
mFArray x7);

The first prototype has a single input argument. It creates an x-by-x square
mfArray. The second prototype has seven optional input arguments
specifying the shape of the created input array. As an example, we shall
create a 3-by-1-column vector containing ones (Figure 2.2.2.6.) and a 4-by-
3-by-2 mfArray containing random numbers (Figure 2.2.2.7.).

mfArray cv_ones = mfOnes(3,1);
mfDisplay(cv_ones);

Presz any key to continue jid

Chapter 2 Working with mfArray 27

Figure 2.2.2.6 A 3-by-1 vector containing ones created by mfOnes

mfArray rand = mfRand(4,3,2);
mfDisplay(rand);

A.7976
A.1781
A.4853

Ans<=,.=,.2>

a.7773
A.5832
A.4564
A.9745

A.7671
A.5461
A.9982
A.8628

A.5332
A.'71408
A.9983
B.62608

@.88@5
a.582a8
a.7324
A.45%64

a.2827
A.2453
A.7358
a.7298

Presz any key to continue_

Figure 2.2.2.7 A 4-by-3-by-2 random array

28 MATFOR User’s Guide
1

2.3 Access Elements and Sections of an mfArray

The mfArray class has its own unique set of operators and functions for accessing
elements and sections of the array. In this section, we first introduce the subscript
conventions by the mfArray class, followed by an introduction to using the operator ()
for accessing elements of an mfArray.

2.3.1 Element Subscripts

An array element is one of the scalar data making up an array. You can access a
particular element of an mfArray variable by specifying the element’s storage position
or more commonly called the element’s subscript. The mfArray class enables two types
of subscripting convention — the scalar subscript and the multi-dimensional subscript.
The scalar subscript is equivalent to the position of an element in the storage. Each
subscript variable of an mfArray is stored sequentially in column-major convention. The
multi-dimensional subscript follows the convention of arranging the array elements into
rows, columns, pages, and indices. The mfArray class supports up to seven dimensions
of elements.

In this subsection, we will look at the scalar subscript and multi-dimensional subscript.

Scalar subscript

When we specify an array element using a scalar subscript, we are effectively
specifying the element’s storage position. In MATFOR, the array elements are stored
column-wise following the Fortran convention. That is, elements are stored sequentially
by concatenating one column after another. This is visualized in Figure 2.3.1.1, where
the storage sequence of the elements of a 3-by-3 magic square is illustrated.

8 3 4 1 5 9 6 7 2
(€2 I € T I G) R I C) I I O B O B B € B B GO B I)

Figure 2.3.1.1 3-by-3 magic square — sequential arrangement of elements in
storage

Chapter 2 Working with mfArray 29
__|

Multi-dimensional subscript

Figure 2.3.1.2 shows the arrangement of elements of a 3-by-3 magic square in table
form. Each of the elements are subscripted by specifying their row followed by the
column. Thus the fourth element of the 3-by-3 magic square has an equivalent subscript
of (1,2) when you use the multi-dimensional subscript.

Although arrays with dimensions larger than three are seldom used, the mfArray class
supports up to seven dimensions. You can visualize a three-dimensional array as a book
whose pages contain tables of elements. Similarly, a dimensional array can be
visualized as books on shelves, while the fifth dimension is like rooms containing
shelves of books, and so on. When you specify an element in a multi-dimensional
mfArray variable, you specify its position on the mfArray’s row, column, page, shelf,
room, etc, in the format of (pos_row, pos_col, pos_page, .., po_sdim7).

8 1 6
L) 4,2) | 1,3)

3 5 7
(2,1) | (2,2) | (2,3)

4 9 2
3,1 | 3,2) [(3,3)

Figure 2.3.1.2 3-by-3 magic square

To further illustrate, we list below a few multi-dimensional subscripts.

A ascalar has subscript (1,1)

A the fifth element of a row vector is (1,5)

A the second element of a column vector is (2,1)

A the sixth element of a 3-by-3 matrix is (3,2)

30 MATFOR User’s Guide
1

A the seventh element on a 2-by-3-by-2 three-dimensional array
has a subscript of (1,1,1).

2.3.2 mfArray Accessing Methods

An element of an array is also called a subscript variable, as you need to provide a
variable name and subscript in order to specify an element. You can specify an mfArray
element by providing the variable name followed by the element’s scalar subscript or
multi-dimension subscript. You can access an mfArray element through the mfArray
operator and the member function as listed in Table 2.3.2.1.

Table 2.3.2.1 mfArray operator and member function for accessing elements

mfArray member Action Descriptions

function/operator

mfArray Access Access elements in an mfArray
operator(mfArray row, elements variable. Only the first argument is non-
mfArray col, mfArray optional. Example,

depth, ..., mfArray

idx7); a=0b(1,2); a=b(*1:2”, “1:27);

mfArray Access Access elements in an mfArray
mfMatSub(mfArray& element variable. It is used in the similar fashion
p, const as the mfArray operator. For example,

mfindexArray& idx1);
a = mfMatSub(b, “1:100:2”);

is equivalent to

a=Db(“1:100:2");

Example 2.3.2.1 Access an element of an mfArray variable

To get you familiar with using the above functions, we shall work through an example.

Step 1. First, start a new C++ program and save it as Example2_3_2.cpp.
Include the header file for cml in the preprocessor directives. We shall use

Chapter 2 Working with mfArray 31

the function mFRand to create a 6-by-8-matrix mfArray (Figure 2.3.2.1) for
illustration.

#include "cml.h"

void main()

{

mfArray a;
a = mfRand(6, 8);
mfDisplay(a, "a");

"C:\Program Files\AnCADYMATFOR3\examples\cpp_ug\Debug\Example2_3_2_1.exe"

Figure 2.3.2.1 A 6-by-8 mfArray containing random numbers

Step 2. We shall use the close and open bracket operator () to get an element from
the variable a. Note that operator () is not the same as the C++ square
bracket subscript operator [].

We shall get an element at the 8" position or row 2, column 2 using the
scalar subscript (Figure 2.3.2.2).

mfDisplay(a(8));

Figure 2.3.2.2 Element at 8" position

32 MATFOR User’s Guide

Step 3. We have gotten data from an mfArray variable. We shall now attempt to
write data to an element of an mfArray variable using the multi-dimensional
subscript. As an example, we shall write to the element at row 1, col 2,
replacing its existing value with the value 3.0.

a(1, 2) = 3.0;
mfDisplay(a, "a")

ev "C:\Program Files\AnCAD\MATFOR 3\examples\cpp_ug\DebughExample?_3_2 1.exe™

to &

3 .8808 B.6704 B.7421 B.45%65 B.6951 a.3289 8.7328
B.65%77 a.37"M4 B.1283 B.4955 a.5279 B.25%66 8.74%24
a.8402 a.7888 B.646%7 a.3478 a.5688 B.8685 a.5508
#.3618 B.65%36 a.8847 @.35%38 B.3854 B8.2963 B.1184
a.3v79e2 B.8851 a.7998 B.6397 a.3276 a.7678 a.8888
a.4874 a.9997 B.5628 a.5282 a.96851 A.2674 B.3432

Figure 2.3.2.3 Variable after replacing element at (1,2) with 3.0

Example 2.3.2.1 accesses an mfArray variable one at a time. There are many cases
when it is more convenient for programmers to read from or write to a group of
elements, or section at once. In Example 2.3.2.2, we shall look at some examples of
accessing the whole section of an mfArray variable.

Example 2.3.2.2 Access a section of an mfArray variable

An array section is a subgroup of an array. In many cases, it is more convenient to
access a section of an array in one statement. By using the operator (), you can specify
a section of elements in an mfArray easily. We shall now go through a few instances of
accessing a whole section of an mfArray variable.

Step 1. Start a new program and save it as Example2_3 2 2._cpp. Include the
header files for cml . h in your preprocessor directives. For the purpose of
this example, we shall create the same 6-by-8 mfArray as completed
previously in Example2_3 2 1, as shown in Figure 2.3.2.1.

Chapter 2 Working with mfArray 33
__|

#include "cml.h"
int main()

{

mfArray a;

a = mfRand(6, 8);
mfDisplay(a, "a");

Step 2. First, we will try to get data from elements in the section enclosed by row 1
to 3, and column 1 to 3, as in Figure 2.3.2.4. The section contains the
elements (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3). You can use
the operator to specify the range 1 to 3 as follows.

mfDisplay(a("1:3", "1:3"));

Figure 2.3.2.4 Subscript section shows: row[3] = {1,2,3}, col[3] ={1,2,3}

e "C:\Program Files\AnCAD\...

A.8447 A.7729 H.2829
A.7242 A.9935 H.3628
A.5111 H.3295 A.5418

Figure 2.3.2.5 Top left 3-by-3 section of mfArray a

34 MATFOR User’s Guide

Step 3. You can also retrieve groups of elements that are not adjacent to each other,
such as that shown in Figure 2.3.2.6. The elements to be retrieved are (2,1),
(2,7), (2,4), (4,1), (4,7) (4,4), (6,1), (6,7) and (6,4).

Figure 2.3.2.6 Subscript section shows: Row[3]= {2,4,6}, Column[3] = {1,4,7}

mfDisplay(a("2:6:2", "1:7:3"));

ev "C:\Program Files\AnCAD\...

A.7242 A.75%60 A.7740
a.9973 A.a915% A.5549
A.6227 A.7831 A.1870

Figure 2.3.2.7 Section subscripts: Row[3]= {2,4,6}, Column[3] = {1, 4, 7}

Notice that in Figure 2.3.2.7., the values from column 7 are now on the third column, as
we specified it as the second element in vector Column.

Step4. You can specify a whole row or column by using the constant MF_COL. The
constants MF__COL represent the colon, “:”, symbol. In many applications,
the “:” is used to represent all elements in subscripts. In mfArray class, you
can use either the constant MF_COL or the string ““-”” to select all elements
in a row, column, or a specified dimension. As an example, we shall try to
replace all the elements on column 7 of variable a with ones, as shown in
Figure 2.3.2.8.

Chapter 2 Working with mfArray 35

a(MF_CoOL, 7) = 1;
mfDisplay(a, ‘a’);

v "C:\Program Files\AnCADY\MATFOR\examples\cpp_ug\DebugiExample2 3 2 2 exe'

1.8868 B8.4%6%9
1.88688 Aa.1422
1.88688 A.86b67
1.88688 A.1458
1.88088 A.8263
1.8808 a.7942

-~~~ R~
-~~~ R~

Figure 2.3.2.8 Variable a after replacing column 7 with ones

Step 5. You can apply the element-by-element comparison on the mfArray elements
using the relational operators, such as <, <=, >, >=, etc. As an example, we
shall try to retrieve all the elements whose values are less than or equal to 0.8
and greater than 0.5.

mfDisplay(a(a <= 0.8 & a > 0.5));

A.7242
A.5111
A.6227
A.7729
A.5418
A.75%68
A.6854
A.5161
A.577%
A.7859
A.5717
A.5218
A.7942

Figure 2.3.2.9 Elements that have values less than and equal to 0.8 and
greater than 0.5

36 MATFOR User’s Guide
1

Step 6. Instead of using the operator, you can use the mFlndexArray () function
to specify the element subscripts of an mfArray. This allows you to use
integer variables to specify the element subscripts. The function mF1 ()
follows the operator convention and has the following syntax:

mFl(start, end, step);
For example,
mfDisplay(a(mfl(2,6,2), mfl(1,7,3)));

is equivalent to

mfDisplay(a("2:6:2", "1:7:3"));
ev "C:\Program Files\AnCADM...

a.7242 a.75%68 1.88688
a.7973 a.a715 1.88688
B.6227 Aa.7831 1.8888

Figure 2.3.2.10 Section subscripts : Row[3]= {2,4,6}, Column[3] = {1, 4, 7}

2.4 mfArray 1/O

This section discusses the functions mfDisplay and mfGDisplay for displaying
mfArray data, and functions mfLoad and mfSave for saving mfArray data to files and
loading from files.

The section is further divided into the following subsections:

2.4.1 Displaying mfArray Data — This topic covers the usage of functions mfDisplay
and mfGDisplay. Function mfDisplay displays mfArray data in short format in a

Chapter 2 Working with mfArray 37
__|

console. Function mFGDisplay displays data in an mfArray variable on a spreadsheet-
like Data Viewer.

2.4.2 mfArray Fileio — This topic introduces the functions mfLoad and mfSave.
These functions, together with mFLoadAsci i and mfSaveAsci i, enable you to
export mfArray data to an external file in ASCII and binary format for further
processing.

We will also cover the two Matlab .m files, mfLoad .m and mfSave.m, provided by
MATFOR for exchanging data between Matlab and MATFOR.

2.4.1 Displaying mfArray Data

To view the run-time content of an mfArray you can use two functions,
mfDisplay and mfGDisplay, provided by MATFOR. Function mfDisplay
outputs the content of mfArray to a console. Function mFGDisplay outputs the
content to a MATFOR Data Viewer.

mfGDisplay

Function mFGDisplay is located in the gl library. It displays content of mfArray
variables in MATFOR Data Viewer. Data Viewer is a spreadsheet-like window that
enables you to cut and paste, save files, and perform some data manipulations. You can
work with both complex and real data in Data Viewer.

The general syntax of mFGDisplay is listed below.

void mfGDisplay(mfArray Xx);

void mfGDisplay (mfArray x, mfArray
label=“x", .);

The first function call format requires only a single mfArray variable as the input
argument. The second, multiple-input format requires the mfArray variable to be

38 MATFOR User’s Guide
1

specified together with an mfArray variable containing string ““name”” . The number of
mfArrays that you can display using a single function call is limited to 32.

By default, mMFGDisplay displays data in the format of type ““short’. That is, real
numbers are displayed with four decimal places. You can use the slide bar located on
the toolbar to change the number of digits displayed.

Example 2.4.1.1 below uses function mfDisplay to display mfArrays. Go through the
example, try it on your compiler, you will see how integers, “short”, and “long”
formats of mfArray data are displayed in the Windows console.

Example 2.4.1.1 Use mfGDisplay

In this example, we shall create a 3-by-3 magic square using mfArray a, and compute
its row, column, and diagonal sum, then display the data using function mfGDisplay
in the MATFOR Data Viewer.

Step 1. Startanew program and save it as Example2_4 1 1.cpp. Include the
header files fgl and cml in the preprocessor directives and create a 3-by-3
magic square.

#include "cml.h"
#include "fgl.h"

void main()

{
a = mfMagic(3);

Step 2. Next, we shall use function mFSum and mfDiag to compute the column,
row, and diagonal sums of the magic square. Function mfSum computes the
elements in an mfArray variable along a specified dimension. Function
mFDiag returns a vector containing the diagonal elements of an mfArray
variable.

mfArray b = mfSum(a, 1);
mfArray ¢ = mfSum(a, 2);
mfArray d = mfSum(mfDiag(a));

Chapter 2 Working with mfArray 39
__|

Step 3. Display the mfArray variablesa, b, c, andd, using function
mFGDisplay in Data Viewer. Function mfViewPause is added after the
function call to mFGDisplay to pause the program for examining the data.

mfGDisplay(a, "a", b, "column sum", c, "row sum", d, "diagonal sum");
mfViewPause();

The MATFOR Data Viewer is displayed, as shown in Figure 2.4.1.1.

You can switch between each mfArray variable by clicking on the Worksheet tabs. The
name of the tabs are specified by the name arguments in mfGDisplay(a, 'a', b,
"column sum', c, "row sum', d, "diagonal sum'™), in the second,
fourth, sixth, and eighth position respectively.

Navigate between the worksheets to view the values of the mfArray variables. You will
see that b is a row vector containing the elements [15.000000, 15.000000, 15.000000]
corresponding to each column sum. mfArray c is a column vector containing the same
values while d is a scalar with value 15.000000. The row, column, and diagonal sums
agree. The magic square is truly magical!

From Figure 2.4.1.1, you can see that the Data Viewer has many functions available for
editing the mfArray data. Play with the buttons to get a feel of each function.

Pause the program execution in order to display the Data Viewer. To continue with
program execution, press the Continue button located at the top right corner of the Data
Viewer. This button is available in both Graphics Viewer and Data Viewer.

40 MATFOR User’s Guide
[

B3 MATFOR 3.0 - Data Viewer

File Yiew Continue
|B & B |oria wiath: 80 F— F—— pigits: 6 — |—|
3 ~Sampling Rahge————————
& sub-matriz
1000000 6000000 | oy |
2 2000000 5000000 7000000 F?meliTu TPDG(“"' = i
3 4000000 9000000 2000000 ke M S ‘
Snapshat lAnaIysis iFiIter I
(3x3)
(343) real |
= [ata Range Selection
|(:r) |
a icolumn sum | row sum | diagonal sum i
| | 0%

Figure 2.4.1.1 The Data Viewer displaying matrix a

Function mfViewPause

Function mfViewPause is added to your program to pause program
execution for graphical displays. You will need to add this statement to every
set of graphical creation routines. If this routine is not called, the Graphics
windows will just flash on your computer.

2.4.2 mfArray File 1/0

MATFOR supports text and binary format for importing and exporting data to and from
mfArray. The functions provided are: mfLoad, mfSave, mfLoadAscii, and
mFSaveAsci 1. These functions are located in the ess library.

Chapter 2 Working with mfArray 41
-

For Matlab users, MATFOR provides two .m files — mfLoad.m and mfSave.m,
for interfacing with the Matlab environment to facilitate the exchange of data in binary
format.

In the subsection below, we shall cover the usage of two functions, nfSaveAscii and
mfLoadAscii, which export and import data to and from text files, followed by a
discussion on mfLoad .m and mfSave . m.

2.4.2.1 mfSaveAscii

You can save data from the mfArray variable to a file by using function mfSave or
mfFSaveAscii. Function mfSave saves data in from an mfArray variable in
MATFOR *_m¥b binary format. Function mfSaveAsci i saves data from an
mfArray variable into a text file. Function mFSaveAsci 1 has the following prototype:

void mfSaveAscii(char *fileName, const
mFArray &x);

MATFOR saves the mfArray data in ASCII format, with the data arranged in rows and
columns corresponding to the rows and columns of a matrix mfArray. This format is the
same as that used by Matlab Save function with the —ASCI11 option. Example 2.4.2.1
below exports the data of a 3-by-3 magic square to a text file using function
mfSaveAscil.

Example 2.4.2.1 Function mfSaveAscii
#include "cml.h"
void main()

{

/ICreate 3-by-3 magic square
mfArray a = mfMagic(3);

/IExport a to a text file
mfSaveAscii(“a.txt”, a);

}

42 MATFOR User’s Guide
1

Compile and run the program. Open the text file ““a.txt’”. The data is arranged as
follows:

8.0000000E+00 1.0000000E+00 6.0000000E+00
3.0000000E+00 5.0000000E+00 7.0000000E+00

4.0000000E+00 9.0000000E+00 2.0000000E+00

2.4.2.2 mfLoadAscii

You can load data from a file into an mfArray variable by using function
mfLoadAsci 1 or function mfFLoad. Function mFLoadAsci 1 loads a text file in the
format used by mFSaveAscii or Matlab ASCII data file. Function mfLoad loads a
MATFOR *.mfb binary file created using function mfSave. Both functions
mfLoadAsci i1 and mfFLoad have the same syntax. Next, we will look more closely at
the application of function mfLoadAsci i.

Function mfFLoadAsci 1 has the following prototype.

mFArray mfLoadAscii(char *fileName);

where FileName is a string specifying the name of the text file to load into the
mfArray variable. Example 2.4.2.2 below loads the text file “a.txt’ created in
Example 2.4.2.1 using function mfLoadAsci 1 into mfArray a and displays the data
as in Figure 2.4.2.2.

Example 2.4.2.2
#include “cml.h”
void main()

{

/I Import data into mfArray a
a = mfLoadAscii("a.txt");

/I Display data of a
mfDisplay(a, "a");

}

Chapter 2 Working with mfArray 43

& | " Ao gram Fileshlbnl

Pressz any key to continue

Figure 2.4.2.2 Data loaded using mfLoadAscii

2.4.2.3 mfLoad.m and mfSave.m

The Matlab .m files mfLoad.m and mfSave.m, are installed in folder
<MATFOR>\common\tools\matlab\ when you install MATFOR. These two files
call MATFOR mfLoad.dll and mfSave.dl 1 to export and load MATFOR binary
data file, *.mFfb, to and from the Matlab workspace. Copy the .mand .d11 files into
your Matlab working directory and you can start exchanging binary data between
Matlab and MATFOR.

The functions mfLoad and mFSave have the following syntax,

x = mfLoad(Ffilename)

mfSave(filename, Xx)

where X is a Matlab matrix, and ¥1 lename is a string containing the name of the target
binary file. If the file extension is not specified, the file extension .m¥b is automatically
appended.

In your C++ environment, you can retrieve the data contained in *_m¥b binary file,
exported using function mFSave in Matlab, into MATFOR mfArray through function

44 MATFOR User’s Guide
1

mfLoad. Likewise, you can save your MATFOR mfArray data in binary format using
function mFSave and load it into a Matlab matrix using function mfLoad in Matlab.

Example 2.4.2.3 Exchange binary data between Matlab and MATFOR

In this example, we shall export a binary file from Matlab using function mfSave and
retrieve the data in C++ using function mfLoad .

Step 1. First, ensure that the files mfLoad .m, mfSave .m, mfLoad.dl1l, and
mfSave.dll, installed in <MATFOR>\common\tools\matlab\,
have been copied to your Matlab working directory.

Step 2. We shall export the datain [X, Y, Z] matrices, computed using Matlab
sample function —peaks, into MATFOR binary file, using the following
commands in Matlab workspace.

[X,Y, Z] = peaks

mfSave(‘X.mfb’, X)
mfSave('Y.mfb’, Y)
mfSave(‘Z.mfb’, Z)

The data from matrices X, Y, ZaresavedasX.mfb, Y.mfb, and
Z .mfb, respectively in your Matlab working directory.

Step 3. Copy the binary files into your MATFOR project file. In this case, we shall
copy the files into <MATFOR>\examples\cpp_ug.

Step 4. Create a C++ program with the filename Example2_4 2 3. We shall retrieve
the data into mfArrays x, y, and z and plot the data using function
mfSurt.

#include "cml.h"

#include "fgl.h"

void main()

{

/ILoad data into mfArray
mfArray x = mfLoad(“x.mfb");
mfArray y = mfLoad(“y.mfb");
mfArray z = mfLoad(“z.mfb”);

/IDraw data using mfSurf
mfSurf(x, y, z);
mfViewPause();

Chapter 2 Working with mfArray 45
__|

Step 5. Compile and run the program. The results will be displayed as seen in Figure
2.4.2.3.

s
W

YL -
t‘x\\‘ 7
¢

JXA =
NN s N
“" l' ”‘ e
""""“‘3"23!‘3%%&%5’:' S

= i
N PSS
e o

L0
?

(Xl =

7 o eSS

o."m\“
1\

KN
Fatet W

20 ‘\ \;ﬁ
75 \t
Setss

-3-3

Figure 2.4.2.3 Surface plot produced by importing data from Matlab

2.5 mfArray Inquiry Functions

The mfArray class has a set of inquiry functions for querying its data type, array type,
and attributes. In this section, we shall take a look at the three types of inquiry functions
as listed below.

46 MATFOR User’s Guide
1

2.5.1 Logical Inquiry Functions — This topic covers the logical functions that are used
to query the status of mfArray variables, such as mFlsReal, mfFlsScalar, etc. The
logical functions return a Boolean nonzero if true, and returns zero if false.

2.5.2 Size, Shape, and Extent — This topic covers the functions for checking array
properties such as the array’s size and shape.

2.5.3 Logical Operations — This topic covers the functions used for querying ones and
zeros in an mfArray.

2.5.1 Logical Inquiry

The logical member functions listed in Table 2.5.1 return C++ built-in Boolean type as
output.

Table 2.5.1 Logical Inquiry Functions.

Essential Set of MATFOR routines

bool mflsEmpty() const; Return nonzero if specified mfArray variable
empty.

bool mflsLogical() const; Return nonzero if mfArray is Boolean.

bool mflsNumeric() const; Return nonzero if mfArray contains numeric.

bool mflsReal() const; Return nonzero if mfArray contains double
data.

bool mflsComplex() const; Return nonzero if mfArray contains complex
class data.

Usually, MATFOR functions return mfArray as output argument. However, in cases
involving logical inquiry functions, Fortran logical types are returned. This design is
adopted to simplify the programming involved in §F constructs. You can use these
functions to determine the data type of mfArrays, compare mfArrays, and apply them
directly in an 1 F construct.

For example,

Chapter 2 Working with mfArray 47

mfArray :: a
if(mflsEmpty(c)) thena =5

Below, we go through details on the application of each function.

A mFIsEmpty — An mfArray is empty if it has not been initialized and points
to a null storage space.

L mFlsLogical — An mfArray is logical if it is constructed using logical
operations.

A mFIsNumeric — An mfArray is numeric if it contains complex, logical, or
real data type. A character type mfArray is non-numeric.

A mFlIsReal - A real mfArray contains real data type.

A mFlsComplex —A complex mfArray contains double precision complex
data type.

Example 2.5.1 Logical Inquiry functions
The example below uses the Logical Inquiry functions.

#include <stdio.h>
#include "cml.h"

void main() {

mfArray a, b, c, d;
bool L;

a = mfMagic(3);
d ="string";

/' Is mfArray ¢ empty?

if(mflsEmpty(c))
¢ = dcomplex(2,-2);

/' Is mfArray complex?
if(mflsComplex(c))
mfDisplay(c, "c is complex™);

/I'1s mfArray numeric?
L = mflsNumeric(d);

48 MATFOR User’s Guide
1

mfDisplay(d, "d", L, "mflsNumeric(d)");

/I s mfArray numeric real?
L = mflsReal(c);
mfDisplay(c, "c", L, "mflsReal(c)");

/' Is mfArray logical?
d = mfAny(a);

if(mflsLogical(d))
printf("d is logical\n");

2.5.2 Size, Shape, and Extent

You can obtain information regarding the number of elements, shape, and extent of an
mfArray variable using member functions GetM, GetN, GetZ, GetDims and
mFSize. These functions are as listed in Table 2.5.2 below.

Table 2.5.2 Member Functions

Essential Set of MATFOR routines

int GetM() const; int GetM() const;
int GetN() const; int GetN() const;
int GetZ() const; int GetZ() const;
void GetDims (int dimf[7]) const; void GetDims (int dimf[7]) const;

Elementary matrix-manipulating functions

int mfSize (mfArray x, int i); int mfSize (mfArray X, int i);

void mfSize(mfOutArray OutArray, void mfSize(mfOutArray OutArray, mfArray x);
mfArray X);

int mfNDims(mfArray x) int mMfNDims(mfArray x)

mfArray mfShape(mfArray x) mfArray mfShape(mfArray x)

mfArray mfLength(mfArray x) mfArray mfLength(mfArray x)

Chapter 2 Working with mfArray 49
__|

mfArray class member functions, GetM, GetN, and GetZ, return C++ built-in scalar
integer data type as output, while function GetDims returns a C++ vector, with a size
of seven, integer as output.

To get the shape of an mfArray, you can use a combination of member functions, GetM,
GetN, GetZ, and GetDims, to get the information in integer format or you can

use function mfSize, which returns an mfArray. Effectively, member function

mFSize serves the same purpose as functions GetM, GetN, and GetZ. You

would need to specify the dimension argument to get the size of a certain dimension,

while functions GetM, GetN, and GetZ are more intuitive to a reader.

Example 2.5.2 Size and shape
To get you familiar with the functions, we shall go through an example.

Step 1. Start a new function and name it Example2_5 2. Include the header files for
cml _h and iostream in your preprocessor directives. We shall create a 2-by-
3-by-4 mfArray variable containing ones for the purpose of this example.

#include "cml.h"

int main()

{
mfArray a, S1;

intS;
/IConstruct a 2-by-3-by-4 mfArray variable containing ones.
a = mfOnes(2,3,4);

Step2. We shall use member function mFSize to check the number of elements in
the mfArray.

S = mfSize(a);
mfDisplay(S,"mfSize(a)");

S = mfSize(a, 1);
mfDisplay(S, "mfSize(a,1)");

S = mfSize(a, 2);
mfDisplay(S, "mfSize(a,2)");

S = mfSize(a, 3);
mfDisplay(S, "mfSize(a,3)");

50 MATFOR User’s Guide
1

Step 3. Next, we shall display the number of elements in each dimension of the
mfArray.

S = a.GetM();
mfDisplay(S, "a.GetM()");
S = a.GetN();
mfDisplay(S, "a.GetN()");
S = a.GetZ();
mfDisplay(S, "a.GetZ()");

Step 4. Finally, display the number of dimension and shape of the mfArray using
mFNDims and mFShape.

S = mfNDims(a);

mfDisplay(S, "mfNDims(a)");

S1 = mfShape(a);

mfDisplay(S1, "mfShape(a)");
2.5.3 Logical Operations

You can use functions mFALL, mFAny, and mFFind, as listed in Table 2.5.3 to find
nonzero in mfArray.

Table 2.5.3 Logical Operations

Essential set of MATFOR routines

mfArray mfAny(const mfArray& opl); mfArray mfAny(const mfArray& opl);

mfArray mfAny(const mfArray& opl, mfArray mfAny(const mfArray& opl, const
const mfArray& dim); mfArray& dim);

mfArray mfAll(const mfArray& opl); mfArray mfAll(const mfArray& opl);

mfArray mfAll(const mfArray& opl, mfArray mfAll(const mfArray& opl, const
const mfArray& dim); mfArray& dim);

Chapter 2 Working with mfArray 51

Elementary matrix-manipulating functions
mfArray mfFind(mfArray x); mfArray mfFind(mfArray x);

void mfFind(mfOutArray OutArray, void mfFind(mfOutArray OutArray, mfArray X);
mfArray X);

Essential set of MATFOR routines Essential set of MATFOR routines

mfArray mfAny(const mfArray& opl); mfArray mfAny(const mfArray& opl);

Each function provides different information about the nonzero elements in mfArray.

A Functions mFALl and mFAny query the status of nonzero elements of
mfArray. The functions operate along the column or specified dimension of
an mfArray, returning a logical mfArray as output. MATFOR uses one to
represent logical true and zero to represent logical false. As an example,

/I Function mfALL
| = mfAll(a>2);
mfDisplay(l, "mfAll(a>2)");

b = mfAll(a>2,1);
mfDisplay(b, "mfAll(a>2,1)");

b = mfAll(a>2,2);
mfDisplay(b, "mfAll(a>2,2)");

52 MATFOR User’s Guide

Figure 2.5.3.1 Operation of mfAll

// Function ANY
| = mfAny(a>2);
mfDisplay(mf(l), "mfAny(a>2)");

b = mfAny(a>2,1);
mfDisplay(b, "mfAny(a>2,1)");

b = mfAny(a>2,2);
mfDisplay(b, "mfAny(a>2,2)");

Figure 2.5.3.2 Operation of mfAny

A You can use function mFFind to get indices of non-zero elements of
mfArray. Depending on your input argument, you can return:

1) avector mfArray containing the column-major index

2) two vector mfArrays containing the corresponding row and column
element subscripts

3) three vectors containing the row and column element subscripts and
values corresponding to nonzero values.

b = mfFind(a>2);
mfDisplay(a, "a");
mfDisplay(b, "mfFind(a>2)");

Chapter 2 Working with mfArray 53

C:\Program Files\AnCADWMA.
mfFind<a>2» =

Figure 2.5.3.3 Scalar subscripts of values greater than 2

mfFind(mfOut(b,c),a);
mfDisplay(b, "mfFind(mfOut(b,c) a), b", c, "c");

i
1
1
2
2
2
3
3
3

Figure 2.5.3.4 Row and Column element subscripts of nonzeros

54 MATFOR User’s Guide

mfFind(mfOut(b,c,d),a);
mfDisplay(b, "mfFind(mfOut(b,c,d) a), b", ¢, "c",d,"d");

s+ "C:\Program Files\AnCAD\.
mf Find<{mfOut<h,.c.d> a», h =

o

=9

1
2
3
1
2
3
1
2
3
1
1
1
2
2
2
3
3
3
8
3
4
1
5
9
6
?
2
|

Figure 2.5.3.5 Row and Column element subscripts and values of nonzeros

Chapter 2 Working with mfArray 55
__|

2.6 mfArray Operators

MATFOR mfArray class supports a set of operator and operator functions. The
operators and functions are listed as below in Table 2.6, which are listed according to
their precedence.

The operator functions include Mul for matrix multiplication, LDiv for matrix left
divide, RDiv for matrix right divide, T for array transpose, H for complex conjugate
transpose, HCat for horizontal concatenation, and VCat for vertical concatenation.
These operator functions enable you to perform matrix manipulation conveniently.

Table 2.6 mfArray Operators and Operator functions

Operators/ Descriptions/Prototype
Functions
0 Round bracket, subscript operator

mfArray operator()(mfArray r) const;
mfArray operator()(mfArray r, ..., mfArray indx7) const;

* mfArray array multiplication

mfArray operator *(const mfArray& rhs) const;
mfArray operator *(const double& rhs) const;

/ mfArray array right division

mfArray operator /(const mfArray& rhs) const;
mfArray operator /(const double& rhs) const;

+ mfArray array addition or unary plus

mfArray operator +(const mfArray& rhs) const;
mfArray operator +(const double& rhs) const;

- mfArray array subtraction or unary minus

mfArray operator -(const mfArray& rhs) const;
mfArray operator -(const double& rhs) const;

< mfArray array less than comparison

mfArray operator < (const mfArray& rhs) const;

56 MATFOR User’s Guide
1

Operators/ Descriptions/Prototype
Functions
<= mfArray less than or equal to comparison

mfArray operator <=(const mfArray& rhs) const;
> mfArray greater than comparison

mfArray operator > (const mfArray& rhs) const;
>= mfArray greater than or equal comparison

mfArray operator >=(const mfArray& rhs) const;
== mfArray array equality comparison

mfArray operator ==(const mfArray& rhs) const;
I= mfArray array inequality comparison

mfArray operator '=(const mfArray& rhs) const;
= mfArray assignment operator

mfArray& operator =(const mfArray& rhs);

mfArray& operator =(const char* str);

mfArray& operator =(const int value)

mfArray& operator =(const double value);

mfArray& operator =(const complex value);

Pow() mfArray power function.

mfArray Pow(const mfArray& rhs) const;
mfArray Pow(const double& rhs) const;

T() mfArray transpose function
mfArray T() const;

H() mfArray complex conjugate transpose function
mfArray H() const;

Mul() mfArray matrix multiplication function

mfArray Mul(const mfArray& rhs) const;

Chapter 2 Working with mfArray 57
__|

Operators/ Descriptions/Prototype
Functions
LDiv() mfArray matrix left divide function

mfArray LDiv(const mfArray& rhs) const;
RDiv() mfArray matrix right division function

mfArray RDiv(const mfArray& rhs) const;
HC() mfArray horizontal concatenation function.

mfArray HCat(const mfArray& rhs) const;
VC() mfArray horizontal concatenation function.

mfArray VCat(const mfArray& rhs) const;

2.6.1 Arithmetic Operators

The mfArray arithmetic operators *, /, +, -, operate element-by-element on the
mfArray. You can perform operation between two mfArrays or a single mfArray and a
double scalar. Example 2.6.1 shows some valid operations of the arithmetic operators.

Example 2.6.1 Arithmetic operators
#include "cml.h"
void main() {
mfArray a, b, c, d, e, f;

a = mfOnes(3,3);
mfDisplay(a, "a");

/I * element-by-element multiplication
b = 2*a;
mfDisplay(b, "2*a");

/I ** element-by-element power
¢ = mfPow(b,2);
mfDisplay(c, "mfPow(b,2)");

/I - element-by-element subtraction
d=c-a;
mfDisplay(d, "c-a");

58 MATFOR User’s Guide

/' I element-by-element division
e = c/b;
mfDisplay(e, "c/b");

}
2.6.2 Relational Operators

The mfArray class relational operators include >=, >, <=, <, 1=, ==_ These
operators perform element-by-element comparison between mfArrays that conform in
size and shape, or between mfArray and a scalar. These operators return a logical
mfArray. Example 2.6.2 shows some valid operations of the mfArray relational
operators.

Example 2.6.2 mfArray Relational Operators

#include "cml.h"

void main() {
mfArray a, b, c;

a = mfMagic(3);
b = 2*mfRand(3, 3);

mfDisplay(a, "a", b, "b");

1.3449 1.2815
1.2253 1.7834
A.8583 1.2484

Figure 2.6.2.1 Contents of aand b

Chapter 2 Working with mfArray 59

c=a>=3;
mfDisplay(c, "a >= 3");

c=a>bhb;
mfDisplay(c, "a > b");

e "C:\Program Files\AnCADM...

Figure 2.6.2.2 element by element > and >= comparison

c =ac<=5;
mfDisplay(c, "a <= 5");

c=ac<hb;
mfDisplay(c, "a < b");

e "C:\Program Files\AnCAD\M...

60 MATFOR User’s Guide

mfDisplay(c, "a !'= b");

mfDisplay(c, "a == b");

ev "C:\Program Files\AnCADM...

Figure 2.6.2.4 element by element != and == comparison

2.6.3 Matrix Operators and Functions

You can perform matrix operations using mfArray member functions such as
Transpose, T, HQ, Mul, LDiv, RDiv, HCat, VCat.

Function T()performs a matrix transpose.

Example,

a =
8 1 6
3 5 7
4 9 2

Chapter 2 Working with mfArray 61
__|

Function H() performs a complex conjugate transpose.

Example,
a =

1+2i 2+3i
b =a.HO =

1-2i

2-3i

Matrix multiplication function, x.Mul (y), returns the linear algebraic product of two
mfArrays x and y, where X is an m-by-p matrix and y is a p-by-n matrix. The product
returns an m-by-n matrix.

Matrix left division function, a.LDiv(b), and matrix right division function,
a.RDiv(b), solve linear matrix inverse problems. The result of a.LDiv(b) is
approximately Mul(mflnv(a),b). The result of a.RDiv(b)is approximately
Mul (b,mFInv(a)) . Depending on the structure of the mfArray, MATFOR uses
different algorithms for the computation as shown in Figure 2.6.3 below. More details
of the difference between matrix right division and matrix left division are covered
under Matrix Division below.

62 MATFOR User’s Guide
1

Positive . Chalesky __ Gaussian

Definite Factorization Elimination
— Symmetry —
non-Positive [Diagonal
Definite ™= Piyating
n-by-n_ Factarizati
square actorization
1f matrix a is— — General —= [y [Jecomposition
| n-by-m _ [least Sguare Method

rectangle - using Normal Equations

Figure 2.6.3 Algorithms applicable for each matrix type in matrix division
operation

Matrix Division

Matrix division is often used to solve the linear matrix inverse problem ax = b,
where a is an m-by-m square matrix, while x and b are m-by-1 column vectors. There
are, however, other fields of study that prefer writing the equation in a different way.
The appreciation of writing x and b as row vectors has turned the equation into xa =
b. To accommodate these two conventions, MATFOR introduces left and right matrix
division. Use functions LDiv to solve systems where matrix a is put on the left of
unsolved variable x. On the other hand, use mfRDiv for row vector major problem.
For example:

x = mfLDiv(a, b)

solves for x in equation ax = b and

x = mfRDiv(a, b)

solves for X in equation xa = b.

Chapter 2 Working with mfArray 63
__|

For non-square matrix a, equation ax = b represents an over-determined or under-
determined system. In either case, matrix division routines provide solutions in least
square sense.

Example 2.6.3 below lists some valid operations of the mfArray operator functions. The
code is divided into four sections, namely matrix transpose, complex conjugate
transpose, matrix multiplication, and matrix left divide. The results for each section of
code are shown in Figure 2.6.3.1, Figure 2.6.3.2, Figure 2.6.3.3, and Figure 2.6.3.4
respectively.

Example 2.6.3 below lists some valid operations of the matrix operators and operator
functions.

Example 2.6.3 Matrix Operators
#include "cml.h"
void main() {

mfArray a, b, c;

/I matrix transpose

a = mfMagic(3);

b=a.T();

mfDisplay(a, "a", b, "a.T()");

/l .h. complex conjugate transpose

a = mfV(dcomplex(1,2), dcomplex(2,3));
/la = mfV((1,2), (2,3));

/Ib = mfCTranspose(a);

b =a.H();

mfDisplay(a, "a", b, "a.H()");

64 MATFOR User’s Guide

1.8868 +2.00001 2.8888 +3.800801

1.0868 —2.00081
2.0888 -3 .00081

Figure 2.6.3.2 Result of complex conjugate transpose function

/I, matrix multiplication

a = mfRand(3);

b = mfRand(3,2);

¢ = a.Mul(b);

mfDisplay(a, "a", b, "b", c, "a.Mul(b)");

C:\Program Files\AnCADWMATFOR

A.8137
A.6127
A.8415

A.6471
B.1775
B.7421

a.Mul<h>

1.2811
1.68359
A.9491

A.2214
A.1381
A.9734

A.1676
B.3252
B.5833

A.7722
A.6298
A.6415

A.7638
A.8225
A.3124

Chapter 2 Working with mfArray 65

5[
[«

Figure 2.6.3.3 Result of matrix multiplication

/I .mldiv. matrix left division
b = mfMul(mfinv(a),c);
mfDisplay(b, "mfMul(mflnv(a),c)");

b = a.LDiv(c);

mfDisplay(b, "mfLDiv(a,c)");

66 MATFOR User’'s Guide

e "C:WProgram Files\AnCADAMATFOR

mfHulimf Inv{ar. c> =

A.6471 B.1676
A.177% A.3252
a.7421 A.5833

mf LDivia,.c> =

B.64'M1 B.16%6
A.177% Aa.3252
a.7421 Aa.5833

Press any key to continue

Figure 2.6.3.4 Comparing LDiv and mfMul(mflnv(a),c)

2.6.4 MATFOR Parameters

Table 2.6.4 below lists some MATFOR pre-defined parameters.

Table 2.6.4 MATFOR parameters

Parameter Data Type Description

mf() mfArray Empty mfArray
MF_COL mfArray Colon “:” operator
MF_PI double T

MF_EPS double The smallest positive number

Chapter 2 Working with mfArray 67

MF_INF double Positive infinity number
MF_NINF double Negative infinity number
MF_NAN double Not a number

MF_E double Natural logarithm number
MF_REALMAX double Largest representable number
MF_REALMIN double Smallest representable number

Linear Algebra

Matrix operation is used in many engineering and scientific problems. For the purpose
of numerical computation, these problems are normally represented in the form of linear
algebra using matrices. MATFOR C++ Library provides users with a set of linear
algebra functions to solve matrix operation intuitively and efficiently.

Three types of matrix operations are often encountered in real problems, namely matrix
inverse, eigenvalues and eigenvectors, and least square approximation. Algorithms used
for solving these problems depend heavily on the characteristics of the matrices. For
efficient performance, different algorithms must be employed for each type of matrix.

MATFOR has built in mechanisms for handling the details of algorithm selection in
matrix operations. Intuitive interfaces are provided so that users do not need to know the
details of the algorithm used. We shall go through three examples that are in Sections
3.1, 3.2, and 3.3 to familiarize with the linear algebra functions.

3.1 Matrix Inverse

Matrix inverse is often used in mathematical applications. The following is an example
employing MATFOR matrix inverse function, mfiInv.

Example 3.1 Matrix Inverse

The objective in this example is to determine the relationship between the value of
export from Hong Kong, to the Gross National Product and Per Capita Import of each of
its fourteen overseas markets.

70 MATFOR User’s Guide
1

Using the relationship determined, we attempt to compute the value of export from
Hong Kong when a target overseas market has a Gross National Product equal to 367.56
(million millions U.S. dollars) and a Per Capita equal to 1230.08 (U.S. dollars).

The data for computation is listed in Table 3.1 below.

Table 3.1 Relationship between export value from Hong Kong and GNP
+ Per Capita Import of overseas market

Overseas Export value of Gross National Product Per Capita Import
markets Hong Kong (Xi 1:million millions (Xi 2:US$)
() (Yi : million Uss$)
HK$)
1. America 6825 1298 437.26
2. Canada 512 119.8 1283.48
3. Germany 1902 344.28 1128.33
4. French 146 235.56 600.58
5. England 2814 163.79 783.15
6. Brazil 37 76.72 65.26
7. Panama 52 17.81 441.26
8. Venezuela 56 30.66 242.33
9. Indonesia 187 15.92 23.98
10. Japan 1065 345.08 371.98
11. Malaysia 107 6.7 324.4
12. South Africa 173 28 262.11
13. Australia 771 75 1058.16
14. New 192 12.47 1072.27
Zealand

In this example, we shall use the regression model below to determine the relationship.

Chapter 3 Linear Algebra 71
-

Regression Model:

Yi = o+ X+ X2+ E;

where,
i1=1,2,...,14
Y; : Value of export from Hong Kong to i-th market.
Xi1 : Gross National Product of i-th market.
Xiz : Per Capital Import of i-th market.
Ei :i-th error

Bi : regression constant i=0,1,2

The regression model can be expressed in matrix form:

Y =X p+E

where,

Y= [Y1 Y, ... Y14] (Y is a 14x1 row vector)

1 Xl,l ><1,2
1 XZ,l X2,2
X=|. . . (X'is a 14 x 3 matrix)

1 Xy X14,2_

72 MATFOR User’s Guide
1

B=18 B B (Bisalx3 column vector)

E=[E1E;...Exn]' (Eisa14x 1 row vector)

Using least square approximation, we obtain an estimate for gand Y:

= (X'X)IXY

Y =X B =X(X'X)X'Y

where ,5 is an estimate of #and Y is an estimate of Y.
To solve 5 and Y , the inverse of (X'X) must be determined. The following code uses
MATFOR function to determine the inverse of (X'X).
#include "cml.h"
#include "fgl.h"
#include <iostream.h>
void main() {
mfArray y, x1, x2, beta, a, ey, X;
double t1, t2;
x1= mfVv(1298, 119.8, 344.28, 235.56, 163.79,

76.72,17.81,
30.66, 15.92, 345.08, 6.70, 28,75,12.47).T();

x2=mfV(
437.26, 1283.48, 1128.33, 600.58,
783.15, 65.26, 441.26, 242.33, 23.98,
371.98, 324.4, 262.11, 1058.16, 1072.27).T();

/I input two values (Gross National product and

Chapter 3 Linear Algebra 73
-

/I Per Capita Import)

cout << "Input two value" << endl;
cout << "Input 1:";

cin >>t1;

cout << "Input 2:";

cin >> t2;

a = mfT(mfOnes(1,14));
x = mfHCat(a, x1, x2);

y= mfV(6825, 512, 1902, 146, 2814,
37, 52, 56, 184, 1065, 107, 173,
771, 192).T():

/I beta = mfMul(mflnv(mfMul(.t.x, x)), mfMul(.t.x, y))
beta = mfLDiv(x,y);

ey = mfMatSub(beta ,1 ,1) + t1*mfMatSub(beta ,2 ,1) +
t2*mfMatSub(beta ,3 ,1);

mfDisplay(beta,"beta",ey,"ey");
mfGDisplay(x1,"x1",x2,"x2",x,"x",a,"a",y,"y",beta,"beta",e
y."ey");

mfViewPause();

Compile and run the code.

Use Gross National Product, t1 = 367.59 and Per Capta Import, t2 = 1230.08

—177.9518
B =| 5.094 and Y = 2183.6 (million Hong Kong dollars)
0.3975

3.2 Application of Eigenvalues and Eigenvectors

Eigenvectors and eigenvalues are important in many areas of science and engineering. It
is often applied in solving differential equations, and finding physical characteristics of
structures. In MATFOR, you can use function mFEig to determine eigenvectors and
eigenvalues of a matrix. The example below applies function mfFEig in solving a
differential equation.

74 MATFOR User’s Guide
1

Example 3.2 Solving a differential equation

In this example, we shall use function mFE g to find the solution to a set of differential
equations.

Consider the following differential system:

dx

1 d—tlle X, — Xg;
dx

2 d_t2= X, + Xy — Xg;
dx

3 d—t3=—x1—x2+x3;

where X3, X2 and xs are functions of t.

The system can be rewritten in matrix-vector format as:

— = AX;
dt
i,
1 -1 -1] ddt
X
where A=|-1 1 -1, X=|x,|, =72
1 1 1 y dt dt
[dt |

Then, the solution to the differential system is:

X= Kl*e’l’t*v1+ Kz*eﬂft *Vo+ K3*e/1’t*V3

Chapter 3 Linear Algebra 75

where K1, Ky, and K3 are constants.
A1, A2, and Az are the eigenvalues of A.

V1, Vo, and vs are eigenvectors corresponding to 4, A,, and A3,

The eigenvalues and eigenvectors of the system can be obtained by using MATFOR
functions as illustrated in the code below:

#include "cml.h"
void main() {
mfArray a, p, d;
a = mfvCat(mfVv(1,-1,-1), mfv(-1,1,-1), mfV(-1,-1,1));

/I Compute eigenvalues and eigenvectors
mfEig(mfOut(p, d),a);

/I Display results
mfDisplay(a,"a",d,"d",p,"p");

}
Compile and run the program. The eigenvector p and the eigenvalue d are computed to
be as follow:
05774 -0.6112 -0.5414 -1 0 0
p=]05774 0.7745 -0.2586 d={ 0 2 0
0.5774 -0.1633 0.8000 0 0 2

Using the eigenvector and eigenvalue, the solution to the differential system is:

76 MATFOR User’s Guide

05774 ~0.6112 ~0.5414
X =K, *e™ %[05774 |+ K, *e? #| 0.7745 |+ K, *e® +| - 0.2586
0.5774 ~0.1633 0.8000

3.3 Least Square Operations

Least square method is often used in the determination of optimal solutions such as
obtaining an optimal polynomial equation approximating a collection of data. The
example below presents an application of MATFOR functions in Least Square
operations.

Example 3.3 Determining the optimal binomial

There are four data points with coordinates (2, 1), (4, 3), (5, 5), and (8, 12) as shown in
Figure 3.3.

124 ®

9.075 7]

v BO5

"
3.025 =
2

il T T T 1
1 2775 4.55 6325 8.1

X

Figure 3.3.1 Plot of four data points (2,1), (4,3), (5,5) and (8,12).

Chapter 3 Linear Algebra 77
-

The points can be approximated using a binomial equation
f(X) = ro + rux +r,x%, where ro, ry, and r;are the constants of the polynomial. From the
four data points, four systems equations are formed, as shown below.

1=r,+2r, +4r,

3=r1, +4r, +16r,
5=r1,+5r, +25r,
12=r, +8r, +64r,

The system equation can be represented in matrix-vector form as Ar = b where,

1 2 4 .
1 4 16 3 0
A= , b= , r=\n
1 5 25 5 h
1 8 64 12 2

As Ar = b have no linear solution, an approximate solution to Ar ~b needs to be
determined.

Using least square method, vector r can be approximated by,

r=(ATA)*Ab,

Instead of solving r by computing the inverse of (A" A), which is an expensive
operation, you can use MATFOR C++ Library matrix left division mFLDiv to solve for
r . The following code uses linear algebra functions to obtain an approximation to the
coefficient vector r.

78 MATFOR User’s Guide

#include "cml.h"
#include "fgl.h"

void main() {
mfArray x, y, r,A,x1;
/I Obtain a solution to vector r in linear equation Ar=y.
/I Initialize matrix A.
x = mfV(2,4,5,8);
A = mfHCat(mfOnes(4,1), x.T(), mfPow(x,2).T());

/I Initialize vector y to contain the four data points
y=mfV(1,3,5,12).T();

/I Plot the four data points using red *
mfPlot(x,y,"r*");

/I Compute the solution to vector r.

/I r = mfMul(mfMul(mflnv(mfMul(.t.A, A)),.t.A), y)
r = A.LDiv(y);

mfDisplay(r, "r");

/' Using the result r, compute the resulting binomial equation
/l'y =r0 + r1*x+ r2*x**2 over the range x =[1:8].
/'y is computed using y = mfMul(A, r)

x = mfColon(1,8);
A = mfHCat(mfOnes(8,1), x.T(), mfPow(x,2).T());
y = mfMul(A, r);

/I Stop the Graphics Viewer from erasing the first graph
mfHold("on");

/I Plot the binomial equation using a blue line
mfPlot(x,y,"b-");

/I Set the axis range
mfAxis(1.0, 8.1, 0, 12.1);

// Pause program to view the resulting graphics
mfViewPause();

Chapter 3 Linear Algebra 79

Using the program, we obtain r as:

0.2067
r=10.0100
0.1833

Thus, the optimal binomial equation to fit the data by least square method is:

f(x) = 0.207 + 0.010x + 0.183x%°

Table 3.3 shows the comparison of raw data from the solution to the binomial
approximation using aj, 1=1,2,3,4. Figure 3.3.2 shows the resulting binomial
curve and the four data points.

Table 3.3 (comparison of the data with the polynomial)

i aj bi f(ai)
1 2 1 0.959
2 4 3 3.17
3 5 5 4.83
4 8 12 12.0

a; and b;, are the data, and f(a;) is the solution to the binomial equation using data a;,
i=1,2,3,4.

80 MATFOR User’s Guide
[

121
8075 7
Yo B05 T
3.025 7
1] T T T
1 2.7 4}.{55 B 325 8.1

Figure 3.3.1 The polynomial equation and the four data points.

Visualization Basics

The basic idea of visualization is to transform your computational data into a format that
is more communicative and instructive. MATFOR Graphics Library contains a set of
high-level visualization functions for data visualization, animation, graphical debugging,
and presentation. They are designed to be intuitive and require minimal programming.

In this chapter, we will introduce some fundamental capabilities MATFOR provides,
and explores what MATFOR is capable of doing. A few examples will be provided to
guide you through the steps of using MATFOR Visualization Routines.

4.1 Plotting Your Data

This section outlines the general steps for creating a graph using MATFOR graphical
functions. We shall begin by plotting a linear graph.

Step1l. Use MATFOR library in your program by adding preprocessor directives to
include the MATFOR header files. You’ll need to include ¥gl .h when
using any of the visualization routines. For example,

#include "cml.h"
#include "fgl.h"

void main() {

Step 2. Construct and initialize the mfArray for plotting. For example,
mfArray X, y;

x = mfColon(-10,10);
y = mfPow(x,2);

82 MATFOR User’s Guide
1

Step 3. Initiate a Graphics Viewer for plotting to by using function mfFigure. All
Figures are numbered automatically, depending on the sequence of creation.
For example,

mfFigure(1);

Step4. Create a graph using one of the graph creation functions such as mfPlot.
For example,

mfPlot(x,y);

Step5. You can touch up the graph by using functions such as mfShading,
mFAXxis, and mFBackGroundColor, or annotate the graph by adding
the axis labels and the title. By default, x-axis is labeled “x”, y-axis is
labeled “y~, and z-axis is labeled “z”. For example,

mfTitle("y = x**2");

Step 6. Pause the program execution to view the graph by using:

mfViewPause();

Step 7. Compile and run the program to view the graph as shown in Figure 4.1.

Step 8. When you have finished viewing your graph, press the Continue button on
the toolbar to continue program execution.

Chapter 4 Visualization Basics 83
-

MATFOR 3.0 LEx
Figure Wiew Setting Tools Toolbar Help Continue
B Y Y A AT IR
y=x"2
100 , : :
| | 1
I 1 1
| | 1
i 1 1
| | 1
i 1 1
| | 1
0 \ ! l i /
40 : : :
Y ! i i
20 : : !
°-16 -] 5 o
X
Figure 1

Figure 4.1 Plotting of y = cos(x)

Below is a summarization of the above codes.
Example 4.1 Steps to visualization

#include "cml.h"
#include "fgl.h"

void main() {
mfArray X, y;

x = mfColon(-10,10);
y = mfPow(x,2);

/I Specify a new Graphics Viewer
mfFigure(1);

84 MATFOR User’s Guide
1

/I Plot a 2-D x-y plot
mfPlot(x,y);

/I Add a Title to the graph
mfTitle("y = x**2");

/I Pause Program to view Graphics
mfViewPause();

4.2 MATFOR Graphics Viewer

When you use graph-creating functions, such as mfPlot, the created graphs will be
displayed in MATFOR Graphics Viewer, as shown previously in Figure 4.1.

MATFOR Graphics Viewer is composed of six major components, namely the window
frame, figure windows, subplots, menu, toolbar, and various dialog box editors. These
components collaborate with each other to display the graphics objects you created on
your monitor screen and provide many graphics formatting functions.

In this section, we shall briefly describe each of the components and their usage.

4.2.1 Window Frame and Figure Windows

The properties of the Window frame can be set using functions mfWindowCaption,
mfWindowSize, and mfWindowPos.

MATFOR Graphics Viewer can contain a number of figure windows. Each figure
window is attached to a window tab showing the ID and name of that particular figure
window, which enables you to easily navigate through the figure windows.

Chapter 4 Visualization Basics 85
-

4.2.2 Subplots

Each figure window can be further divided into multiple subplots by using the function
mFSubplot. The function has the following syntax:

mfSubplot(m, n, p)

Where m is the number of rows, n is the number of columns, and p specifies the current
subplot space number. The function divides the plot space of a figure window into m-
by-n rectangular subplot spaces. Each subplot space is numbered row-wise, so that the
subplot space at position (1,2) is numbered p =2; whereas the subplot space at position
(2,2) is numbered p=4.

In the following example, we shall create a new figure window and plot the two graphs
using a 1-by-2 convention.

Example 4.2.2 Using mfSubplot

Create a new figure window with the 1D 1.

mfFigure(1);

Divide the plot space into 1-by-2 subplot spaces and plot the first pair of graphs on
subplot space 1.

mfSubplot(1,2,1);

h = mfPlot(x, y1, "b");
mfHold("on");

h = mfPlot(x, y2, "ro");
mfGSet(h, "symbol_scale", 25);
mfCamzZoom(0.8);
mfCamPan(20, 0);

Plot the third graph defined by %, y3 on sub-plot space 2. The axis will be automatically
scaled by MATFOR to fit the third graph.

86 MATFOR User’s Guide
1

mfSubplot(1,2,2);
h = mfPlot(x, y3, "gx");

mfGSet(h, "symbol_scale", 25);
mfCamZoom(0.8);

mfCamPan(40, 0);

Pause the program to view the graph.

mfViewPause();

Compile and execute the program.

MATFOR 3.0

Figure Wiew Setting Tools Toolbar Help Continue

EEEIE

R T AT LD

EEX

a0 2o+
de+04 §<
1 5a+006
x
%
%
X
J=+004 !5(
4
T=+06 =
ES
%
Y 2er0d i g
S0
T=+004 \
: o
o 1 1 1 1
a2 -1|:II:I -atll d: 5l!II n:ll:l] B R m) h %
X X
Figure 1
Figure 4.2.2 Two subplots in the same figure window

Chapter 4 Visualization Basics 87
-

4.2.3 Menu and Toolbar

Graphics Viewer not only displays graphics objects, it also enables you to perform some
graphics manipulations on the displaying objects through the menu and toolbar
functions. All of the graphics object manipulations carried out using the function calls
can be manipulated directly using the menu and toolbar functions!

With these functions, you can perform axis adjustment, material shading, colormap
setting, and many other manipulations after the program is run. Just play with the menu
and toolbar functions to get a feel of this amazingly easy-to-use feature.

B RRa X h%exoddifihe @l I12A EH AFPAIH @
2209200 | BN I EE N E N N||mezo e ao|p

Figure 4.2.3.1 Toolbar

Material setting, axis setting, and colormap setting are manipulated using the special
editors, as illustrated below in Figure 4.2.3.2, Figure 4.2.3.3, and Figure 4.2.3.4. They
are located under the Setting Menu. You may refer to Section 4.5 Colormap, Shading,
and Texture for examples of using the Material Setting and Colormap Setting editors.

88 MATFOR User’s Guide

B Material Setting

Type Warne Surface
Line1 v visble ¥ Smooth I¥ Colarmap

Line: Line2
Calor: . Set color

Ambient 100
K|]
Diffuse o0
Kl I
Specular 1
K 2]
Tranzparency 100
Kl 1]
Edge

v visble ¥ Smooth ™ Colormap

Color: . Set color Set shyle
]
4

Ambient

Transparency

<4 | ¥ | Add Delete ‘ LU

ok | Cancel |

Figure 4.2.3.2 Material setting dialog box

m Axis Setting

Title Az

Tite: [¥ Visible coor: | setcor
Colar: . Set color Set font Fange: W Ao |50 150

Bz Label Ticks Ao ED, 50, 0, 50, -100, 150
Hlabel [« ¥ Addis
* Label: |Y v Wisible Calar: . Set color
Zlabet [z Range: W Auo [10000 50000
% Ticks ¥ Auo P00, 10000, 0, -10000]
Bz all

Z Arlis

v Visible Caolor: . Set calar I visible Color: . Set color

rets Bt Range: V¥ auwa |0 il
% Grid v Gid I 2 Grid Ticks ™ Aute [0, 2000, 4000, 5000]
Calar. . Set calar | Set style | Color Auis
Background Color o Off " Vertical (" Harizantal
Colar: . Set colar Fange: v Auto ’07 ’17
Projection TiEkS: ; ﬂ . . 5 |
ount: 3 Color: et color
¢« Orthograhic " Perspective
Quick Setting
Aspect Fatio
Set axes auto range | Set axes square shape
AxizBox [Auto 076 [1.00 100
Set tight limits | Set akes actual shape
Apply | QK ‘ Cancel |

Figure 4.2.3.3 Axis setting dialog box

Chapter 4 Visualization Basics 89

Colormap Setting

T

<< | P | Thdd Delete|

QE. Cancel

Figure 4.2.3.4 Colormap setting dialog box

4.3 Creating 3-D Models

In MATFOR, there are two methods to obtain data for plotting. One is to generate the
data from algorithm or mathematical expression as the one shown in example 4.1. The
other, is to read a data file into the system.

This section goes through examples that use the two methods to plot three-dimensional
graphs respectively. The first uses two-dimensional matrices to construct a surface plot;
whereas the second reads data files into the system to draw a dolphin object.

4.3.1 Generating the Data

First, we shall begin to generate the data by using mfMeshgrid, which is a useful
function, to transform the domain specified by two vectors into two-dimensional
matrices. The matrices are composed of repeating rows and columns of the two vectors.

90 MATFOR User’s Guide

The resulting matrices are useful for evaluating functions of two variables and for
plotting surfaces. The syntax of the function is:

mfMeshgrid(mfOut(matrix X,matrix Y), vector X,
vector y)

As an example, we shall create four matrices X, y, indxi, and 1ndxj using function
mfMeshgrid. Matrices x and y will be used for plotting the graph, while indxi and
indxj will be used to evaluate function z. The resulting mfArrays will be used in the
examples for plotting lines and surfaces in three-dimensional space in the sections that
follow.

Example 4.3.1 mfMeshgrid- function of two variables

First, include the header files cml_h and fgl._.h in your preprocessor directives.
Construct the variables x, y, and z as mfArrays.

#include "cml.h"
#include "fgl.h"

void main() {

mfArray m, X, Yy, z;

Create two 30-by-30 matrices X, y using function mfMeshgrid.

m = mfLinspace(-3, 3, 30);
mfMeshgrid(mfOut(x, y), m);

Function mFLinspace is used to construct a linearly spaced vector as input vector. It
has the syntax:

mfLinspace(lowerbound, upperbound, intervals).

Chapter 4 Visualization Basics 91
-]

Function mFOut specifies x and y as output mfArrays.

Calculate z from x and y.

z = mfSin(x) * mfCos(y) / (x*(x-0.5) + (y+0.5)*y + 1);

Using the data created above, we shall draw a surface graph in three-dimensional space
using the function mfSurt.

mfSurf(x, y, z);
mfViewPause();

Compile and run the program.

92 MATFOR User’s Guide

061 R e LT

////

041

N
““%ﬁ%*&%

z 02:/ "0"7/ "“ RRRRRSN

-3-3

Figure 4.3.1 Surface graph in three-dimensional space

4.3.2 Loading Data (mfb, ascii)

Here, we’ll demonstrate an example that reads in the data of a dolphin module from
ASCII data files and plot it in three-dimensional space.

Example 4.3.2 mfLoadAscii- loading ascii data files

Include the header filescml _h and Tgl .h in your preprocessor directives. Construct
the variables xyz and tri as mfArrays.

#include "cml.h"
#include "fgl.h"

void main() {
mfArray xyz, tri;

Chapter 4 Visualization Basics 93
-

Loads the data from the ASCI|I files dolphin_tri.txt and dolphin_xyz.txt using function
mfLoadAsci 1. The example data files can be found in the directory
<MATFOR>\examples\cpp_ug\data\. The data are loaded into the mfArrays xyz
and tri.

xyz = mfLoadAscii("./data/dolphin_xyz.txt");
tri = mfLoadAscii("./data/dolphin_tri.txt");

Next, construct the polygons defined by the face matrix tri and the corresponding vertex
matrix xXyz using function mFTriSurf. You may refer to Section 5.6 Unstructured
Mesh for more details on plotting unstructured mesh graphs.

mfTriSurf(tri, xyz);

Display the graphics object with proper axis adjustment to make it look neater.

mfAxis("equal");
mfAxis("off");
mfViewPause();

Compile and run the program.

94 MATFOR User’s Guide
1

Figure 4.3.2 Dolphin object

4.4 Displaying 3-D Objects

Once you have created a graphics object that is either procedurally generated or loaded
from a data file. You may want to adjust the view angle or scale of the object in order to
make it more meaningful.

Using the data created in example 4.3.1, we shall go through a variety of useful
techniques that are used when displaying the surface object.

4.4.1 Adjusting the Viewpoint

You can set the way you view a three-dimensional graph by setting the azimuth and
elevation angles of a viewpoint using function mfFView(az, el).

Chapter 4 Visualization Basics 95
-

The azimuth angle, az, is the angle of horizontal rotation about the z-axis, measured
from the negative y-axis. The elevation angle, el, is the vertical angle.

Example 4.4.1 Setting the viewpoint

Simply add the statement, mfFView(45, 45), right below the surface plot function.

mfFigure("msView(45, 45)");
mfSurf(x, y, z);
mfView(45, 45);

Note that a three-dimensional graph has a default viewpoint at az = -37.5 and el
= 30. This default value can be restored by calling mfFView(*3”).

067
04’

021"

bRy .
i
SRS
B ‘-‘_‘b% -

0&’ “*&g:% -

Figure 4.4.1 mfView — adjust the viewpoint
4.4.2 Shifting the Objects

The camera manipulations may be handy when you want to shift the graph or rescale its
size in the plot space.

96 MATFOR User’s Guide
1

Function mFCamPan is used when you want to shift the graph horizontally or vertically.
This is accomplished by specifying the horizontal and vertical distances of the camera
displacement. Notice that the displacement of the graph is directly opposite to the
displacement of the camera. For example, the graphics object shifts downward in the
plot space as the camera shifts upward.

Example 4.4.2 Shifting in the surface object

Shift the surface object downward by moving the camera upward with the displacement
of 80.

mfFigure("msCamPan");
mfSubplot(1, 2, 1);
mfSurf(x, y, z);
mfSubplot(1, 2, 2);
mfSurf(x, vy, z);
mfCamPan(0, 80);

Figure 4.4.2 mfCamPan — shift the camera

Chapter 4 Visualization Basics 97

4.4.3 Rescaling the Objects

Function mfCamZoom rescales the visual size of the graph. It takes a zoom factor as
input and performs the zooming effect differently in perspective and parallel modes.

In perspective mode, it decreases the view angle by the zoom factor. In parallel mode, it
decreases the parallel scale by the zoom factor.

We shall zoom in the surface object in parallel mode with a zooming factor of 1.5 in the
following example.

Example 4.4.3 Zooming in the surface object

mfFigure("msCamZoom");
mfSubplot(1, 2, 1);
mfSurf(x, vy, z);
mfSubplot(1, 2, 2);
mfSurf(x, y, z);
mfCamZoom(1.5);

I 0 S / % N
’ S|

.0:‘.‘%.“;.‘;;4»;;:1/ I Ly e

= 1150 eut

Figure 4.4.3 mfCamZoom - rescale the object

98 MATFOR User’s Guide

4.4.4 Changing the Displaying Mode

The camera projection mode can be either perspective or orthographic(e.g. parallel). It
can be done easily with function mFCamProj (mode) that takes the input argument
mode.

Example 4.4.4 Changing to the perspective displaying mode

The example code is as follows.

mfFigure("perspective");
mfSurf(x, vy, z);
mfCamProj("perspective");

== ‘\\

== o“}
£

\
0%0““‘:‘“,‘:3’;'7’/ I") N
"o"::‘:‘:“““"”z’ll[lllllz" 2"‘ RS

Figure 4.4.4 mfCamProj - change the displaying mode

4.4.5 Setting the Axis Object

The axis object is an aggregation of the axis itself, the axis wall, and the axis grid. The
“axis wall” is the positive side of the three axis planes. As a whole, it looks like three
adjacent sides of a box.

Chapter 4 Visualization Basics 99

With functions mFAxis, mFAxisWall, and mFAXi1sGrid, you can set the range of
the axes, number of ticks on the axes, color of the axis box, and the pattern of the
displaying gridlines, etc.

Example 4.4.5 Adjusting the axis object

Use the functions mentioned above to reset the axis ticks to be displayed, the color of
the axis wall to white, and change the grid line pattern.

mfFigure("Axis");

mfSurf(x, vy, z);

mfAxis(mf("xaxis_ticks"), mfV(3.0, 1.5, 0.0, -1.5, -3.0)) ;
mfAxisWall(mf("color"), mfvV(1, 1, 1));
mfAxisGrid("pattern”, "dotted");

Figure 4.4.5 Set the axis object properties

100 MATFOR User’s Guide
1

4.5 Colormap, Shading and Texture

In this section, we shall go through the examples of choosing preset colormaps,
displaying colorbar, shading the object surface material, and mapping texture on the
surface of the object.

4.5.1 Adjusting Colormap

A surface object can be rendered using different types of colormaps. MATFOR
provides a variety of predefined colormaps, such as jet, gray, hot, cool, cooper, hsv, etc.
This can be accomplished by using the function mfColormap, which has the
following syntax:

mfColormap(mode)

If none of the predefined colormaps meets your need, you can also define new sets of
colormaps through the Colormap Setting dialog box.

Using the data constructed in example 4.3.1, we shall demonstrate how to render the
surface with different predefined colormaps.

Example 4.5.1.1 Using predefined colormaps

Specify the colormap types as jet, hsv, cool, and gray for drawing the surface object.
We shall lay them out in subplot form in one figure window to illustrate the visual effect
each of them produce.

/I Use colormap "jet"
mfSubplot(2, 2, 1);
mfTitle("jet");

h = mfSurf(x, vy, z);
mfColormap(“jet");
mfCamZoom(1.5);

/I Use colormap "hsv"
mfSubplot(2, 2, 2);
mfTitle("hsv");

h = mfSurf(x, vy, z);

Chapter 4 Visualization Basics 101

mfColormap("hsv");
mfCamZoom(1.5);

/Il Use colormap "cool"
mfSubplot(2, 2, 3);
mfTitle("cool");

h = mfSurf(x, vy, z);
mfColormap("cool");
mfCamzZoom(1.5);

/I Use colormap "gray"
mfSubplot(2, 2, 4);
mfTitle("gray");

h = mfSurf(x, vy, z);
mfColormap("gray");
mfCamZoom(1.5);

W
T
W

= 7]
“"l;{{’,’ ““‘ :

LT
“\\\\\3,‘::‘:’

o SO
A AR
o2 b “‘ 221" : }‘s}‘\&&‘ 4

XA

Figure 4.5.1.1 Different types of predefined colormaps

You can also manually define the colormaps by using the Colormap Setting dialog box.
The following example is a tutorial showing you how to define a colormap by using the
Colormap Editor.

102 MATFOR User’s Guide
1

Example 4.5.1.2 Using colormap editor

We shall demonstrate an example showing you how to create a colormap that consists
of blue components only. This is accomplished by relocating the red, green, and blue
lines in the editing box.

The editing box is located on the right hand side of the Colormap Editor. The
relationship between the editing box and the graphics objects is simple. The leftmost
part of the box is mapped to the part of the graphics object that has the lowest value and
the rightmost part is mapped to the part of the graphics object that has the greatest value.

The following outlines the general steps for using the Colormap Editor.

Step 1. Start by running example 4.5.1. Select any one of the four subplots and
extend it by clicking on the extend subplot button on the toolbar.

Step 2. Open the Colormap Setting editor that can be found on the toolbar or under
the Setting Menu.

Step 3. Choose the predefined colormap gray to begin with. Notice that the three
lines are on top of each other.

Colormap Setting

T R
1
TR

hd

Ok Cancel

Chapter 4 Visualization Basics 103
-

Figure 4.5.1.2 Colormap editor

Step 4. Drag the red line and green line to the bottom of the editing box and leave
the blue line unchanged.

Colormap Setting

Colormap Steps: G4

Kl i 2|

=l
1] Detee|

ok Cancel

Figure 4.5.1.3 Colormap of blue components only

Step 5. Finally, click on the OK button. The resulting graph shows in Figure 4.5.1.4

104 MATFOR User’'s Guide

! jet

Figure 4.5.1.4 The resulting graph

4.5.2 Displaying Colorbar

The colorbar displays the current colormap and acts as a color scale showing the
relationship between graphics data and color. It can be displayed on the figure window
vertically or horizontally.

The vertical colorbar is displayed on the right hand side of the graph, whereas the
horizontal colorbar is displayed on the bottom of the figure window.

The colorbar function mFColorbar has the following syntax:

mfColorbar(mode)

Chapter 4 Visualization Basics 105
-

or

mfColorbar(property, value)

Where mode specifies the area to display the colorbar. It can be ‘vert’, ‘horz’, ‘on’, or
‘off’.

The number and color of labels can be adjusted using the properties “label_count” and
“label_color”.

4.5.3 Shading Objects

In MATFOR, graphics objects are often composed of two major components, namely
surface and edge. When it comes to shading the graphics objects, these two
components are manipulated independently.

There are two ways to perform the shading. One is through the function
mfDrawMaterial and the other one is through the Material Setting editor.

The general syntax of mfDrawMaterial is:

mfDrawMaterial (handle, target, property,
value)

Where the handle is associated with the graphics object and target specifies the
component that you are shading.

The shading properties range from the reflectances of the components, color of the
components, to the shading mode and visibility. For the edge component, it has two
more properties, namely width and style.

106 MATFOR User’'s Guide
1

Using the data constructed in example 4.3.1, we shall demonstrate a simple example of
shading the graphics object.

Example4.5.3 mfDrawMaterial

First, we shall add a lighting effect on the surface to make it looks more three-
dimensional, which is done by adjusting the ambient, diffuse, and specular reflectances.

mfDrawMaterial(h, "surf", "visible", "on",
"smooth", "on",
"colormap"”, "on",
"ambient", 0,
"diffuse", 75,
"specular", 25);

At this point, the edge appears to be too obvious on the surface. We then add a fading
effect to the edge component by setting the value of its transparency reflectance to be 90.

mfDrawMaterial(h, "edge", "color", mfVv(1,0,0),
"smooth", "on",
"colormap”, "off",
"ambient", O,
"diffuse", 0,
"diffuse”, 0,
"specular", 0,
"trans", 90);

Compile and run the program.

Chapter 4 Visualization Basics 107
-]

Figure 4.5.3.1 Shading the surface and edge components

The Material Shading Editor, as illustrated in Figure 4.5.3.2, can be invoked from the
Setting Menu or by clicking the Material Setting icon on the toolbar. Through the
editor, you can perform real-time material shading on the displaying graphics objects.

108 MATFOR User’'s Guide

Material Setting

Surface

v visble ¥ Smooth Iv Colormap

Calor: . Set color

Ambient

=
=

K|]
Diffuse o0
« v
Specular 1
< 2|
Tranzparency 100
Kl o]

Edge
v visble ¥ Smooth ™ Colormap

Color: . Set color Set shyle
]
4

Ambient

K1

Diffuse o0

Kl]

Specular 1]

K1 2

Transparency 1]
,Tl ¥ | Add | Delete ‘ LU ﬂ

Figure 4.5.3.2 Material shading editor

The upper left part of the editor is a table listing all the graphics objects that are
currently displaying on the Graphics Viewer. You can simply target a specific graphics
object for shading by clicking on the corresponding name.

The bottom left part of the editor is a table that shows all the predefined shading
configurations. The one in the blue box is the shading configuration that is currently
applied to the graphics object.

Similar to using the function mfDrawMaterial, the editor enables you to perform all
the shading manipulations on the surface and edge components independently. The
manipulations include switching the component on and off, applying the shading
configuration, changing the color or shading method (smooth shading), and adjusting
the ambient, diffuse, and specular reflectances.

Chapter 4 Visualization Basics 109
-

Once you have configured a new shading configuration, you can simply add it to the list
by clicking on the Add button and it will be appended to the next available slot in the
table. The first one added will be located on the second page of the shading
configuration table.

4.5.4 Mapping Texture

MATFOR also enables you to place a texture on the graphics object by mapping the
texture’s coordinates to the object’s coordinates.

Texture’s coordinates are comprised of two coordinates, s-coordinate and t-coordinate,
which represent the horizontal and vertical coordinates of the texture respectively. Both
of them are vectors of values ranging from 0 to 1. Figure 4.5.4.1 shows the relationship
between the coordinate values and the positions on the texture.

(s=1, t=0) (s=1, t=1)

(s=0.5t=0.5)

(s=0, t=0) (s=0, t=0.5) (s=0, t=1)

Figure 4.5.4.1 Texture coordinates

You may perform the mapping using the function mfDrawTexture, which has the
following syntax:

110 MATFOR User’s Guide
1

mfDrawTexture(handle, propertyl, valuel,
property2, value2, .)

The handle is associated with the graphics object that the texture is to be placed on.

In the following example, we shall construct a tetrahedron (a polyhedron with four faces)
using function mfTriSurf and place a texture on it.

First, construct the vertices of the tetrahedron using four 1-by-2 double vectors. Then
we use mfArrays X, y, and z to store the coordinates accordingly. Notice that each row
of mfArray tri defines a face of the tetrahedron.

Example4.5.4 mfDrawTexture
#include <math.h>
#include "cml.h"
#include "fgl.h"
void main() {
mfArray tri, X, Y, z, h, s, t;
double p1[3], p2[3], p3[3], p4[3];
double q1[2], q2[2], q3[2], q4[2], q5[2], q6[2];

pl[0] = -0.25 * sqrt(3.0);

pl[1] = 0.5;
pl[2] = 0.0;
p2[0] = -0.25 * sqrt(3.0);
p2[1] = -0.5;
p2[2] = 0.0;
p3[0] = 0.25 * sqrt(3.0);
p3[1] = 0.0;
p3[2] = 0.0;
p4[0] = 0.0;
p4[1] = 0.0;

p4[2] = sqrt(6.0) / 3.0;

x = mfT(mfV(p1[0], p2[0], p3[0], p1[0], p2[0], p4[0], p1[0], p3[0],
p4[0], p2[0], p3[0], p4[0]));

y = mfT(mfV(p1[1], p2[1], p3[1], p1[1], p2[1], p4[1], p1[1], p3[1],
p4[1], p2[1], p3[1], p4[1]));

Chapter 4 Visualization Basics 111

z = mfT(mfV(p1[2], p2[2], p3[2], p1[2], p2[2], p4[2], p1[2], p3[2],

p4[2], p2[2], p3[2], p4[2]));

tri = mfvCat(mfV(1, 2, 3), mfV(4, 5, 6), mfV(7, 8, 9), mfV(10, 11, 12));

h = mfTriSurf(tri, X, y, z);

We now have to define the corresponding texture coordinates s and t using six 1-by-2
double vectors that represent six vertices on the texture individually.

q1[0] =
qi[1l] =
q2[0] =
g2[1] =
q3[0] =
q3[1] =
q4[0] =
q4[1] =
q5[0] =
q5[1] =
q6[0] =
q6[1] =

0.0;
0.0;
0.5;
0.0;
1.0;
0.0;
0.0;
0.5;
0.0;

1.0;
1.0;
1.0

s = mfT(mfV(q2[0], g4[0], q6[0], q2[0], q4[0], q1[0], q2[0], q6[0],

q3[0], q4[0], 96[0], q5[0]));

t = mfT(mfV(q2[1], g4[1], q6[1], q2[1], q4[1], q1[1], q2[1], q6[1], q3[1],

q4[1], q6[1], q5[1]));

Finally, map the texture file brick.bmp onto the tetrahedron that is associated with
the handle h. Figure 4.5.4.2 illustrates how the texture is divided into four parts to be
mapped onto the four faces of the tetrahedron. The bitmap file is located under the
directory <MATFOR>\examples\cpp_ug\data\.

mfDrawTexture(h, "map",
"coord_t"

)5

"./data/brick.bmp", "enable", "on", "coord_s", s,

112 MATFOR User’s Guide
|

Figure 4.5.4.2 Brick.bmp

Figure 4.5.4.3 shows the result of the mapping.

Figure 4.5.4.3 Map texture on the tetrahedron object

Chapter 4 Visualization Basics 113
-]

4.6 Annotating Your Graph

MATFOR allows you to annotate a graph with title and axis labels. In addition to that, it
also enables you to add floating text annotations on the graph.

There are two ways to add a text annotation. Examples on their usages are provided in
this section.

4.6.1 Setting the Title and Axis Labels

By default, the x-, y-, and z- axes are labeled as “x”, “y”, and “z” respectively.

You can change the labels of x-, y-, and z- axes or add a title to your graph by using the
annotation functions such as mfXLabel, mfYLabel, mfZLabel, and mfTitle, or
through the Appearance Setting dialog box, which can be found in the View Menu.

In the following example, we shall demonstrate how to annotate a graph with title and
axis labels.

Example 4.6.1 Changing the axis labels and title

Change the labels of x-axis and y-axis and add a title to the surface graph.

mfTitle(mf("z = mfSin(x) * mfCos(y) / (x*(x-0.5) + (y+0.5)*y + 1)"),
mfVv(0, 0, 0), 16);
mfXLabel("indxi");
mfYLabel("indxj");

114 MATFOR User’s Guide

z=miSin(x) * mfCos(y) / (x*(x-0.5d0) + (y+0.5d0)*y + 1)

Figure 4.6.1 Axis labels and title

4.6.2 Text Annotation

You can add two-dimensional and three-dimensional text annotations with colors on
your graph by using functions mfText and mFAnnotation, respectively.

Example 4.6.2 Adding text annotations

Place a two-dimensional text annotation on the bottom-left corner of the figure window.
The color of the text is set to purple.

mfText("Annotating Your Graph", mfV(0.4, 0.9), mfV(1, 0, 1), 16);

Next, we shall locate the point with the maximum z value and label it with a three-
dimensional text annotation. Try to rotate the graphics object; you’ll see the text
annotation moves with the maximum point.

Chapter 4 Visualization Basics 115
-]

mfAnnotation("Maximum®, mfV(0.7241, -0.1034, 0.5877), mfVv(0, O,
1));

Arw our Grap

Figure 4.6.2 Two-dimensional and three-dimensional text annotations

4.7 Animation and Recording

The continuous erasing and updating of data displayed in the Graphics Viewer produce
the animation effects. Animation can be recorded in two different formats, namely avi
and bmp.

In this section, we shall animate the surface object drawn in example 4.3.1 using
mfArrays X, y, and z.

116 MATFOR User’s Guide
1

4.7.1 Animation

Typically, you create an animation by following the steps below:

Step 1. Construct and initialize the mfArrays for plotting.

Step 2. Create a static plot of the graph you wish to animate and get its handle using
mfGetCurrentDraw.

Step 3. Setup an iteration loop for the range of data you wish to observe through
animation.

Step 4. Within the iteration loop, use
mfGSet(handle, “axis-data’, data)

to update the targeted data of the current draw.

Step 5. Update the current Graphics Viewer by using function mfDrawNow .
Animation effect is created.

Step 6. Pause the program after completing the animation to observe the static graph
using function mfViewPause.

Example 4.7.1 Animation

Create the surface object by using the data with function mFSurf and use mfArray h to
retrieve the handle of the object created.

mfSurf(x, y, z);
h = mfGetCurrentDraw();

Chapter 4 Visualization Basics 117

Then, create an iteration loop to vary z data, using integer i = 1 to 300.

for(i = 1;i <= 300; i++)

{
z = mfSin(x+0.08%*i) * mfCos(y-0.13*i) / (x*(x-0.5) + (y+0.5)*y
+1);
mfGSet(h, "zdata", z);
mfDrawNow();
}

Pause the program to view the surface object at the point of termination using function
mfFViewPause.

Compile and run the program.

Figure 4.7.1 Animating surface object

118 MATFOR User’s Guide
1

4.7.2 Recording your animation

You can record animations of your graphics object as an avi movie file or as picture
files to view your simulation process at another time. The general syntax of the
recording functions is as follows.

mfRecordStart(“animation.avi’)
or

mfRecordStart(“animation.bmp?)

<animation codes>

mfRecordend()

You have the options to temporarily pause the animation or terminate the recording by
clicking on the pause or stop button on the toolbar. When the stop bottom is pressed, the
played animation up till the point of termination will still be recorded while the
remaining animation will keep on rolling.

At the end of the recording, an end of recording dialog box pops out to notify you that
the recording has been completed successfully. Click “OK” to continue.

When mfRecordStart(“animation.avi”) is used, MATFOR records an avi
movie file using the compression method that you select. The Graphics Viewer pops up
a Video Compression selection dialog box at the start of the recording, as shown in
Figure 4.7.2.3 below.

Chapter 4 Visualization Basics 119

Video Compression | |

Compressar: ak.

X

Full Frames [Uncompressed]

| ok |
[Codse.
- 2

Cancel

Figure 4.7.2.3 Video Compression selection dialog box

Example 4.7.2 Recording an animation

In this example, we shall record the animation created in example 4.7.1 into an avi file.
Simply add the statements mfRecordStart(” .\data\Example4 7_.avi") and
mfRecordEnd() at the beginning and end of the animation code respectively.

mfRecordStart("./Example4_7.avi");

mfSurf(x, vy, z);

h = mfGetCurrentDraw();

/I Reset the axis ranges to yield a better animation
mfAxis(-3.0, 3.0, -3.0, 3.0, -1.1, 1.1);

for(i = 1; i <= 300; i++)

{
z = mfSin(x+0.08%*i) * mfCos(y-0.13*i) / (x*(x-0.5) + (y+0.5)*y
+1);
mfGSet(h, "zdata", z);
mfDrawNow();
}
mfRecordEnd();

mfViewPause();

The recorded ‘Example4_7.avi’ file will be located under the data folder in your project
directory. By default, you can find it at <MATFOR>\examples\cpp_ug\data\.

120 MATFOR User’s Guide
1

4.7.3 Image Exporting

A graph displaying on the Graphics Viewer can be captured and saved into a picture file.
This is easily accomplished by using the function mFExportlmage. A number of
picture formats are supported (e.g. bmp, jpeg, tiff, ps and png). This can also be
accomplished by using the Export to File function located under the File Menu. You
may define the size of the picture format to be saved using either one of the two
methods.

.Eigure Wiew Setting Tools Toolbar Help Continue
I kessgihe@de L omd @]

= Cose
IE’I\ Close all

% Copy to Clipboard
W
& Frint

Exit Application

Figure 1
Figure 4.7.3 Capture displaying graph

4.8 MATFOR Data Viewer

MATFOR Data Viewer (as shown in Figure 4.8) is a powerful tool that displays data in
a spreadsheet-like editor and enables you to perform additional manipulations on the
data. It is composed of six major components, namely Matrix Table, Menu, Toolbar,
Sampling Type, Panels, and Status Bar.

Chapter 4 Visualization Basics 121
-]

The three kinds of panels in MATFOR Data Viewer are Snapshot Panel, Analysis Panel,
and Filter Panel.

B3 MATFOR 3.0 - Data Viewer
File Wiew Continue
B & B erid width: 80 F— | Digits: 6 — |——|
1 : : 0235062 : 0672150 : 1473135 : 2038102 : 2523149 ‘ 2804100 : 25 | 3_?”;5::”;2‘;”“5 AT |
2 1208420 0242565 DEAD4GE 1431241 2124712 2553508 28%0009 30| [SameingType
3 289762 0273638 DE74360) 1508635 2170038 2637268 e ane| | T4 O e ‘
4 35|41 0325238 0EAA372 1523676 220944 2748757 3108618 3%
5 Aaciols Gaans | omo Toowsd | oowew | oo awbood | an|t iR G
5 554766 0468303 0561800 1541180 2367529 3027095 3498754 37 (21611)
7 652324 0545762 D53B32 1541931 2432311 3166633 363020 400
8 7872 061712 0490491 1537068 24SES9 328829 38A13% 41
3 73619 0675383 0448798 1527088 2622467 337aRe7 4004812 43
10 Af2Sa27 07427 0415320 1512910 253017 3432412 4084209 44
11 824380 073627 039330 1495380 2533728 30953 4101815 44
12 731880 0724123 038R004 1477934 2607118 3400573 40SSA06 43
13 7238 069050 0391129 1460540 2481792 3326834 2950976 42
14 646359 0541450 0411118 1445833 2402186 3215345 3797297 40
15 5SS 0574373 0443012 1434285 2334136 2081M8| 3609911 28
16 495234 0498335 0483609 1427395 2284302 2937005 407162 36
17 347676 0420925 0529169 1427248| 2199520 2797402 3208885 34
18 288028 0349578 0574398 1432107 2148132 2675873 2034519 32
13 208381 0291321 OGIGRSZ] 1442107 2103363 2564315 2901103 306 (21x61) [e |
20 174573 0251882 DEADIGS 1456265 2092813 2531883 2821708 2% Bata Hanos Dol
21 178620 023062 0672150 1473138 2088102 2523143 2804100 28 e |
KN 2
Surfacel_x I Surtacel_y | Sufacel_z ‘
ll | 0% 4

Figure 4.8 MATFOR Data Viewer

4.8.1 Matrix Table

Matrix Table is where the actual entries are displayed. The data displayed are entries in
two selected dimensions of an mfArray.

122 MATFOR User’s Guide

1 2 3 4 5 B 7 8
m 0235062 0672150 1.473195 2098102 2523149 2804100 25
2 1.208420 -0.242565 0.680485 1.491241 2124712 255@528 2850009 30
3 1269762 0273638 0674360 1502635 2170038 2637268 2954339 a1
4 135341 03823 0654372 1523676 2229644 2748757 3108818 33
5 1451246 039235 0622478 1534890 2297695 2823082 3296004 35
§ 1554766 0468303 0.591800 1541180 2367529 302709 3498754 3n
7 1652324 0545762 053631 1541321 2 432311 316E633 3697020 400
8 1734972 0617112 0490491 1537068 2485699 3288229 3871396 41
3 1794619 0ETEIE 0448798 1527063 2E22467 3379787 4004812 43
10 1625427 0714827 0415321 1512910 2539017 3432412 4084209 44
11 1824380 07367 0.393340 1.435520 2533728 3440953 4101815 44
12 1791580 0724123 0.395004 1.477934 2507118 3404573 4055906 4.3
13 1730238 06930500 0.31129 1450540 2461792 3326834 3950976 4.2
14 1646359 0641450 0.411118 1.445439 2402186 321535 3797297 4
15 G414 057437 044302 1.434285 2334136 3081019 3608911 28
16 1445234 0498386 0.4a3689 1.427935 2264302 2937006 3407162 36
17 1347676 0420926 0529169 1.427244 2199520 2797402 3208895 0 34
18 1.265028 0349576 0.574398 1.432107 2146132 2675873 303519 32
18 A205381 029131 0616632 1.442107 2109363 2584315 2901103 30
20 1174573 0251862 0.650168 1.456265 2092813 2531683 2821708 2%
71 1175620 0.23/062 0672150 1.473195 2088102 2623143 2804100 2%
KN |

Surfacel_x |Surface‘|_l,- ‘ Surfacel_z ‘

Figure 4.8.1 Matrix Table

The cells in the Matrix Table have different colors. Each cell color is interpreted
differently. The default color (usually white) is used to represent entries in the odd rows
whereas the sky blue color is used to represent entries in the even rows.

Through the Filter Panel, you can also define new colors for cells in order to emphasize
a specific range of entries. Descriptions on using the Filter Panel can be found in
Section 4.8.7.

Similar to MATFOR Graphics Viewer, each array-displaying window is attached to a
tab. This allows you to switch between array windows very easily.

Chapter 4 Visualization Basics 123
-]

4.8.2 Menu

The two menus in the Data Viewer are File Menu and View Menu, as illustrated in
Figure 4.8.2.1 and Figure 4.8.2.2.

B saveas Cirlvs
Exit Chrl+E

Figure 4.8.2.1 File Menu

Close Current Array Chrl4C

Close all Array Chel+-A
Goko Cell Chrl4+G
Find Ckel4+F

Figure 4.8.2.2 View Menu

You may notice that MATFOR Data Viewer does not have a file opening function. This
Is because it is not an independent application as all of the data is input passed from
MATFOR Graphics Viewer or functionally generated.

The Close Current Array function closes the selected array and the Close All Array
function under the View Menu closes all the arrays that are currently displaying in the
Data Viewer. The latter is equivalent to the Exit function.

The Goto Cell function enables you to jump to a specific cell after given its row index
and column index. A dialog box will pop up prompting you for the input, as illustrated
in Figure 4.8.2.3.

124 MATFOR User’s Guide

Goto

R | |

Colurmr; | |

Go

Figure 4.8.2.3 Goto Cell dialog box

The Find function enables you to find the entries that satisfy the condition you input.
The format of the condition is similar to the one used in filtering. Refer to Section 4.8.7
Filter Panel.

Find in sub matrix

Conditior: |« < avg - 2°std
Found: 38 matches.

<< 0 53 Exit

Ok

Figure 4.8.2.4 Find dialog box

4.8.3 Toolbar

MATFOR Data Viewer also provides you some quick buttons on the Toolbar for using
the menu functions, as shown in Figure 4.8.3.

You can reset the width of the grids by dragging the slide bar. The width of the grid is
specified in pixels. The number of precisions can also be reset using the slide bar for
digits.

Chapter 4 Visualization Basics 125

H o & 6rid width: 80 — [——— Digits: 6 — |——

Figure 4.8.3 Toolbar

4.8.4 Sampling Type

With the Sampling Range options, you can select either to display the full array or sub-
matrix. For the sub-matrix option, it requires you to specify the range of entries you are
retrieving. The range is in the following format:

(x-range, y-range, z-range)

For example, if the range selection is (:, :, 3), it will display 900 entries of the sub-
matrix (1:30, 1:30, 3).

Sampling Fange
= full array {* zub-matrix

Sampling Type
= real i imag " ahs

Figure 4.8.4 Range and type sampling

4.8.5 Snapshot Panel

The Snapshot Panel, as shown in Figure 4.8.5, displays a snapshot of the distribution
and size of the two-dimensional data. The darkness of a cell is determined by mapping
the value stored in the cell to a predefined range. In other words, the darker the cell
color, the higher the value of the corresponding entry.

126 MATFOR User’s Guide
L

Shapshot Iﬂnalysis I Filter |

[21x61x1)

1s61)
[ata Range Selection

-, o> |
Figure 4.8.5 Snapshot Panel

In the snapshot window, the range is defined by setting the upper-boundary to be:
average + 3 times the standard deviation, and setting the lower-boundary to be:
average — 3 times the standard deviation. The values that exceed the upper-boundary are
all treated as the maximum value and the values that are less than the lower-boundary
are treated as the minimum value. The range is further divided into 256 shades, or levels,
of darkness and the cells are drawn accordingly.

The string (30x30x1) above the snapshot window specifies the shape of the array being
examined. The string (30x30) right below the snapshot window shows the size of the
dimensions of displaying array data.

Chapter 4 Visualization Basics 127
-]

The Data Range Selection input box allows you to specify the range of data to be
displayed.

For example, if you want to display all entries in an 30-by-30 matrix, you simply input
(:,:) and press Enter. When the input is (10:20, 10:), the Data Viewer displays only the
entries in rows 10 to 20 and columns 10 to 30.

4.8.6 Analysis Panel
The Analysis Panel shows the distribution of the data. It also displays the average,
standard deviation and min/max values, as shown in Figure 4.8.6.

Shapshot | Analysis lFiIter]

Dristribution of [30x30]

5.37533 0 537533
Average: | 0.000000 |
Standard Deviation: | 1791777
Masimun Value: | 3.000000 |
Minimun Value: | -2.000000 |

Figure 4.8.6 Analysis Panel

4.8.7 Filter Panel

The Filter Panel allows you to define a range using conditions of inequalities. The
conditions are specified in the condition boxes provided. The entries that satisfy a

128 MATFOR User’s Guide
1

specific condition are highlighted in the color shown on the right side of the condition
box.

Use 'X or x to represent the data that is being extracted. You may use avg, std, max, and
min to represent the average, the standard deviation, maximum value, and minimum
value, respectively.

MATFOR Data Viewer supports the inequality operators <, >, <=, and >=. The equal
sign is not supported.

Snapshat].i'-.nal_l,lsis | Filter l

b atrix T able Filter
[1.|x>avg+3“std | !
~ 2.|:-:<avg-3“std | !

2 |
4 |!
5| | |

Figure 4.8.7 Filter panel

4.8.8 Status Bar

The Status Bar located at the bottom of the Data Viewer contains two parts. The one on
the right-hand side shows the system status and the one on the left-hand side shows the
progress status. The system status bar displays the value of a selected cell. It also shows
messages of any abnormal system behaviors.

Chapter 4 Visualization Basics 129
-]

|-2.586206912994384SDDDD 0%

Figure 4.8.8 Status bar

Visualization Methods

MATFOR’s Graphics Library contains a set of visualization functions for visualizing
data in two-dimensional space and three-dimensional space. These visualization
functions can be categorized according to the type of data domain that they use to
display.

Not all MATFOR Visualization functions are described here. You may refer to the
MATFOR Reference Guide to see detailed descriptions on every MATFOR functions.

Examples with figures and diagrams will be presented for each major category.

5.1 Linear Graph

The data used for plotting linear graph in two-dimensional and three-dimensional space
are the coordinates in vector form.

This section is divided into two sub-sections. The first presents the manipulations on the
two-dimensional linear graph and the second covers the plotting of three-dimensional
linear graph using different representations.

5.1.1 Two-dimensional Linear Graph

Use the two-dimensional linear graph function mfPlot to visualize your data as trend
lines. The function accepts different combinations of input arguments and allows you to
plot multiple graphs with one function call.

132 MATFOR User’s Guide

The line color and marker type used by these graph are specified through optional
arguments of the functions.

We shall go through example 5.1.1 to see how to plot a line graph of cosine using
different combinations of line colors and marker types.

Example 5.1.1 Two-dimensional linear plot

Create a new figure window and plot the cosine graph. The line color is set as red when
you specify the optional argument as ‘r’.

x = mfLinspace(-MF_PI, MF_PI,30);
y = mfCos(x);

mfFigure(1);
mfPlot(x, y, "r");
mfTitle("Cosine graph");

Cosine graph

0.5

0.5

Figure 5.1.1.1 Cosine graph with red line

Chapter 5 Visualization Methods 133
-

Plot a second cosine graph with the line specification set to ‘go-*, which specifies a
solid green color line with circle markers.

mfFigure(2);
mfPlot(x, y, "go-");
mfTitle("Cosine graph");

Cosine graph

R

Figure 5.1.1.2 Cosine graph with green line and circle markers

5.1.2 Three-dimensional Linear Graph

MATFOR provides the functions mfFPlot3, mfTube, and mFRibbon for visualizing
linear graphs in three-dimensional space as trend lines, tubes, and ribbons.

134 MATFOR User’'s Guide

Example 5.1.2 should give you a clear picture of what these three types of three-
dimensional linear graphs look like.

Example 5.1.2 Three-dimensional linear plot

Create three figure windows with the names ‘plot3’, “tube’, and ‘ribbon’ for
plotting the data in line graph, tube graph, and ribbon graph respectively.

N kkhkkkkkkkkkkhkhkhkhkkkkhkkhkhkhkhkhhhhhkkkhkhkhkhkhkhhhkkkkhkhkhkhkhkhhkkkkkhkhkhkhkkhkhkkkkkkk

/I PLOT3

” kkhkkkkkkkkkkkkkkkkkkkkkhkkkhkhkhhkkkkkkhkkhkhkhkhhhkkkkkkkhkkhkhkkkkkkkkkhkkkkkkkkkkk
mfFigure("plot3");

h = mfPlot3(x, vy, 2);

mfAxis(-30,30,-30,30,0,30);

mfCamZoom(1.4);

” kkkkkkkkkhkkkhkkkhkkhkhhkkhhkhhkkhhhkhhkhhkhhkhhkhhhhhkhhhhhkhhkhhxhhhkhhkxk

/I TUBE

N kkkkkkhkkkhkkhkhkkkkkhkhkhkkhkhkhkhhhkhkhkhkhkhkhkhkhhhhkhhhkhkhkhkhhkhhkhkhhhkhkhkhhkkhhkhhhkhhkhixkx
mfFigure("tube");

h = mfTube(x, y, 2) ;

mfAxis(-30,30,-30,30,0,30);

mfCamZoom(1.4);

N kkhkkkkkkkkkhkhkhkhkhkhkkkkhkhkhkhkhhhhhkkkhkkhkhkhkhkhhhkkkkhkhkhkhkhkhhkkkkkhkhkhkhkkhhkkkkkkkx

/I RIBBON

” kkhkkkkkkkkkkkkkkhkkkkkkkhkkkhkhkhkhkkkkkhkkhkhkhkhhhkkkkkkkhkhkhkhkkkkkkkkhkkkkkkkkkkk
mfFigure("ribbon");

h = mfRibbon(x, vy, z) ;

mfAxis(-30,30,-30,30,0,30);

mfCamZoom(1.4);

The results show in the following figures.

Chapter 5 Visualization Methods 135
-

Figure 5.1.2.2 Tube graph

136 MATFOR User’s Guide

Figure 5.1.2.3 Ribbon graph

5.2 Surface Plot

In MATFOR, quadrilateral grid data can be plotted using various representations, such
as surface graph, mesh graph, and with contour lines.

This section goes through some examples on plotting a quadrilateral surface using these
representations.

5.2.1 Surface Plot

In the following example, we shall illustrate how to plot a quadrilateral grid in three-
dimensional space with functions mFSurf, mfMesh, mfSurfc, and mfMeshc.

Example 5.2.1 Surface plots using different methods

First, create a new figure window the name ‘surface’.

Chapter 5 Visualization Methods 137
-

mfFigure('surface’)

Divide the figure window into four subplots and draw a surface plot on each of them
using different representations.

You may notice that by using functions mFSurfc and mfMeshc, a two-dimensional
contour plot is added to the surface plot.

” kkhkkkkkkkhkkkkhkhkhkhkhhhhhhhkhkhkhkhhhhhhhhhkhkhkhkhhhhhhhhhkhhhhhhhhhhhhhkhkhdhidxxx

Il surf

H kkkkkkkkkhkkhkkkkkkhkkhkkhkhkkhkhkkkkhkhkkhkkhkkhkkkhkhkhkkhkhkhkhkkkhkhkhkkhkkhkhkkhkkhkhkkkkkhkhkkkkx
mfSubplot(2, 2, 1);

mfTitle("surf");

h = mfSurf(x, vy, z);

mfCamzZoom(1.5);

H kkkkkkkkkkkkkkkhkhhkkkkkkkkhkhkhkhkhkkkkkkkhkkhkhhhkkkkkkkhkhkhkhhkkkkkkkhkhkkkkkkx

/I mesh

H *hkhkkkhhkhkkhkkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhkhhhhhkdhihsxkx
mfSubplot(2, 2, 2);

mfTitle("mesh");

h = mfMesh(x, vy, 2);

mfCamZoom(1.5);

” Kkkkkkkkhkkkhhkkkhkkhhkkhhkhhkhhkhhkhhkhhhkhhkhkhhkhhkhhkhhhkhhhkhhkhhkhhkhhkhhxk

Il surfc

H kkkkkkkkkkhkkkkkkhkkhkkkhkkhkhkkkkhkhkkhkkhkkhkhkkkhkhkhkkhkhkhkhkhkkhkkhkhkhkkhkkhkhkhkkkkhkkkkkhkhkkkxkx
mfSubplot(2, 2, 3);

mfTitle("surfc");

h = mfSurfc(x, vy, 2);

mfCamzZoom(1.5);

H kkhkkkkkkkkkkkkhkhkhkhhhkkkkhkhkhkhkhkhhhhkkkkhkhkhkhkhkhhhhkkkkhkkhkhkhkhkhkhhkkkkkkhkhkhkkkkkkx

/I meshc

H *hkkkkhhkhkkhkhkhhkhkhhkhhkhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhhihixsx
mfSubplot(2, 2, 4);

mfTitle("meshc");

h = mfMeshc(x, y, z);

mfCamZoom(1.5);

138 MATFOR User’s Guide
1

55
SRR

ety

LIS

e e

eI

< TSR
5SSOt S S

II N\‘
=R

Figure 5.2.1 Surface plots

5.2.2 Contour Plot

Contour plots are lines or surfaces of constant scalar values. They can be drawn in two-
dimensional or three-dimensional space using functions mfContour, mfContour3,
mfSolidContour, and mfSolidContour3. The function mfOutline allows
you to draw a wireframe outline boundary for a given data set. It is often used when
drawing contour plots.

Using the same data set as the one used in Example 5.2.1, we shall plot the contour
graphs using different representations in the example below.

Chapter 5 Visualization Methods 139
-

Example 5.2.2 Using contours

Create a new figure window with the name “contour”.

mfFigure(‘contour’)

Divide the figure window into four subplots and draw a contour plot on each of them
using different representations and shading options.

” kkhkkkkkhkkhkkhkkhkhkhkhhhhhhhhkhkhkhkhhhhhhhhhhkhkhkhhhhhhhhhkhhhhhhhhhhhhhhihdrdxxx

/I contour3

” kkkkkkkkkkkkkkkhkhhkkkkkkkkkhkhkhhkkkkkkkhkkhkkhkhhhhkkkkkkkhkhkhkhkkkkkkkkhkhkkkkkkx
mfSubplot(2, 2, 1);

mfTitle("contour3 with outline™);

h = mfContour3(x, vy, z);

mfHold("on");

h = mfOutline(x, y, z);

mfDrawMaterial(h, "edge", "color", mfV(0, 0, 1));
mfCamZoom(1.5);

” Kkkkkkkkhkkhhkkkhkkhhkkhhkhkhkhhhkhkhkhhkhhhkhhkhkhhkhhkhhhkhhrkhhhkhkhhkhhkhhkhhxx

/I contour

H kkkkkkkkkkhkkkkkkhkkhkkhkhkkhkkhkkkkhkhkkhkhkkhkkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkkkkhkhkhkkkhkhkkkkkhkhkkkkk
mfSubplot(2, 2, 2);

mfTitle("contour");

h = mfContour(x, y, z);

mfAxis("equal");

mfCamZoom(1.5);

” kkkkkkkkkkkkkkkhkhhkkkkkkkkkhkhkhkhkkkkkkhkkhkkhkhhhkkkkkkkkhkhkhhkkkkkkkhkkkkkkkx

/I solid contour3

H kkkkkkkkkhkkhkkhkkhkhkkhkkhkhkhkhkhkkkhkhkhkhkhkhkhkhkhhhkhkhkhhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhhhkhkkhkhkkkxkx
mfSubplot(2, 2, 3);

mfTitle("solidcontour3 with outline");

h = mfSolidContour3(x, vy, z);

mfHold("on");

h = mfOutline(x, vy, z);

mfDrawMaterial(h, "edge", "color", mfv(0, 0, 1));
mfCamZoom(1.5);

” kkhkkkkkkkhkkkkhkhkhkhkhhhhhkhhkhkhkhkhhhhhhhhkhkhkhkhkhhhhhhhkhkhkhkhkhkhhhhhhhhkhkhkhkhhihdxxx

/I solid contour

” kkkkkkkkkkkkkkkhkhkkkkkkkkkhkhkhkhkhkkkkkkkhkkhkhhhkkkkkkkkhkhkkkkkkkkkkkkkkkkx

mfSubplot(2, 2, 4);

140 MATFOR User’s Guide
1

mfTitle("solidcontour™);

h = mfSolidContour(x, vy, z);
mfAxis("equal");
mfCamZoom(1.5);

putli 10\ contour

" e -] T
1 P . i
i i e - 1
1 [l e S |
1 B = S
e [t b e ~ 1
06 [t - - |
Ll | e S - i T
T [. [S | g
e ! _t i - o |
- & i - i
! <,
! 7
i - -

)
-
©
N

solidcontour

Figure 5.2.2 Contour plots

5.2.3 Pseudocolor Plot

Using the pseudocolor plotting function mFPColor, the data is mapped to the current
colormap to represent the magnitude of the data value. The resulting graph is equivalent
to the top-view of the one produced using function mfSurt.

Example 5.2.3 Pseudocolor plot

Create a new figure with the name “pcolor’.

mfFigure('pcolor’)

Chapter 5 Visualization Methods 141
-]

Divide the figure window into four subplots and draw a pseudocolor plot on each of
them using different shading methods.

H kkkkkkkkkkkkkkkhkhhkkkkkkkkhkhkhkhkkkkkkkkhkkhkhhhkkkkkkkhkhkhkhhkkkkkkkhkhkkkkkkx

/I pcolor

H *hkkkkhhhkhkhkhhkhkhhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhdhihixk
mfSubplot(2, 2, 1);

mfTitle("pcolor");

h = mfPColor(x, vy, 2);

mfAxis("equal");

mfCamZoom(1.5);

” kkhkkkkkkkkkkkkhkhkhkhhhkkkkhkhkhkhkhkhhkhkkkhkhkhkhkhkhkhhhhkkkhkhkkhkhkhkhkhhkkkkkhkhkhkhkhkhkkkkx

/I pcolor w/o edge

H kkhkkkkkkkkkkkkkkhkhhkkkkkkkkkhkhkhkhkhkkkkkkkhkkhkhhhhkkkkkkkhkhkhkhkkkkkkkkhkhkkkkkkx
mfSubplot(2, 2, 2);

mfTitle("pcolor w edge");

h = mfPColor(x, vy, z);

mfDrawMaterial(h, "edge", "visible", "on");

mfAxis("equal®);

mfCamZoom(1.5);

H kkhkkkkkkkkkkkkhkkhkhhhkkkkhkhkhkhkhkhkhhhkkkhkhkhkkhkhkhkhhhhkkkkhkhkhkhkhkhkhhkkkkkhkhkhkhkkhkkkkx

/I pcolor with interp

H *hkkkkhkhkhkkhkhkhhkhkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhkhhhhhkdhihsxkx
mfSubplot(2, 2, 3);

mfTitle("solid with interp and contour");

h = mfPColor(x, vy, z);

mfDrawMaterial(h, "surf", "smooth", "on");

mfDrawMaterial(h, "edge"”, "visible", "off");

mfAxis("equal");

mfCamZoom(1.5);

H kkkkkkkhkkhhkkkhkkhhkkkhhkhkhkkhhkhkhkhhkkhhhkhhkhhhkhhkhhkhhhkhhhkhkhhkhhkhhkhhxkx

/I pcolor with contour

H kkkkkkkkkkhkkkhkkkhkkhkkhkhkkhkhkkkkhkhkhkkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkkhkkhkhkhkkkkhkkkkkhkhkkkk
mfSubplot(2, 2, 4);

mfTitle("solid with interp and contour");

h = mfPColor(x, vy, z2);

mfDrawMaterial(h, "surf", "smooth", "on");
mfDrawMaterial(h, "edge"”, "visible", "off");
mfHold("on");

h = mfContour(x, vy, 2);

mfDrawMaterial(h, "edge"”, "colormap”, "off");
mfAxis("equal");

mfCamZoom(1.5);

142 MATFOR User’s Guide

pcolor pcolor w/o edge

solid with interp and contour solid with interp and contour

Figure 5.2.3 Pseudocolor plots

5.3 Volume Rendering

This section covers the functions that visualize volumetric data in the representation of
surface, mesh, sliced-planes, and iso-surfaces. In MATFOR, the volumetric data is
defined in three-dimensional mfArrays that specify the coordinates and scalar values of
the data points.

In this section, we shall demonstrate an example that displays a portion of the nose on a
missile using various representations to explore different aspects of the application. The
example loads data from hdd.mfb, which contains all the information required,
including x-, y-, z- coordinates and a field data set. In general, the x-, y-, and z-
coordinates of the data set are plotted with a field data as the scalar values. If field data
is not given, then z-coordinate will be treated as the scale values.

Chapter 5 Visualization Methods 143

5.3.1 Surface (surf, mesh, outline, contour)

Displaying the data as surface plot or contour plot would give you different perspectives
of the application.

Example 5.3.1 Surface plots of the volumetric data

First, we simply use function mfSurf with a transparent shading to visualize the
volumetric data as mesh grid.

mfFigure("Mesh");

mfTitle("Mesh");

h = mfSurf(x, vy, z);

mfDrawMaterial(h, "surf", "smooth", "on", "trans", 50);
mfDrawMaterial(h, "edge", "visible", "on", "colormap", "on");
mfView(30, 45);

mfAxis("off");

mfCamZoom(1.8);

mfCamPan(0, -70);

Figure 5.3.1.1 Mesh Plot of the volumetric data

144 MATFOR User’s Guide
1

Next, we split the data into two sets of data: (x1, y1, z1) and (x2, y2, z2), then display
them in one figure simultaneously by plotting data set (x1, y1, z1) using function
mfSol1dContour3 with field data machl, and data set (x2, y2 and z2) using
function mFSurf with field data mach2.

mfFigure("mach");
mfTitle("mach");

h = mfSolidContour3(x1, y1, z1, machl);
mfHold("on");

h = mfSurf(x2, y2, z2, mach2);
mfDrawMaterial(h, "surf", "smooth", "on", "trans", 50);
mfDrawMaterial(h, "edge", "visible", "on", "colormap", "on");

mfColorbar("on");
mfView(30, 45);
mfAxis("off");
mfCamZoom(1.8);
mfCamPan(0, -70);

Figure 5.3.1.2 Solid contour and mesh plot of the volumetric data

Chapter 5 Visualization Methods 145
-

5.3.2 Sliced-planes

MATFOR supports various slicing techniques to display sliced-planes of a set of
volumetric data.

Using function mFS1iceXYZ, you can select any orthogonal sliced-plane along X, v,
and z directions to be displayed. Function mFSI1cePlane allows you to cut a sliced-
plane along the arbitrary direction.

Function mFS1icelJK displays sliced-planes along i, j, and k which are the index of
the matrices that specify the coordinates. It has the following syntax:

mfSlicelJK(X, vy, z, i, j, k)

In example 5.3.2, we shall display several sliced-planes of the missile node object by
using function mfS1icelJK.

Example 5.3.2 Sliced-planes of the volumetric data

Plot a sliced-plane along index of mfArray X, another sliced-plane along index of
mfArray y, and five sliced-planes along index of mfArray z.

mfFigure("slice mach");

mfTitle("slice mach");

h = mfSlicelJK(x, y, z, mach, m, 1, mfLinspace(1, k, 5));
mfDrawMaterial(h, "surf", "smooth", "on");
mfDrawMaterial(h, "edge", "visible", "off", "colormap", "on");

mfHold("on");
mfColorbar("on");
mfView(30, 45);
mfAxis("off");
mfCamZoom(1.8);
mfCamPan(0, -70);

146 MATFOR User’'s Guide

4.00

2.00

1.00

0.000

Figure 5.3.2 Show sliced-planes of the volumetric data

5.3.3 Isosurface

Function mFlsoSurface creates 3-D graphs composed of isosurface data from the
volumetric data.

Example 5.3.3 combines a few representations of the missile nose using functions
mFlsoSurface and mfOutl ine. Note that the data on each surface has the same
iso-value, thus the color on each surface stays constant.

Chapter 5 Visualization Methods 147
-]

Example 5.3.3 Isosurface plots of the volumetric data

Display isosurfaces on the right part and front left part. The wireframe of the missile
nose is also drawn.

mfFigure("isosurface mach");

mfTitle("isosurface mach");

h = mflsoSurface(x1, y1, z1, machl, mfLinspace(1, 4, 6));
mfHold("on");

h = mflsoSurface(x3, y3, z3, mach3, mfLinspace(1, 4, 6));
h = mfOutline(x, vy, z);

mfColorbar("on");

mfView(30, 45);

mfAxis("off");

mfCamzZoom(1.8);

mfCamPan(0, -70);

4.00

2.00

1.00

0.000

Figure 5.3.3 Isosurface plot of the volumetric data

148 MATFOR User’'s Guide
1

5.4 Vector Field

Vector set in two-dimensional and three-dimensional space can be represented in
quivers or streamlines using functions mfQuiver and mfStreamlLine. The
streamlines are plotted by identifying the vector set, as well as their corresponding
starting points.

5.4.1 Quiver and Streamline
In the following example, we shall generate a set of data and present it with quivers.
Example 5.4.1 Quiver and streamline representations of the volumetric data

Start by generating a set of mesh grid data.

a = mfLinspace(-2, 1.6, 4);

b = mfLinspace(-2, 1, 3);

¢ = mfLinspace(-2, 1.84, 5);
mfMeshgrid(mfOut(x, vy, z), a, b, c);
u = mfOnes(3, 4, 5);

v = 0.4*mfPow(z,2);

w = mfExp(0.5*x);

Plot the quivers and streamlines using the data set created. You may notice that the
streamlines are plotted by identifying the starting points of the data.

mfQuiver3(x, y, z, u, v, w);

mfHold("on");

mfStreamLine(x,y,z,u,v,w, mfV(-1.2,0.0,0.2), mfV(-1.2,0.5,0.0),
mfV(-2.0,-1.0,-2.0));

mfView(-30,50);

Chapter 5 Visualization Methods 149

Figure 5.4.1 Plot quivers

5.5 Elementary 3-D Objects

MATFOR provides you with a set of elementary 3-D objects to display on the plot
space. In general, the elements are plotted with given coordinates, sizes, and colors.
When plotting molecules, the connectivity between the ball objects should also be
specified.

5.5.1 Primitives

The following is a list of 3-D objects MATFOR supports.

150 MATFOR User’s Guide

fSphere .
mfCone |
mfCube l
mfCylinder .
mfAxisMark %

5.5.2 Molecule

The construction of a molecule object is a little bit different from the constructions of
other 3-D objects. It is often composed of balls and sticks.

Chapter 5 Visualization Methods 151
-]

In the example below, we shall import a protein-structured data that specifies the atom
types, positions of the atoms and the connectivity between them. Here, we use different
colors and sizes to represent each of the different atoms.

Example 5.5.2 Plotting structured protein graph

Load data from ASCII files to retrieve the atom types, positions of atoms, and the
connectivity.

pos_data = mfLoadAscii("./data/Protein1B9G_NPos.data");
conn = mfLoadAscii("./data/Protein1lB9G_Link.data");

s = mfSize(pos_data, 1);

loc = pos_data(MF_COL, mfl(2,4));

atom = pos_data(MF_COL, 1);

Define the radius for each atom type.

rad = atom;
mfGDisplay(atom > 14, "atom > 14");

rad(atom > 14) = 14;
rad = 0.1*rad;

color = mfOnes(s, 3) * 0.7;
for(i=1;i<=s; i++)

{
int weight = (int) atom(i).ToDouble();
e
if (weight==12)
color(i, MF_COL) = mfVv(0.8, 0.8, 0.8);
II'N
else if (weight==14)
color(i, MF_COL) = mfVv(0.2, 0.2, 1.0);
11O
else if (weight==16)
color(i, MF_COL) = mfVv(0.9, 0.0, 0.0);
s

else if (weight==32)
color(i, MF_COL) = mfVv(1.0, 1.0, 0.0);

152 MATFOR User’s Guide
1

And finally, define the radius and color of the sticks to be connected between the atoms
and then plot the structured protein.

stick_rad = 0.1 * mfOnes(s, 1);
stick_col = mfOnes(s, 3);

mfMolecule(loc, conn, rad, color, stick_rad, stick_col, mf(6));

Figure 5.5.2 Structured protein graph

5.6 Unstructured Mesh

An arbitrary mesh, or surface, is usually represented as an unstructured mesh that
includes a set of vertex and a face set. The vertices are the coordinates in space and the
face set specifies the surface connectivity between the vertex. In MATFOR,
unstructured mesh can be visualized by using functions mfTriSurf, mfTriMesh,
and mfTriContour.

Chapter 5 Visualization Methods 153
-

The triangular representation is the most often-used face connectivity. MATFOR
supports this representation and extends to other polygonal representations, such as
quadrilateral, pentagon, etc.

5.6.1 Surface

In Example 5.6.1, we shall prepare an icosahedron (a polyhedron composed of 20 faces
that span 12 vertices) and perform sub-divisions on it. The resulting graphics objects are
displayed using functions mfTraSurf, mfTriMesh, and nfTriContour.

Example 5.6.1 Building an icosahedron

Define the vertices and triangles that make up an icosahedron and draw the icosahedron
using mFTriSurt.

X
z

= 0.525731112119133606;

= 0.850650808352039932;

double xyz_val[] = {
-X, X, -X, X, 0.0, 0.0, 0.0, 0.0, z, -z,
0.0, 0.0, 0.0, 0.0, z, z, -z, -z, X,
z,z, -2, -Z, X, -X, X, -X, 0.0, 0.0, X

double tril_val[] = {

2,5,5,9,2,2,11,9,4,4,4,11,7,7,7,11, 12, 3, 6, 12,

5,10,6,6,9,11,4,4,3,8,11, 7,12, 1,2,2,1, 12, 3, 3,

1,1,10,5,5,9,9,6,6, 3,8,8,8, 12,1, 7,10, 10, 10, 8 };

zZ, -Z
1 -X -Xy
0

X]
0.0, 0.

xyz = mfArray(xyz_val, 12, 3);

tril = mfArray(tril_val, 20, 3);

¢ = mfPow(mfS(xyz, MF_COL, 1),2) + mfPow(mfS(xyz, MF_COL,
2),2) - mfPow(mfS(xyz, MF_COL, 3),2);

mfSubplot(1, 2, 1);

h = mfTriSurf(tril, xyz, c);
mfAxis("equal®);

mfSubplot(1, 2, 2);

h = mfTriMesh(tril, xyz, c);
mfDrawMaterial(h, "surf", "visible", "off");
mfAxis("equal);

mfViewPause();

Perform subdivision three times. Draw the polygonal object during each iteration.

154 MATFOR User’s Guide
1

for(j = 1; j <= 3; j++)

intL=1;
for(i = 0; i < (j-1); i++) {L *= 4;}
L *= 20;
for(i=1;i<=L;it++)
{
pl = tril(i, 1);
p2 = tril(i, 2);
p3 = tril(i, 3);
plxyz = mfHCat(xyz(p1, 1), xyz(pl, 2), xyz(pl, 3));
p2xyz = mfHCat(xyz(p2, 1), xyz(p2, 2), xyz(p2, 3));
p3xyz = mfHCat(xyz(p3, 1), xyz(p3, 2), xyz(p3, 3));
pl2xyz = (plxyz + p2xyz) / 2;
p23xyz = (p2xyz + p3xyz) / 2;
pl3xyz = (plxyz + p3xyz) / 2;
pl2xyz = normalize(pl2xyz);
p23xyz = normalize(p23xyz);
p13xyz = normalize(p13xyz);
pl2 = pl3 + 1;
p23 = pl2 + 1;
pl3 =p23 + 1;
if (i==1)
{
tri2 = mfVCat(
mfHCat(p1l, pl2, p13),
mfHCat(p2, p23, pl2),
mfHCat(p3, p23, p13),
mfHCat(pl12,p23, p13));
}
else
{
tri2 = mfvVCat(tri2,
mfHCat(pl, pl2, p13),
mfHCat(p2, p23, pl2),
mfHCat(p3, p23, p13),
mfHCat(pl2,p23, pl3));
}
xyz = mfVCat(xyz, pl2xyz, p23xyz, pl3xyz);
}
tril = tri2;

/1tri2 = mf();

Chapter 5 Visualization Methods 155
-

¢ = mfPow(xyz(MF_COL, 1),2) + xyz(MF_COL, 2) -
mfPow(xyz(MF_COL, 3),2);

mfSubplot(1, 2, 1);

h = mfTriSurf(tril, xyz, c);

mfAxis("equal®);

mfSubplot(1, 2, 2);

h = mfTriMesh(tril, xyz, c);

mfDrawMaterial(h, "surf", "visible", "off");

mfAxis("equal");

mfViewPause();

The function normal 1 ze calculates the normalized cross product of two vectors.

mfArray normalize(mfArray v)

{
mfArray d, out;

out = mfOnes(1, 3);

d = mfSqrt(v(1, 1)*v(1, 1) + v(1, 2)*v(1, 2) + v(1, 3)*v(1, 3));
out(l, 1) =v(1, 1) / d;

out(l, 2) = v(1, 2) / d;

out(1, 3) =v(1, 3)/d;

return out;

}

156 MATFOR User’s Guide
1

o
Ve,
SRS

avan N

VWA
N
a0AY

[

Figure 5.6.1.1 Surface and mesh plot of the polygonal object

5.6.2 Contour

Contour lines are plotted on the constant value line on the surface. The bands between
the contour lines are filled with the same color.

Example 5.6.2 Displaying the polygonal object using contour representation

Contour representation of the polygonal object:

mfSubplot(1, 2, 1);

h = mfTriSurf(tril, xyz, c);

mfDrawMaterial(h, "edge", "visible", "off");

mfDrawMaterial(h, "surf", "smooth", "on", "ambient", 50, "diffuse",
20);

mfAxis("equal");

mfSubplot(1, 2, 2);

h = mfTriContour(tril, xyz, c);

mfAxis("equal");

mfViewPause();

Chapter 5 Visualization Methods 157

Figure 5.6.2 Contour plot of the polygonal object

5.7 Unstructured Grids

An arbitrary solid model can be represented by unstructured grids that include a set of
vertices and a cell set. Vertices are the coordinates in space and cell set specifies the cell
connectivity between the vertex. In MATFOR, unstructured grids can be visualized by
using functions mfTetSurf, mfTetMesh, mfTetContour, and
mfTetlsosurface.

MATFOR supports four kinds of the cell connectivity representations, as shown in
Figure 5.7.1.

158 MATFOR User’s Guide

3 4
) 2
1 3
1
0 0

Tetrahedron (n=4) Pyramid (n=5)
5 7 6
3 ‘ 4 ‘ 2
/N
0 ! 0 '
Wedge (n=6) Hexahedron (n=8)

Figure 5.7.1 cell connectivity representations

In this section, we shall demonstrate an example of applying a force to the back of the
L-shape steel board, which has a fix constrain around the hole on the bottom of the steel
board. The applying force is represented with a cone and the fix constraint is
represented by cylinder.

5.7.1 Surface, Contour and Iso-surface plots of unstructured grids

Load data from binary files.

elem = mfLoad("./data/Lshape_elem.mfb");
node = mfLoad("./data/Lshape_node.mfb");
sxyz = mfLoad("./data/Lshape_sxyz.mfb");

Xyz = node(™:", "1:3");

dxyz = node(":", "4:6") * 10;
x = xyz(":", 1);

y = xyz("", 2);

Chapter 5 Visualization Methods 159
-

z = xyz(":", 3);

dx = dxyz(":", 1);

dy = dxyz(":", 2);

dz = dxyz(":", 3);

d_norm = mfSqrt(dx*dx + dy*dy + dz*dz);

sx = sxyz(":", 1) * 1.0e-3;
sy = sxyz(":", 2) * 1.0e-3;
sz = sxyz(":", 3) * 1.0e-3;
sxy = sxyz(":", 4) * 1.0e-3;
syz = sxyz(":", 5) * 1.0e-3;
sxz = sxyz(":", 6) * 1.0e-3;

ml = mfSize(node, 1);

m2 = mfSize(sxyz, 1);

if (m1>m2)

{
sx = mfVCat(sx, mfZeros(m1-m2, 1));
sy = mfVCat(sy, mfZeros(m1l-mz2, 1));
sz = mfVCat(sz, mfZeros(ml-m2, 1));
sxy = mfVCat(sxy, mfZeros(ml-m2, 1));
syz = mfvVCat(syz, mfZeros(m1l-m2, 1));
sxz = mfVCat(sxz, mfZeros(m1-m2, 1));

}

s_norm = mfSqrt(sx*sx + sy*sy + sz*sz);

Displays polyhedrons defined by a cell matrix.

H kkkkkkkkkkkkkkkhkhhkkkkkkkkhkhkhhkhkkkkkkkhkkhkhhhkkkkkkkhkhkhkhhkkkkkkkhkhkkkkkkx

/I Grid & Mesh

” kkhkkkkkkkhkkkhkhkhkhkhkhhhhhhhkhkhkhkhhhhhhhhhkhkhkhkhhhhhhhhhkhkhhhhhhhrhhhkhkhihdrdxxx

mfFigure("Grid");

” kkhkkkkkhkkhkkhkhkhkhkhkhkhhhhhhhkhkhkhkhkhhhhhhhhkhkhkhkhhhhhhhhhkhkhhhhhrhrhhhkhkhihirdxxx

/I Grid

H kkkkkkkkkkkkkkkhkkhkkhkhkkhkhkkkkhkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkkhkkhkhkhkkhkkhkhkhkkhkhkkkkkhkhkkkkxkx
mfSubplot(1, 2, 1);

mfTitle("Grid");

/I draw structure element

h = mfTetSurf(elem, x, vy, 2);
mfDrawMaterial(h, "surf", "colormap”, "off");
mfHold("on");

/I draw cylinder
h = mfCylinder(mfV(-5.8, 0.0, 0.25), 0.95, 1.5, mfv(0, 0O, 1));

160 MATFOR User’s Guide
1

// draw cone

h = mfCone(mfV(1.5, 0.0, 5.0), 0.5, 2, mfV(0, 0, 1));
mfObjOrigin(h, 1.5, 0.0, 5.0);

mfObjOrientation(h, 0, -90, 0);

/Il draw force annotation
h = mfAnnotation("Force=10000NT", mfVv(2.5,0.0,5.0), mfVv(1, 0, 0));
mfGSet(h, "offset", mfV(-50, 10));

// draw constraint annotation
h = mfAnnotation("Fix Constraint", mfV(-5.8,0.0,1), mfVv(1, 0, 0));
mfGSet(h, "offset", mfV(-50, 10));

mfAxis("equal®);
mfAxis("off");
mfCamZoom(1.3);

N kkhkkkkkkkkkkkkkkhkkkkkkkkkkhhkkkkkkhkkkkhkhhkkkkkkkhkhkhkkhkkkkkkkhkkkkkkkkkkk

/I Mesh

” khkkkkkkkkkhkkhkhkhkhhkhhkhkhkhkhhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhdhkhhkhhkhkhkhhkhhkhkkhdkkxk
mfSubplot(1, 2, 2);

mfTitle("Mesh");

// draw structure element

h = mfTetSurf(elem, x, vy, 2);

mfDrawMaterial(h, "surf", "colormap”, "off", "trans", 80);
mfHold("on");

/I draw cylinder
h = mfCylinder(mfVv(-5.8, 0.0, 0.25), 0.95, 1.5, mfVv(0, 0O, 1));

/l draw cone

h = mfCone(mfV(1.5, 0.0, 5.0), 0.5, 2, mfv(0, 0, 1));
mfObjOrigin(h, 1.5, 0.0, 5.0);

mfObjOrientation(h, 0, -90, 0);

/I draw force annotation
h = mfAnnotation("Force=10000NT", mfVv(2.5,0,5), mfv(1, 0, 0));
mfGSet(h, "offset", mfV(-50, 10));

/I draw constraint annotation
h = mfAnnotation("Fix Constraint”, mfV(-5.8,0.0,1), mfv(1, 0, 0));
mfGSet(h, "offset", mfV(-50, 10));

mfAxis("equal™);
mfAxis("off");
mfCamZoom(1.3);

Chapter 5 Visualization Methods 161

mfViewPause();

Grid Mesh

Zee=10000NT =10000NT

Figure 5.7.1.1 Display the grid and mesh plot of the L-shape steel board

Illustrate the deformation and displacement vectors of the steel board after the is force
applied.

H kkkkkkkkkkkkkkkhhkkkkkkkkhkhhhkkkkkkkkhkhkhhkkkkkkhkkhkhkhkhhkkkkkkhkhkkkkkkkkkkk

/I Displacement

” kkhkkkkkkkkkkkkhkkhhhkkkkhkhkhkhkhkhhhhkkkkhkhkhkhhhhkkkkhkhkhkhkhhhkkkkkhkhkhkhkhhkkkkkkkk

mfFigure("Displacement");

” kkhkkkkkkkkkkkkhkkhhhkkkkhkhkhkhkhkhhhhkkkhkhkhkhkhkhhhkkkkhkhkhkhkhhhkkkkkhkhkhkhkhkkkkkkkkk

/I Deformation

H kkkkkkkkkkkkkkkhkkkkkkkkkhkhkhhkhkkkkkkkhkhkhhhkkkkkkkhkhkhkkkkkkkkkhkkkkkkkkkkk
mfSubplot(1, 2, 1);

mfTitle("Deformation");

h = mfTetSurf(elem, x, y, z, d_norm);

mfDrawMaterial(h, "surf", "visible", "off");

mfDrawMaterial(h, "edge", "colormap”, "on", "trans", 90);
mfHold("on");

hl = mfTetSurf(elem, xyz, d_norm);

mfDrawMaterial(hl, "edge", "visible", "off");

162 MATFOR User’s Guide
1

mfColorbar("vert");
mfAxis("equal");
mfAxis("off");
mfAxis(-8,2,-4,4,-2,9);
mfCamZoom(1.05);

// kkkkkkkkkhkkkhkkkhkkhkhhkkhhkhhkhhhkhhkhhkhhkhhkhhhhhhhhkhkhkhhkhhxhhhkhhxx

/I Displacement vector

// kkkkkkhkkkhkkhkhkkkhkkhkhkkhkhkhkhkhhkhkhkhhkhkhhkhhhkhhkhhhkhkhkhkhhhkhkhkhhhkhkhkhhkhkhhkhhhkhhkhixx
mfSubplot(1, 2, 2);

mfTitle("Displacement vector");

/I draw structure element

h = mfTetSurf(elem, x, y, z, d_norm);
mfDrawMaterial(h, "surf", "colormap”, "on", "trans", 90);
mfDrawMaterial(h, "edge"”, "visible", "off", "trans”, 90);
mfHold("on");

h2 = mfQuiver3(x, y, z, dx*0, dy*0, dz*0);

mfDrawMaterial(h2, "edge", "colormap”, "on");

mfColorbar("vert");
mfAxis("equal");
mfAxis("off");
mfViewPause();

for(i=1;i <= 20; i++)
{
mfGSet(hl, "xyz", xyz + i/ 20.0 * dxyz);
mfGSet(h2, "udata", dx*i/20, "vdata", dy*i/20, "wdata",
dz*i/20);
mfDrawNow();

Chapter 5 Visualization Methods 163

mfViewPause();

Deformation Displacement vector

0491 —r—— L0
0&8 070

050

0250

Figure 5.7.1.2 Display the deformation and displacement vector of the L-
shape steel board

Display the strength of the shear stress by mapping the graphics object to the current
colormap. Notice that the red area represents the deepest impacted area.

We represent the shear stress using vectors as shown in the figure on the right.

H kkkkkkkhkkhkhkkkhkkhkkhkkhkhhkkhhkkhhkhhkkhkhhkhhkhhkhhhhhkhhkhhkhhkhhkrhkhhkxkx

/I Shear stress

H kkhkkkkkkkkkkkkkkhhkkkkkkkkhkhhhkkkkkhkkhkhkhhhkkkkkkkhkhkhkhhkkkkkkkhkkkkkkkkkkk

mfFigure("Shear stress");

H kkkkkkkkkkkkkkkhhkkkkkkkkhkhkhhkhkkkkkkkkhhhkkkkkkkhkhkhkhhkkkkkkkhkkkkkkkkkkk

/I Shear value

H kkkkkkkhkkhkkhkkkkkhkkhkkhkkhhkkhhkhhkhkhhkhhkkhhkhhhkhhkhhkhhkhhkhhkrhkhhkxkx

mfSubplot(1, 2, 1);
mfTitle("Shear stress");
h = mfTetSurf(elem, x+dx, y+dy, z+dz, s_norm);

mfColormapRange(0.0, 2.0);

164 MATFOR User’s Guide
1

mfAxis("equal");
mfAxis("off");
mfCamZoom(1.05);
mfColorbar("vert");

N kkhkkkkkkkkkkkkkkkkkkkkkkkhkhhkhkkkkkhkkhkkhkhhhkkkkkkkhkhkkkkkkkkkhkkkkkkkkkkk

/I Shear vector

// hhkhkhkkhkhkhkhkhhhhkhkhkhhhhhhhhhhhhhhhhhdhhhhhrhhhhhhhhdhhhhkhhhhhhdhhhhirxx
mfSubplot(1, 2, 2);

mfTitle("Shear stress vector");

/I draw structure element

h = mfTetSurf(elem, x+dx, y+dy, z+dz, d_norm);
mfDrawMaterial(h, "surf", "colormap", "off", "trans", 90);
mfDrawMaterial(h, "edge", "visible", "off", "trans", 90);
mfHold("on");

hl = mfQuiver3(x+dx, y+dy, z+dz, sx*0, sy*0, sz*0, 0.2);

mfDrawMaterial(hl, "edge", "colormap”, "on");
mfColormapRange(0.0, 2.0);
mfColorbar("vert");

mfAxis("equal");

mfAxis("off");

mfViewPause();

for(i = 1; i<=20; i++)

{
mfGSet(hl, "udata", sx*i/20, "vdata", sy*i/20, "wdata",
sz*i/20);
mfDrawNow();

Chapter 5 Visualization Methods 165

mfViewPause();

Shear force Shear force vector

200 200

050

0000 o000

Figure 5.7.1.3 Display the shear force and the shear force vectors of the L-
shape steel board

Draw contour on the surface with labels to show the iso-value of each impacted area of
the shear stress.

The figure on the right is similar to the one on the left, except it only displays the
contour lines around each area with its vector values.

H kkkkkkkkkkkkkkkhkhhkkkkkkkkhkhkhhkhkkkkkkhkkhhhkkkkkkkhkhkhkhkkkkkkkkhkkkkkkkkkkk

/I Shear contour

H kkkkkkkhkkhkkhkkhkkhkkhkkhkhhkkhhkkhhkhhkhkhhkhhkhhkkhhhhhkhhkhhkhhkhhkrhkhhkrkx

mfFigure("Shear contour");

H kkkkkkkhkkhhkkkkkkhkkhkhhkkhhkkhhkhhkkhkhhkhhkhhkhhhhhkhhkhhkhhkhhkrhkhhkrkx

/I Shear contour

” Kkkkkkkkhkkhhkkkkkkhhkkkhkhhkkhhkhhkhhhkhhkhhkhhkhhkhhhhhhhkhhkhhkhhkrhhkhhkrx

mfSubplot(1, 2, 1);
mfTitle("Shear stress contour");

166 MATFOR User’s Guide
1

/I draw structure element

h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm);
mfGSet(h, "iso", mfLinspace(0, 2, 11), "label", "on");
mfDrawMaterial(h, "surf", "ambient”, 20, "diffuse"”, 80);

mfColormapRange(0.0, 2.0);
mfColorbar("vert");
mfAxis("equal");
mfAxis("off");

N kkhkkkkkkkkkkhkhkkhkkkkkkhkhkhkhkhhhhhkkkhkhkhkhkhkhhhkkkkhkhkhkhkhkhhkkhkkhkhkhkhkkhkhkkkkkkk

/I Shear contour

” kkkhkkkhkkkhkkhkkhkhkkhkkhhkhkhkhkhhhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhrhhhixx
mfSubplot(1, 2, 2);

mfTitle("Shear stress contour + vector");

/I draw structure element

h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm);

mfGSet(h, "iso", mfLinspace(0, 2, 11));

mfDrawMaterial(h, "surf", "ambient", 20, "diffuse"”, 80, "trans", 80);
mfDrawMaterial(h, "edge", "colormap"”, "on");

mfHold("on");
h = mfQuiver3(x+dx, y+dy, z+dz, sx, sy, sz, 0.2);

mfDrawMaterial(h, "edge"”, "colormap”, "on");

mfColormapRange(0.0, 1.0);
mfAxis("equal");
mfAxis("off");
mfCamZoom(1.05);
mfColorbar("vert");

mfViewPause();

Chapter 5 Visualization Methods 167

Shear force contour Shear force contour + vector

200 .00

o750

50

0250

0000 o000

Figure 5.7.1.4 Display the shear force contour and vector of the L-shape steel
board

Finally, show iso-surfaces of the shear stress on sliced-planes. There are six in the left-
hand figure and eleven in the right-hand figure.

” Kkkkkkkkhkkhkhkkkkkhkkhkhhkkhhkhhkhhhhhkhhkhhkhhkhhhhhhhhkhhkhhkhhkrhhkhhhrkx

/I Shear iso-surface

” kkhkkkkkkkkkkkkhkkhhhkkkkhkhkhkhkhkhhhhkkkkhkhkhkhkhhhkkkkhkhkhkhkhhhkkkkkhkhkhkhkhhkkkkkkkk

mfFigure("Shear iso-surface");

” kkhkkkkkkkkkkkkhkkhhhkkkkkhkhkhkhkhhhkkkhkkhkhkhkhhhhkkkkhkhkhkhkhhhkkkkkhkhkhkhkhkhkkkkkkkk

/I Shear iso-surface

” Kkkkkkkkhkkhhkkhkkhkkhkkkhkhhkhhkhhkhhhkhhkhhkhhkhhkhhhhhkhhhkhhkhhkhhkrhhkhhkrx

mfSubplot(1, 2, 1);
mfTitle("Shear iso-surface");

/I draw structure element

h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm);

mfGSet(h, "iso", mfLinspace(0, 2, 6), "label”, "on");
mfDrawMaterial(h, "surf", "ambient"”, 20, "diffuse”, 80, "trans", 80);

mfDrawMaterial(h, "edge"”, "colormap"”, "on");

168 MATFOR User’'s Guide
1

mfHold("on");

/I draw structure element with iso-surfaces of 6 levels

h = mfTetlsoSurface(elem, x+dx, y+dy, z+dz, s_norm, mfLinspace(0,
2, 6));

mfDrawMaterial(h, "surf", "ambient", 20, "diffuse", 80);

mfColormapRange(0.0, 1.0);
mfColorbar("vert");
mfAxis("equal");
mfAxis("off");

N kkhkkkkkkkkkkkkkkkkkkkkkkkkhhkkkkkkhkkkkhkhhkkkkkkkkhkhkkhkkkkkkkhkkkkkkkkkkk

I/l Shear iso-surface + contour

N Khkkkhkhkhkhkkkhhkhkhhkhhhhhhddhkhhkhdhdhhhddhhhhkhdhhhhkhdhhhhkddhhhhhdhdhhhhkddhhhdkkx
mfSubplot(1, 2, 2);

mfTitle("Shear iso-surface");

/I draw structure element with contour lines

h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm);

mfGSet(h, "iso", mfLinspace(0, 2, 11), "label", "on");
mfDrawMaterial(h, "surf", "ambient", 20, "diffuse", 80, "trans", 80);

mfDrawMaterial(h, "edge", "colormap”, "on");
mfHold("on");

/I draw structure element with iso-surfaces of 11 levels

h = mfTetlsoSurface(elem, x+dx, y+dy, z+dz, s_norm, mfLinspace(0,
2, 11));

mfDrawMaterial(h, "surf", "ambient”, 20, "diffuse"”, 80);

mfColormapRange(0.0, 1.0);
mfAxis("equal");
mfAxis("off");
mfCamZoom(1.05);
mfColorbar("vert");

mfViewPause();

Chapter 5 Visualization Methods 169

Shear iso-surface Shear iso-surface

o750

50

0250

0000 o000

Figure 5.7.1.5 Display the shear iso-surfaces of the L-shape steel board

5.8 Delaunay Triangulation
Delaunay triangulation is performed on a set of input points. In general, the application

of Delaunay triangulation is to create triangles in two-dimension and tetrahedrons in
three-dimension from a set of input points.

5.8.1 Two-dimensional Delaunay

Function mfDe launay takes a set of input points and plot the triangular mesh.

Function mFGetDe launay generates the triangular mesh as output that can be used by
mFTriSurf or mFTriMesh for plotting.

170 MATFOR User’s Guide
1

Example 5.8.1 Using 2-D Delaunay triangulation

Prompts you to insert the number of points to generate randomly:

t = mflnputValue("Input number of random points to generate", 30);

n = (int)t. ToDouble();

x = mfRand(n, 1) * 10 - 5;
y = mfRand(n, 1) * 10 - 5;
z =5 - mfSqrt(x*x + y*y);

Next, create a figure window of two subplots. Perform Delaunay triangulation on the
points generated above using function mfDe launay. To make the points more obvious,
we shall plot them on top of the polygons using function mfPlot.

mfFigure("Delaunay 2D");
mfTitle("Delaunay 2D");
mfSubplot(1, 2, 1);

h = mfDelaunay(x, y);
mfHold("on");

h = mfPlot(x, y, "ob");
mfAxis("equal");

Then, we shall use a different way to perform Delaunay triangulation on the points
using function mfGetDelaunay.

mfSubplot(1, 2, 2);

mfTitle("Delaunay 2D surface");

tri = mfGetDelaunay(x, y);

h = mfSphere(mfHCat(x, vy, z), 0.2, mfV(0, 0, 1));
mfHold("on");

h = mfTriSurf(tri, X, y, z);

mfDrawMaterial(h, "surf", "trans", 50, "smooth", "on");
mfAxis("equal");

Chapter 5 Visualization Methods 171

Delaunay 2D surface

Delaunay 2D

Figure 5.8.1.1 Delaunay 2D and Delaunay 2D surface

Constrained Delaunay

Points with bounddaries

29

-41--
L]

w

=

W

Figure 5.8.1.2 Show the points within boundary and constrained Delaunay

172 MATFOR User’s Guide

5.8.2 Three-dimensional Delaunay

Function mfDelaunay3 takes a set of input points and plot the tetrahedron, whereas
function mFGetDe launay3 generates the triangular mesh as output that can be used
by mfTetSurt or mFTetMesh for plotting.

Example 5.8.2 Using 3-D Delaunay triangulation

Prompts you to insert the number of points to generate randomly:

t = mflnputValue("Input number of random points to generate"”, 30);
n = (int) t. ToDouble();
xyz = mfRand(n, 3) * 10 - 5;

Next, create a figure window of two subplots. Perform three-dimensional Delaunay
triangulation on the points generated above using function mfDe launay3.

mfFigure("Delaunay 3D");
mfSubplot(1, 2, 1);
mfTitle("Distribution");

h = mfSphere(xyz, 0.2, mfV(0, 0, 1));

mfSubplot(1, 2, 2);

mfTitle("Delaunay 3D");

h = mfDelaunay3(xyz);
mfDrawMaterial(h, "surf", "trans", 50);
mfHold("on");

h = mfSphere(xyz, 0.2, mfVv(0, 0, 1));

mfViewPause();

Chapter 5 Visualization Methods 173

Distribution Delaunay 3D

Figure 5.8.2 Display the distributions and Delaunay 3D of the points

Index

A
aCCeSS MFAITAY ..oevvviieiii e 28
adjust viewpointcooovii 94
analysis panel..........ccoocoiviiiinc, 127
ANIMAation ... 115
arithmetic operators...........cccoevveiiiiineeeinnnnnn. 57
array terminologyccooovvivviinniiiiiiniee 11
ASCHT et eeee e 92
AXIS ODJEC ..o 98

B
boundsoovviiiii 12

C
Colorbarcooovviiiii 104
COlOMAP e 100
colormap editorcooovvvviieiiiiiiie e 101
CoNfOrmManCe.......cooovvivi e 12
CONTOUN v e 156, 158
CONLOUr PlOt.....viiiiei e 138
create 3-D models......cccooovviiiiiiiiiiin 89
create and initialize mfArray....................... 16

D
Data VIEWer ... 9,120
Data Viewer MenuU.........cceoevviiriiiinnienennninns 123
Data Viewer toolbarcccccoeeeiinniiiinininn. 124
declare an MFAIray.......cccoeeiiiiiiiieieeenn, 16
Delaunay Triangulationcc.oceevunnnn. 169
determine optimal binomial 76
directory StruCtUre.........ccooovvevvvniiiiiineeeenen, 13
Displayccoovuiiiiiiiiii 37
display 3-D 0bjectscccovvieiiiiiiiiiiiieee, 94
display mfArray data...........ccoooeeveiiiniiinnnnn. 37
displaying mode........ccoooeiiiiiiiiiii 98
documentation and examplescc.ceeeennn. 14
documMENtationS.......ccovvvvviiiiieiiiiiiii e 14

E
element subscCripts........ccooovviiiiii, 28
elementary 3-D objects.........ccooovieiiinninnnn, 149
elmat.lib ..o, 21

Exchange binary data between MATLAB and
MATFOR ... 44

EXEENt Lo, 48

176 MATFOR User’s Guide
1

F ISOSUITACE ..ovvviiiicii 146
fg| 7 1SO-SUITACE ...uviiiiiiii 158
figure Windowsocoeiiiiiiiiiiii 84 ISREAI() oovvvvvvvvvviiss 46
file /O 40 ISSTIING() «ovvveeeeei e 46
filter panel.........coooiiii 127 L
Ml 7 LDIV() coeeeenieii e 57
function calls.......cc.oooiiiiii 11 least square operationsS..........ccooveevvvinnerennnnn. 76

G linear graph......c.ccooviiiiiiii 131
QENETALE BALA evvvrooeeoeessoeees oo sosseessee 89 load data........ccovevviiiiiie e, 92
GetDims 48 logical iINQUITY.....cooovviiiiii 46
GetM() 48 logical operations........ccccoooevviiieiiiiinneneinnnn. 50
GEIN() e rereeeereereee e et 48 M
GeEZ() v oeveri e 48 MATFOR parameters...........cc.ccoeveviiienneennn. 66
graph annotationco.occiiiiiiiiinnncnnn, 113 MatrixX diViSiONcooovvviiiiiiiii s 62
Graphics Library.......ccoooiiiiiiii 8 MALriX INVEISE .ooviiiiiceii e 69
Graphics VIEWETovvviiiiiieiiiicciiie 8, 84 matrix operators and functions.................... 60

H matrix table............ooo 121
HO 56 MENU it 87
HCat() 57 MF_COLON ...t 66

| MFE_E o 67

MF_EMPTY ..o 66
image exportingccooevveieinneiiiiineeiineees 120

MF_EPS oo 66
INQUITY ProCcedurescovvviveevernineiinineeennen, 45

MFE_INF (oo 67
installationccoooviiii 12

MFE_NAN L. 67
ISCOMPIEX() wvvneeiiiiiei e 46

MFE_NINF L 67
ISEMPLY () coevvenieiei e 46

MFE_PL oo 66
ISLOGical() oo 46

Index 177
e

MF_REALMIN.........oooiiiiiiiiee 67 MFLINSPACecviiiiii e, 21, 90
MEATL . 50, 51 MFLOAA ...t 42
MEANY .o 50, 51 MFLOAd. M .o 43
MEAITAY oo, 7,15 MFLOAAASCIT v.vvviviiiiiiiie 42,92
mfArray creating procedurescoo... 30 MFMAGIC .. 21
MFArray 1/O .o, 36 MFMesh ..., 136
mfArray member function/operator.............. 30 MFMESNC.. oo 136
MTAITAY OPErator.........ccovvvvvviiiiiiiiineeiiiinne, 30 MfMeshgridcccooveiiiiii 21
MFArray 0peratorso.ccovvevveiiineiiieniinnnnn, 55 MFONES ... 21
MED . 92 mfoutlineccooiiiii 146
MFCOION ... 20 MIPCOIOTN .o 140
MFCONE ... 150 MIPIOL . 131
MFCONTOUN ..ot 138 MFPIOL3 ..o 133
MECONTOUI3 ... 138 MEQUIVET .. 148
mfCreateRealMatriXccooeviiiiiinnnininnnn. 20 MFRAN. ... 21
MFCUDE ..o 150 MFREPMAL ...t 21
MFCYliNder......ccoooiiii 150 MFREShAPE ..., 21
mfDelaunayoooovveiiiiii e 169 mfRibbon ..., 133
mfDelaunay3.......cccooviiiiiiii 172 MESAVE ..o 41
MIEIG. . 73 MESAVE.M (i 43
MFEYE o 21 MFSIZE o 48
MFFING .o 51 MFSHCelIK ..o 145
MFGEetCUrrentDrawcooeevvviiveeiinnnnnennnn, 116 mfSlicePlane........ccooooviiiiii 145
mfGetDelaunay......ccoooevvvviieiiiiiiciiiee, 169 MFSHCEXYZ .o 145
MIHC ... 20 mfSolidContourccooovveieiiiiiiiiiiees 138
MFINV .o 69 mfSolidContour3...........cccoevvviiiinnnnn, 138, 144

mflsoSurface.......cooovviiiiiiiii 146 MESPhere oo 150

178 MATFOR User’s Guide
1

mfStreamlILine...........ccooveiiiiiii e, 148 MSDISPlay ..o 37
mESurf.. .o 136, 143, 144 msDrawMaterialcocooiiiiiiii 105
MESUITC .. 136 MSEXPOrtimagecccooeeiviiiiiiii, 120
MFTetCoNtOUr ..o 157 MSFIQUIE ..t 82
MFTetISOSUrfacecccoovvvvvviiiiiiiiices 157 MSGSEL v 116
mfTetMesh ..o 157, 172 MSMeshgridcoveiiieiii e, 89
METetSurf ..o 157, 172 MSOULHINE oo 138
METHICONTOUN ... 153 MSPIOL L.eviiiiiiic 84
METriMesh.......cooooiiii s 153, 169 MSRecordENdcoooovviiiiiiiiiii, 118
METriSuUrf . 153, 169 msRecordStart........cooviiiiiiii 118
METUDE ..., 133 MSSAVEASCH wevveiiiiieiiii e 41
MEVC 20 MSShading ...oooveiiiiii 82
mfWindowCaptionccooeeiiiiiiiiiiii, 84 MSSUDPIOt ... 85
MFWINAOWPOS........ooeviiii e, 84 MSSUIT 116
MFWINdowSizeccoooviiiiii e, 84 MSTEXE.oeeiii e 114
MFZEIOS...cciiiiiiiii i 21 MSTIIE o, 113
molecule.........coooiiiiii 150 MSVIBW ...t 94
MSANNOLALION ... 114 MSVIEWPAUSE ... 40, 116
MSAXIS v 82, 99 msXLabel ..o 113
MSAXISGIId .o, 99 msYLabel ... 113
MSAXISWall ..o, 99 msZLabel ... 113
msBackGroundColor.........cooocvvviiiiiiinnnecnnn, 82 MUTQ) o 56
MSCamPan.........coocoiiiii 96 Multi-dimension subscriptc.ccooeeevnnnnn. 29
MSCAMPIO] oo, 98 N

MSCAMZOOM. o7 Numerical Librarycccccoooiiiiiii. 8
msColorbar..........cccooviiiiiiii 104

O
MSCOIOIMAP ..eeeeieiiee e 100

orthographiC......ccoooeiiiiiii 98

P
PEISPECTIVE ...vuiii i 98
Plot data.....cc.ovveviiiiei 81
POW() et 56
PriMItIVES. ..o 149
procedure naming conventions 10
procedures with “mf” as prefix.................... 10
pseudocolor plot.........ccoiiieiiiiiiiii, 140
Q
QUIVET it 148
R
FANK ..o 11
RDIV() coveeeeee e, 57
FECOTAING. . cieeiiiiei e 115
regression model ..., 71
relational operators............cceiiiiiiiiinneiiinnnn. 58
rescale objects.....cccoovvviiiiiiii 97
S
SAMPIE TYPE covvviii e 125
Scalar subscript.......cooviiiiiiiii 28
Shading ...coooviiii 100
SNAPE o 12, 48
shift objects ... 95
(] 74 12, 48
sliced-planescooovvviiiiiii 145

snapshot panel.........ccooooiiiiiii 125

Index 179

STAtUS DAlo 128
streamline.......cooovvviiiiiiiii 148
SUDPIOLS .o 85
SUIFACE v 143, 153, 158
surface plot.......coooviiiiiii 136
T
T0) oo 56
technical SUPPOrt.......coooevviiiiiii e, 14
text annotationccccceeiiiiiei 114
TEXTUNE ..o 100
texture mappPingccoooeevviiieiiieees 109
three-dimensional Delaunay....................... 172
three-dimensional linear graph................... 133
tOO0IDAr . ..cciei e 87
two-dimensional Delaunay...........ccc....oooee. 169
two-dimensional linear graph..................... 131
U
unstructured gridsooooveviiiiiiii, 157
unstructured meshccccceeeeiiinicniiiiiinnnnn, 152
\
VECAL() e 57
vector fieldcooooviiii 148
visualizationccooovviiiiii 81
volume renderingcccceevviiiiiiieiiiiineeennn, 142
W
WINdow framecoooveviiiii 84

	Contents
	Introduction
	1.1 Overview
	1.2 What is MATFOR
	1.3 The MATFOR Components
	MATFOR mfArray
	MATFOR Numerical Library
	MATFOR Graphics Library
	MATFOR Graphics Viewer
	MATFOR Data Viewer

	1.4 MATFOR Function Naming Conventions
	Functions with “mf” as prefix

	1.5 Array Terminology
	Example

	1.6 MATFOR Installation
	MATFOR Directory Structure

	1.7 MATFOR Documentation and Examples
	1.8 Technical Support

	Working with�mfArray
	2.1 What is mfArray
	2.2 Create and Initialize mfArray
	2.2.1 Declaring an mfArray
	Example 2.2.1 Construct and initialize mfArray

	2.2.2 Initializing an mfArray
	Example 2.2.2 mfArray creating functions

	2.3 Access Elements and Sections of an mfArray
	2.3.1 Element Subscripts
	Scalar subscript
	Multi-dimensional subscript

	2.3.2 mfArray Accessing Methods
	Example 2.3.2.1 Access an element of an mfArray variable
	Example 2.3.2.2 Access a section of an mfArray variable

	2.4 mfArray I/O
	2.4.1 Displaying mfArray Data
	mfGDisplay
	Example 2.4.1.1 Use mfGDisplay

	2.4.2 mfArray File I/O
	2.4.2.1 mfSaveAscii
	Example 2.4.2.1 Function mfSaveAscii
	2.4.2.2 mfLoadAscii
	Example 2.4.2.2
	2.4.2.3 mfLoad.m and mfSave.m
	Example 2.4.2.3 Exchange binary data between Matlab and MATF

	2.5 mfArray Inquiry Functions
	2.5.1 Logical Inquiry
	Example 2.5.1 Logical Inquiry functions

	2.5.2 Size, Shape, and Extent
	Example 2.5.2 Size and shape

	2.5.3 Logical Operations

	2.6 mfArray Operators
	2.6.1 Arithmetic Operators
	2.6.2 Relational Operators
	Example 2.6.2 mfArray Relational Operators

	2.6.3 Matrix Operators and Functions
	Matrix Division
	Example 2.6.3 Matrix Operators

	2.6.4 MATFOR Parameters

	Linear Algebra
	3.1 Matrix Inverse
	Example 3.1 Matrix Inverse
	3.2 Application of Eigenvalues and Eigenvectors
	Example 3.2 Solving a differential equation

	3.3 Least Square Operations
	Example 3.3 Determining the optimal binomial

	Visualization Basics
	4.1 Plotting Your Data
	Example 4.1 Steps to visualization
	4.2 MATFOR Graphics Viewer
	4.2.1 Window Frame and Figure Windows
	4.2.2 Subplots
	Example 4.2.2 Using mfSubplot

	4.2.3 Menu and Toolbar

	4.3 Creating 3-D Models
	4.3.1 Generating the Data
	Example 4.3.1 mfMeshgrid- function of two variables

	4.3.2 Loading Data (mfb, ascii)
	Example 4.3.2 mfLoadAscii- loading ascii data files

	4.4 Displaying 3-D Objects
	4.4.1 Adjusting the Viewpoint
	Example 4.4.1 Setting the viewpoint

	4.4.2 Shifting the Objects
	4.4.3 Rescaling the Objects
	Example 4.4.3 Zooming in the surface object

	4.4.4 Changing the Displaying Mode
	Example 4.4.4 Changing to the perspective displaying mode

	4.4.5 Setting the Axis Object
	Example 4.4.5 Adjusting the axis object

	4.5 Colormap, Shading and Texture
	4.5.1 Adjusting Colormap
	Example 4.5.1.1 Using predefined colormaps
	Example 4.5.1.2 Using colormap editor

	4.5.2 Displaying Colorbar
	4.5.3 Shading Objects
	Example4.5.3 mfDrawMaterial

	4.5.4 Mapping Texture
	Example4.5.4 mfDrawTexture

	4.6 Annotating Your Graph
	4.6.1 Setting the Title and Axis Labels
	Example 4.6.1 Changing the axis labels and title

	4.6.2 Text Annotation
	Example 4.6.2 Adding text annotations

	4.7 Animation and Recording
	4.7.1 Animation
	Example 4.7.1 Animation

	4.7.2 Recording your animation
	Example 4.7.2 Recording an animation

	4.7.3 Image Exporting

	4.8 MATFOR Data Viewer
	4.8.1 Matrix Table
	4.8.2 Menu
	4.8.3 Toolbar
	4.8.4 Sampling Type
	4.8.5 Snapshot Panel
	4.8.6 Analysis Panel
	4.8.7 Filter Panel
	4.8.8 Status Bar

	Visualization Methods
	5.1 Linear Graph
	5.1.1 Two-dimensional Linear Graph
	Example 5.1.1 Two-dimensional linear plot
	5.1.2 Three-dimensional Linear Graph
	Example 5.1.2 Three-dimensional linear plot

	5.2 Surface Plot
	5.2.1 Surface Plot
	Example 5.2.1 Surface plots using different methods

	5.2.2 Contour Plot
	Example 5.2.2 Using contours

	5.2.3 Pseudocolor Plot
	Example 5.2.3 Pseudocolor plot

	5.3 Volume Rendering
	5.3.1 Surface (surf, mesh, outline, contour)
	Example 5.3.1 Surface plots of the volumetric data

	5.3.2 Sliced-planes
	Example 5.3.2 Sliced-planes of the volumetric data

	5.3.3 Isosurface
	Example 5.3.3 Isosurface plots of the volumetric data

	5.4 Vector Field
	5.4.1 Quiver and Streamline
	Example 5.4.1 Quiver and streamline representations of the v

	5.5 Elementary 3-D Objects
	5.5.1 Primitives
	5.5.2 Molecule
	Example 5.5.2 Plotting structured protein graph

	5.6 Unstructured Mesh
	5.6.1 Surface
	Example 5.6.1 Building an icosahedron

	5.6.2 Contour
	Example 5.6.2 Displaying the polygonal object using contour

	5.7 Unstructured Grids
	5.7.1 Surface, Contour and Iso-surface plots of unstructured

	5.8 Delaunay Triangulation
	5.8.1 Two-dimensional Delaunay
	Example 5.8.1 Using 2-D Delaunay triangulation

	5.8.2 Three-dimensional Delaunay
	Example 5.8.2 Using 3-D Delaunay triangulation

	Index

